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1. Introduction

The study of the maps between classifying spaces of compact Lie groups from a ho-
motopy point of view has been one of the highlights of algebraic topology in the final
quarter of the xxth century. The project was started by Sullivan’s construction of
unstable Adams operations in his deeply influential manuscript Geometric Topology,
part I. Along the seventies, Hubbuck, Adams-Mahmud, Wilkerson and Friedlander
developed a deep analysis of the maps between classifying spaces using localization
theory, Steenrod and K-theory operations and étale homotopy. In that same manu-
script of Sullivan, he pointed out that the first obstruction to understand the maps
between classifying spaces consists in understanding the maps from BZ/p to a com-
pact space. This problem was called the Sullivan conjecture and the way to its solution
(Miller, Carlsson) crossed some of the most beautiful landscapes of homotopy theory
at the end of the century: the unstable Adams spectral sequence and the structure
of injective objects in the category of unstable modules over the Steenrod algebra.
Once this very strong weapon was available, Dwyer-Zabrodsky and Notbohm were
able to understand the mod p homotopy type of the space of maps from the classify-
ing space of a p-toral group to the classifying space of a compact Lie group. Then,
the homotopy decompositions of Jackowski-McClure-Oliver made possible an induc-
tive approach to compact Lie groups which culminated in the description by these
three authors of the set of homotopy classes of self maps of BG for all compact con-
nected simple Lie groups G. All these ideas and theorems, together with their many
ramifications and generalizations (homotopy uniqueness of BG, p-compact groups,
polynomial cohomology algebras, the mod p homotopy type of classifying spaces of
finite groups...) pervades modern homotopy theory and is quickly becoming classic.1

The simply connected compact connected Lie groups are associated to the complex
semi-simple (finite dimensional) Lie algebras. These Lie algebras can be described by
their Cartan matrix A = (aij) which codifies its root system and satisfies these two
conditions:

a) aij are non-positive integers for i 6= j, aii = 2 and aij = 0 implies aji = 0;
b) all principal minors of A are positive.

The authors acknowledge support from DGES grant PB97-0203.
1The interested reader is invited to read the surveys [13] and [21] as well as the introduction to

[11] for a more detailed history of these topics.
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2 JAUME AGUADÉ AND ALBERT RUÍZ

Here, condition b is the one needed to prove that the Lie algebra g(A) that we
construct from A is finite dimensional. If we drop it, one can still construct a Lie
algebra out from the data in A, but in general it turns out to be infinite dimensional.
These infinite dimensional Lie algebras are called Kac-Moody algebras and they are
important objects in many areas of mathematics, from finite group theory to physics
(see for instance [14] and [15]).

The Kac-Moody groups are (infinite dimensional) topological groups which are
obtained “integrating” the Kac-Moody algebras g(A) in a way that generalizes the
construction of the Lie groups from their Lie algebras. The construction of these
groups G(A) as well as an important geometric and topologic study of their properties
was done by Kac in [15]. Inside G(A) there is a “unitary form” K(A) and these
topological groups K(A) are the groups that we call Kac-Moody groups through
this paper. They behave, in many aspects, very much like their finite dimensional
analogues. K(A) has a maximal torus T of finite rank and a Weyl group W which is a
reflection group (of infinite order); the flag variety K(A)/T has a geometric structure
like in the finite dimensional case, and so on.

The thesis of Kitchloo ([18]) investigated the cohomology and some other topo-
logical properties of the Kac-Moody groups of rank two (the rank of a Kac-Moody
group is the rank of its maximal torus) and their classifying spaces. This work gave
a first hint of the possibility of applying homotopy theory to investigate Kac-Moody
groups through their classifying spaces, as an extension of the work on classifying
spaces of compact Lie groups that we have summarized in the first paragraph above.
Influenced by the work of Kitchloo, Aguadé, Broto, Rúız and Saumell started a joint
project with Kitchloo to study Kac-Moody groups from a homotopy point of view.
The present paper, as well as [2], [5] and [6] are some of the results of this project. It
should be noticed that most of the classical work on maps between classifying spaces
is based on the Sullivan conjecture, i.e. on the compactness of the groups involved.
Hence, extending the homotopy theoretical investigation of compact Lie groups to
Kac-Moody groups is far from being a straightforward path.

Our goal here is to study the set of homotopy classes of self-maps of BK for any
rank two Kac-Moody group K. At the same time, we will find some other results
on the homotopy theory of BK and also some examples of results that are true for
compact Lie groups but fail for Kac-Moody groups. In some cases, our results have
not been stated in its maximum generality, since we are more interested in discovering
the main lines of the homotopy theory of BK in the rank two case, as a first step to
the general case. To go beyond rank two would be an interesting trip and this paper
can give some hints of the phenomena that one could find there.

Let us summarize now the main results of this paper. K denotes a rank two (infinite
dimensional, non-affine) Kac-Moody group.

Our most important result is a complete description of the monoid [BK, BK] (sec-
tion 10). To reach this result we obtain some other results that are interesting by
themselves. First, we generalize the Adams maps to the maps that we call generic
Adams maps BK → BK (section 7), we prove that any map BK → BK is homo-
topic to a generic Adams map (section 7) and we obtain a classification of generic
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Adams maps up to homotopy on BTK (theorem 7.6). Then we prove that any map
f : BK → BK is determined, up to homotopy, by its restriction to BTK (sections 8
and 9). We also obtain a characterization of the integers that can be the degree of
some self-map of BK (theorem 7.3). All these results are parallel to the correspond-
ing results for compact Lie groups, except that there are more Adams maps in the
Kac-Moody case than in the Lie case.

We also find examples of some phenomena which do not happen in the case of
compact Lie groups. For instance, we show that there are maps BT → BK which
are not induced by any group homomorphism T → K (remark 3.4). We show that
there are non-isomorphic Kac-Moody groups K, K ′ such that BK and BK ′ are
homotopically equivalent and we obtain necessary and sufficient conditions for this to
happen (theorem 6.2). We show that rational cohomology and integral cohomology
are not enough to classify self maps of BK (remark 7.7).

As said before, this work is part of a more general project in collaboration with C.
Broto, N. Kitchloo and L. Saumell. The authors want to thank them for all the helpful
discussions that we have had all together. We are also grateful to the University of
Aberdeen and the Université Paris 13 for their hospitality during the preparation of
this paper.

2. Rank two Kac-Moody groups

We choose positive integers a, b such that ab > 4. Along this paper K will always
denote the unitary form of the Kac-Moody group associated to the generalized Cartan
matrix (

2 −a
−b 2

)
,

while we use mainly the letter L to denote a generic unitary form of a Kac-Moody
group. Sometimes we write K(a, b) instead of K when we want to make explicit the
values of a and b used to construct K. The integers a and b can be interchanged,
since the group associated to (a, b) is isomorphic to the group associated to (b, a).
The case ab < 4 gives rise to compact Lie groups while the case ab = 4 is called the
affine case and will be left aside. These infinite dimensional topological groups and
their classifying spaces BK have been studied from a homotopical point of view in
[18] and [2]. We recall here some properties of K and BK which we will use along
this work.

K has a maximal torus of rank two TK which is a maximal connected abelian
subgroup of K. Any two such subgroups are conjugated. The Weyl group W of K is
infinite dihedral group acting on the Lie algebra of TK through reflections ω1 and ω2

given by the integral matrices:

w1 =

(−1 b
0 1

)
, w2 =

(
1 0
a −1

)
.

The matrices of determinant +1 in W form a subgroup W+ of index two which is
infinite cyclic generated by τ = ω1ω2.
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A fundamental result in the homotopy theory of the classifying spaces of Kac-
Moody groups is the following result of Kitchloo ([18]). If L is any Kac-Moody group
with infinite Weyl group and {PI} are the parabolic subgroups of L indexed by proper
subsets I of {1, . . . , rank(L)} then there is a homotopy equivalence

BL ' hocolim
I

BPI .

In the rank two case, this allows us to construct BK as a push out

BTK
- BH1

BH2

?
- BK

?

where H1 and H2 are some compact Lie groups of rank two which depend on the
parity of the integers a and b. More precisely (see [2]) we have the following push out
diagrams:

• a ≡ b ≡ 0 (mod 2). Then

BK ' hocolim
{
BS3 ×BS1 ¾

(−a
2

1
1 0

)

BT

(
1 − b

2
0 1

)

- BS3 ×BS1
}
.

• a ≡ b ≡ 1 (mod 2). Then

BK ' hocolim
{
BU(2) ¾

(
1−a
2

1
1+a
2

−1

)

BT

(
1 1−b

2

−1 1+b
2

)

- BU(2)
}
.

• a ≡ 1, b ≡ 0 (mod 2). Then

BK ' hocolim
{
BU(2) ¾

(
1−a
2

1
1+a
2

−1

)

BT

(
1 − b

2
0 1

)

- BS3 ×BS1
}
.

Here each matrix M written above an arrow means a map B(i◦ρ) where i : TK ↪→ K
is the inclusion and ρ : TK → TK is the homomorphism inducing M on the Lie algebra
level.

The mod p cohomology of BK is known (see [18], [2]). We have (the subscripts
denote the degrees and E denotes an exterior algebra):

• If a ≡ b ≡ 0 (mod 2) then H∗(BK;F2) ∼= F2[x4, y4] ⊗ E[z5] with βr(y4) = z5

where 2r‖ gcd(a, b).
• If a ≡ b ≡ 1 (mod 2) then H∗(BK;F2) ∼= F2[x4, y6] ⊗ E[z7] with βr(y6) = z7

where 2r‖(ab− 1).
• If a ≡ 1 (mod 2) and b ≡ 0 (mod 2) then H∗(BK;F2) ∼= F2[x4, y8]⊗E[z9] with

βr(y8) = z9 where 2r‖(ab− 2).
• If p > 2 then H∗(BK;Fp) ∼= Fp[x4, y2k]⊗ E[z2k+1] with βr(y2k) = z2k+1 and the

integers k and r are determined in the following way. The action of the Weyl
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group W on TK gives a representation W ↪→ GL2Z. Let Wpn be the image of
W in GL2(Z/pn). Then k = |Wp|/2 and r = min{n : |Wpn | < |Wpn+1|}.

We introduce now the group Ŵp ⊂ GL2(Ẑp) defined in the following way. We
have the groups Wpn ⊂ GL2(Z/pn) which are the reductions mod pn of the Weyl

group W ⊂ GL2(Z). Then we define Ŵp as the inverse limit of {Wpn}. We call Ŵp

the p-completed Weyl group. Notice that this group contains W as a subgroup. The

structure of the group Ŵp can be described as follows. We define Ŵ+
p = Ŵp∩SL2(Ẑp).

Then we have an extension Ŵ+
p ½ Ŵp ³ Z/2. Consider the element τ = ω1ω2 ∈ W of

infinite order and let N(n) be the order of τ in GL2(Z/pn). Then Ŵ+
p = lim←-------Z/N(n).

We can write N(n) = lpr(n) where r(n) is an increasing sequence. Then,

Ŵ+
p
∼= Ẑp × Z/l.

The value of l is known (see [18]): for p > 2 we have l = 1 if p|ab−4, l = 2 if p divides
a or b but not both, and l is the multiplicative order of the roots of x2− (ab− 2)x+1
in Fp2 in all other cases; if p = 2 then l = 3 if a and b are odd, while l = 1 otherwise.
This function l = l(K, p) will be used several times in this work. We will introduce
another function y = y(K, p) which is defined for all odd primes such that l is odd
and which will be used in our investigation of Adams maps.

Lemma 2.1. Assume p > 2 and l = l(K, p) odd. Then there is a unique element

y = y(K, p) ∈ Ẑp such that ay2 = b and

(
0 y

1/y 0

)
∈ Wp.

Proof. If p and l are odd then Ŵ+
p is uniquely 2-divisible and there is a unique matrix

A ∈ Ŵ+
p such that A2 = ω1ω2. Let us investigate what are the possible values of

A. ω1ω2 has two different eigenvalues ζ, ζ−1 which are the roots of the characteristic
polynomial x2 − (ab − 2)x + 1 and an easy direct calculation shows that the square

roots of ω1ω2 in SL2Ẑp are the matrices

(
ay −y
1/y 0

)
with y = ±(1 + ζ)/a

√
ζ. Only

one of these square roots is in Ŵ+
p . This gives a choice for y. Consider now Aω2 =(

0 y
1/y 0

)
∈ Ŵp. We see easily that y satisfies the lemma. Uniqueness is clear since

ay2 = b determines y up to a sign and the fact that W+
p has odd order settles the

question.

The center of K is also well understood ([18]):

ZK =

{
2Z/(ab− 4)× Z/2, a ≡ b ≡ 0 (mod 2)

Z/(ab− 4), otherwise.

We have that H4(BK;Z) ∼= Z and we can fix a generator in the following way.
H4(BK;Z) injects in H4(BTK ;Z). Let d be the g.c.d. of a and b and let a′ = a/d,
b′ = b/d. Let {t1, t2} be the simple roots basis of H2(BTK ;Z). Then a generator of
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H4(BK;Z) is given by

q = a′t21 + b′t22 − a′bt1t2.

Notice that this is a binary quadratic form with integral coefficients and discriminant
∆(q) = a′2b2−4a′b′ > 0. Such objects are classically called primitive indefinite binary
forms and constitute an important topic in number theory since Gauss (see [7]). In
particular, the form q is an ambiguous one. (A form is called ambiguous if there is an
integral matrix of determinant −1 which leaves it invariant.) An integral matrix of
determinant +1 which leaves q invariant is called an automorph of q. The automorphs
of q form a subgroup of SL2(Z) which is closely related to the Weyl group W . We
will discuss this relation elsewhere.

The class q produces a map q : BK → K(Z, 4) which is a rational equivalence.
This class q allows us to define the degree of a self map f : BK → BK as the integer
g such that the equality f ∗(q) = gq holds in integral cohomology. The degree gives a
map

deg : [BK, BK] → Z
which is a monoid homomorphism and will play an important role in our description
of [BK, BK].

The outer automorphisms of a Kac-Moody group are computed by Kac and Wang
in [17]. Their results give the following description of Out(K):

Out(K) =

{
Z/2 ·Ψ−1, a 6= b

Z/2 ·Ψ−1 × Z/2 ·Ψ1,1, a = b.

Here Ψ−1, Ψ1,1 : K → K are automorphisms which induce −I and

(
0 1
1 0

)
on the Lie

algebra of TK , respectively. They induce self maps BK → BK which we denote by
ψ−1 and ψ1,1, respectively, by analogy to the Adams maps between classifying spaces
of compact Lie groups.

Let NK denote the normalizer in K of the maximal torus TK . Then, if p is odd,
a theorem of Kitchloo ([18]) proves that the inclusion NK ↪→ K induces a homotopy
equivalence (BNK)∧p ' BK∧

p .

3. Relations between global and local maps

In general, it is easier to study the maps X → Y one prime at a time. Then, the
set [X, Y ] can be recovered from the sets [X,Y ∧

p ] by using the arithmetic square of
[4], p. 192. In this section we want to investigate this situation when the target space
is BK.

Recall that there is a class q : BK → K(Z, 4) which induces a rational equivalence.

Hence, BKQ ' K(Q, 4) and (BK∧
p )Q ' K(Q̂p, 4). We denote by q ⊗ Q̂p the class

BK∧
p → K(Ẑp, 4) → K(Q̂p, 4).

Proposition 3.1. Let X be a space such that H5(X;Q) = 0. Then the map l :
[X, BK] → ∏

p[X, BK∧
p ] is injective. The image consists of those families of maps
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{fp : X → BK∧
p } such that there is x ∈ H4(X;Q) such that f ∗p (q⊗ Q̂p) = x⊗ Q̂p for

all p.

Proof. The proof of the injectivity of l is essentially analogous to the proof of theorem
3.1 in [11]. The arithmetic square ([4], p. 192) gives a pull back diagram

BK -
∏

p

BK∧
p

K(Q, 4)
?

- K(Q̂, 4)

?

Here Q̂ = (
∏

p Ẑp) ⊗ Q and the hypothesis on the vanishing of H5(X;Q) ensures

that each component of the spaces Map(X, K(Q, 4)) and Map(X, K(Q̂, 4)) is simply
connected.

The coherence condition on {fp} is clearly necessary. Let us show that it is sufficient
too. The class x ∈ H4(X;Q) gives a map X → K(Q, 4) while {fp} gives

∏
p fp : X →∏

p BK∧
p . Because of the pullback diagram above, the global map f : X → BK will

exist if we prove that the two maps X → ∏
p BK∧

p → K(Q̂, 4) and X → K(Q, 4) →
K(Q̂, 4) are homotopic. It is enough to check that both maps coincide on H4(−; Q̂).

The inclusion of divisible abelian groups Q̂ ⊂ ∏
p Q̂p reduces the problem to check

equality on H4(−; Q̂p) for all primes p. The commutative diagram

X -
∏

p

BK∧
p

- K(Q̂, 4)

@
@

@
@

@
fp

R

BK∧
p

πp

?
- K(Q̂p, 4)

(πp)Q
?

together with the coherence hypothesis on {fp} solves the problem.

We want to use this result when X = BT and X = BK. Let us denote by

Tp∞ the p-torsion subgroup of a torus T . We have H∗(BTp∞ ;Z) ∼= H∗(BT ;Z) ⊗ Ẑp

and the inclusion Tp∞ ↪→ T induces a mod p equivalence BTp∞ → BT . Hence
[BT,BK∧

p ] ∼= [BTp∞ , BK∧
p ] and 3.1 can be written in this form:

Proposition 3.2. The map l : [BT,BK] → ∏
p[BTp∞ , BK] is injective. The im-

age consists of those families of maps {fp : BTp∞ → BK} such that f ∗p (q) lies in

H4(BT ;Z) ⊂ H4(BTp∞ ;Z) and is independent of p.

In the case X = BK 3.1 can be written in this form:

Proposition 3.3. The map l : [BK, BK] → ∏
p[BK∧

p , BK∧
p ] is injective. The image

consists of those families of maps {fp : BK∧
p → BK∧

p } such that f ∗p (q ⊗ Q̂p) =

λ(q ⊗ Q̂p) and λ is a rational number independent of p.
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From these rather elementary facts it follows easily that one of the classical results
on maps between classifying spaces of compact Lie groups fails for infinite dimensional
Kac-Moody groups. Notbohm proved ([19]) that any map from the classifying space
of a torus T to the classifying space of a compact Lie group G is homotopic to a map
induced by a homomorphism from T to G. This is not true for Kac-Moody groups:

Remark 3.4. In general, the map Hom(T, K) → [BT,BK] is not surjective.

Proof. Chose a and b such that the binary form q has non trivial genus set (see
[7]) and take K = K(a, b), T = TK . Let q′ be a binary form in the genus of q
but not equivalent to q. (There are plenty of examples of this phenomenon.) This

means that q and q′ are equivalent over the ring Ẑp for all p, but not equivalent over
Z. Hence, we have for each prime p an isomorphism φp : Tp∞ → Tp∞ which is an
equivalence between q and q′ and can be used to produce a coherent family of maps
{fp : BTp∞ → BK} and, by 3.2, a map f : BT → BK with f ∗(q) = q′. Assume that
f ' Bρ for some group homomorphism ρ : TK → K. Then ρ factors through TK up
to an inner automorphism of K and so ρ is given by an integral two-by-two matrix M .
Then q′ = f ∗(q) = M tqM . Since forms in the same genus have the same discriminant,
M gives an integral equivalence between q and q′, and this is a contradiction.

4. Maps into BK∧
p and representations

Let us fix a prime p. In this section we want to study the relation between homotopy
classes of maps BT → BK∧

p and representations Tp∞ → K. The starting point for
this research is the crucial result on maps from the classifying space of a p-group
into the p-completed classifying space of a Kac-Moody group that were obtained by
Broto-Kitchloo in [5] and [6]. We recall here these results.

Theorem 4.1 ([5],[6]). If L is a Kac-Moody group and π is a finite p-group then

a) There is a homotopy equivalence
∐

ρ∈Rep(π,L)

(BCL(ρ))∧p
'- Map(Bπ, BL∧p )

where CL(ρ) denotes the centralizer in L of the image of ρ. In particular,
[Bπ,BL∧p ] ∼= Rep(π, L).

b) If {PI} denotes the poset of parabolic subgroups of L which are Lie groups, then
there is a homotopy equivalence

(
hocolim

I
Map(Bπ,BPI

∧
p )

)∧
p

'- Map(Bπ, BL∧p ).

We want to apply this result to the p-groups Tpn ⊂ TK consisting of the elements
of TK of order dividing pn. We introduce the following notation. Map(BTpn , BK∧

p )(s)

is the subspace of Map(BTpn , BK∧
p ) which contains all maps which are homotopic

to some Bρ where ρ : Tpn → K is a homomorphism with kernel of order ≤ ps. We

denote by End(s)(Tpn) the set of endomorphisms of Tpn with kernel of order ≤ ps. The

elements of End(s)(Tpn) are represented by integral two-by-two matrices M = (aij)



MAPS BETWEEN CLASSIFYING SPACES OF KAC-MOODY GROUPS 9

and for n > s these matrices have the property that νp(det(M)) ≤ s. To prove this,
consider the abelian group Tpn/MTpn and apply to it the classification theorem of
finitely generated abelian groups. It turns out to be isomorphic to a group of the
form Z/d1Z ⊕ Z/d2Z with d1|d2 and d1d2 = gcd(p2n, pnaij, det M). Then the size of
the kernel of M in Tpn is the same as the size of Tpn/MTpn which is equal to d1d2. If
d1d2|ps < pn then νp(det(M)) ≤ s.

The inclusion Tpn ⊂ TK gives an action of the Weyl group of K on Tpn . Hence,

the group W acts on the left on the sets End(s)(Tpn). The next theorems incorporate
some ideas of Dwyer and Kitchloo.

Theorem 4.2. If n À s then each component of Map(BTpn , BK∧
p )(s) is homotopy

equivalent to (BTK)∧p ×K(Ẑp, 1).

Proof. When we apply theorem 4.1 b) to our case we obtain a push out diagram up
to p-completion

Map(BTpn , BK∧
p )(s)

¾'
p

hocolim
(
Map(BTpn , (BH1)

∧
p )(s)←Map(BTpn , (BTK)∧p )(s) →Map(BTpn , (BH2)

∧
p )(s)

)
.

Each of the mapping spaces in this push out diagram can be computed using theorem
4.1a which in the case of Lie groups reduces to a fundamental theorem of Dwyer-
Zabrodsky (see [8]). If P denotes any of the parabolics of K (i.e. P is either TK or
H1 or H2), then

Map(BTpn , BP∧
p )(s) '

∐
(BCP (ρ))∧p

where the disjoint union ranges over all representations ρ of Tpn in P with |Ker ρ | ≤
ps. Now, if n is big enough then all these representations factor through the maximal
torus of P , which is the same as the maximal torus of K, and their centralizer is TK .
Moreover, for n big enough the representations of Tpn in P with small kernel are in

one-to-one correspondence to the cosets in WP\End(s)(Tpn). Hence,

Map(BTpn , BP∧
p )(s) '

∐

WP \End(s)(Tpn )

(BTK)∧p .

This reduces the problem to the computation of a homotopy push out of finite sets

End(s)(Tpn) - 〈ω1〉\End(s)(Tpn)

〈ω2〉\End(s)(Tpn)

?

(∗)

Notice that ω1 and ω2 are matrices or order two. Hence, the components of this push
out of sets are either circles or points. To show that no isolated points occur, we need
to check that ω1 and ω2 act freely on the set End(s)(Tpn). Let M be an integral two-
by-two matrix such that ωiM ≡ M (pn) for some i = 1, 2. Since ωi has determinant

−1, we have det M ≡ 0 (pn−1) and so such a matrix M does not exist in End(s)(Tpn)
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if n is big enough. Hence, the homotopy push out above has the homotopy type of a
disjoint union of circles and the theorem follows.

Corollary 4.3. Let ρ : Tp∞ → K be a homomorphism with finite kernel. Then
Map(BTK , BK∧

p )Bρ is homotopically equivalent to (BTK)∧p .

Proof. We can use 4.2 in the following way:

Map(BTK , BK∧
p )Bρ ' holim

n
Map(BTpn , BK∧

p )Bρ ' holim{(BTK)∧p ×K(Ẑp, 1)}.
To prove the corollary, we see that the inverse system of p-completed circles has trivial
homotopy limit. To do this, let us look more carefully at the diagram (∗) above. A
circle in the push out is obtained from a matrix M with (ω1ω2)

mM ≡ M (pn). Fix M
with kernel of size ≤ ps and define m(n) as the minimum positive integer such that
(ω1ω2)

m(n)M ≡ M (pn). If we prove that {νp(m(n))} is an increasing sequence then

holim{K(Ẑp, 1)} will be a point. If we multiply the congruence (ω1ω2)
m(n)M ≡ M (pn)

by the adjoint matrix to M we see that m(n) has to be a multiple of the order of
ω1ω2 in GL2(Z/pn−s). Since the p-adic valuation of this order tends to infinity, so
does the p-adic valuation of m(n).

As said before, the Weyl group W acts on Tp∞ . Also, the integral representation

W ↪→ GL2Z gives an action of W on (Ẑp)
2. These two actions are essentially the same

in the sense that the action of W on the character group of Tp∞ Hom(Tp∞ ,Zp∞) '
(Ẑp)

2 is the dual to the natural action of W on (Ẑp)
2.

Proposition 4.4. Let A be a proper subgroup of Tp∞ such that WA ⊂ A. Then A is
finite.

Proof. First, one proves easily that the hypothesis ab > 4 implies that (Ẑp)
2 has no

W -invariant sub-Ẑp-modules of rank one. Then, if we apply the functor Hom(−,Zp∞)
to the exact sequence of abelian groups 0 → A → Tp∞ → Tp∞/A → 0 we obtain an
exact sequence of character groups

0 → (Tp∞/A)∗ → (Ẑp)
2 → A∗ → 0

and we obtain a non trivial W -invariant sub-Ẑp-module of (Ẑp)
2. Hence, (Tp∞/A)∗

has Ẑp-rank two and A is finite.

Proposition 4.5. Let f : BK → BK∧
p . There is a homomorphism ρ : Tp∞ → K

such that f |BTp∞ ' Bρ. If ρ 6= 1 then ρ has finite kernel.

Proof. For each n, theorem 4.1 shows that f |BTpn ' Bρn for some homomorphism
ρn : Tpn → K uniquely determined up to an inner automorphism of K. It is clear that
we can turn {ρn} into a compatible family which gives a homomorphism ρ : Tp∞ → K
with the property that Bρ|BTpn ' f |BTpn . To conclude that Bρ ' f |BTp∞ we need to
prove that some obstructions vanish. These obstructions live in

lim←-------
1

n

π1 Map(BTpn , BK∧
p )Bρn .
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If ρ = 1 then Map(BTpn , BK∧
p )Bρn ' BK∧

p by theorem 4.1 and the obstructions
vanish since BK is simply connected.

If ρ 6= 1 then the vanishing of the lim←-------
1 follows from the computation of the homo-

topy type of Map(BTpn , BK∧
p ) done in 4.2, as soon as we can prove that the condition

on the size of the kernel of ρn holds. We will prove that Ker ρ is finite. Notice that
if ω ∈ W and in : Tpn ↪→ K then

Bρn ' f |BTpn ' f ·Bin ' f ·Bin ·Bcω̄ ' B(ρn · ω)

(cω̄ is conjugation by some ω̄ ∈ NK(T ) which projects onto ω ∈ W ). Hence, there is
gn ∈ K such that

ρn · ω|Tpn = cgn · ρ|Tpn .

This shows that Ker ρ is W -invariant. Then, proposition 4.4 implies that Ker ρ is
finite and the theorem is proved.

Next, we want to describe the isotropy of the homomorphism ρ that appears in

the preceding proposition. It is given by the p-completed Weyl group Ŵp that we
discussed in section 2.

Proposition 4.6. Let ρ, ρ′ : Tp∞ → Tp∞ be homomorphisms with finite kernel. Then

Bρ ' Bρ′ in [BTp∞ , BK∧
p ] if and only if there is α ∈ Ŵp such that ρ = αρ′.

Proof. Choose s such that Bρ,Bρ′ ∈ Map(BTp∞ , BK∧
p )(s). Clearly, this proposition

is about π0 Map(BTp∞ , BK∧
p )(s). The equivalence BTp∞ = hocolim BTpn reduces the

problem to the study of Map(BTpn , BK∧
p )(s) for large n. This space has been analyzed

in theorem 4.2. From the arguments there, it follows that the set of components of
Map(BTpn , BK∧

p )(s) is in one-to-one correspondence to Wpn\End(s)(Tpn). Then, we
have a surjection

π0 Map(BTp∞ , BK∧
p )(s) ³ lim←-------

0

n

π0 Map(BTpn , BK∧
p )(s)

and each fiber of this surjection is in one-to-one correspondence to

lim←-------
1

n

π1(Map(BTpn , BK∧
p )(s), ∗)

for some choice of the base point ∗. This lim←-------
1 vanishes since each group in the tower

is compact and so we obtain a one-to-one correspondence

π0 Map(BTp∞ , BK∧
p )(s)

∼= Ŵp\End(s)(Tp∞)

which proves the theorem.

Now we can display the complete picture:

Theorem 4.7. Let f : BK → BK∧
p . There is an endomorphism ρ of Tp∞ such that

f |BTp∞ ' Bρ. ρ is unique up to the left action of Ŵp on End(Tp∞).
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Proof. Proposition 4.5 shows that there is a homomorphism ρ : Tp∞ → K with
f |BTp∞ ' Bρ. If ρ 6= 1 then ρ has finite kernel and so

f |BTp∞ ∈ Map(BTp∞ , BK∧
p )(s)

∼= Ŵp\End(s)(Tp∞)

for some s. It follows that ρ can be replaced by ρ′ : Tp∞ → Tp∞ with finite kernel.
Also, if ρ′ is another endomorphism of Tp∞ such that Bρ′ ' Bρ′′ in [BTp∞ , BK∧

p ]
then ρ′|Tpn and ρ′′|Tpn are conjugated in K for any n. Hence, ρ′ and ρ′′ have the same

kernel. Hence, proposition 4.6 applies and ρ′ and ρ′′ differ by an element of Ŵp. The
case ρ = 1 is clear.

5. Admissible matrices

Let now K = K(a, b), K ′ = K(a′, b′) be two Kac-Moody groups of rank two with
Weyl groups W , W ′. As always, we assume ab, a′b′ > 4. We have then two integral
representations of the infinite dihedral group D∞ given by the actions of W and W ′

on the Lie algebras of the maximal tori TK , TK′ .

We say that a two-by-two matrix M with entries in Ẑp is p-admissible if for each

ω ∈ W there is ω′ ∈ Ŵ ′
p (the p-completed Weyl group of K ′) such that Mω = ω′M .

(We should say that M is W−W ′−p-admissible, but we allow ourselves this simplified
notation.) The next result classifies all admissible matrices.

Proposition 5.1. Assume ab = a′b′. Then the p-admissible matrices are those of

the form ω′A with ω′ ∈ Ŵ ′
p and with A of the form either

(
λ 0
0 µ

)
with a′λ = aµ and

λ, µ ∈ Ẑp or

(
0 λ
µ 0

)
with aλ = b′µ and λ, µ ∈ Ẑp.

Proof. First, one checks easily that the matrices A that appear in the proposition are
exactly the ones with the property that Aωi = ω′σ(i)A, i = 1, 2, where σ is a permu-

tation of {1, 2} and ωi, ω′i are the generating reflections of W and W ′, respectively.

Assume M 6= 0 is a p-admissible matrix. Then the kernel of M is a sub-Ẑp-module

of (Ẑp)
2 which is W -invariant. As said before, this implies that this kernel is trivial

and so M−1 exists in GL2(Q̂p). This shows that we can write Mω = β(ω)M for some

group homomorphism β : W → Ŵ ′
p. Let us investigate the behavior of β.

Let us consider the matrix τ = ω1ω2 =

(
ab− 1 −b

a −1

)
which generates an infinite

cyclic subgroup of W . This matrix has two different eigenvalues ζ±1 which are not
roots of unity and depend only on the product ab (cf. the proof of lemma 2.1). The

matrices τ and β(τ) are conjugated in GL2(Q̂p). Let τ ′ = ω′1ω
′
2 =

(
a′b′ − 1 −b′

a′ −1

)
.

Then, τ ′ and β(τ) have the same eigenvalues and both belong to the abelian group

Ŵ ′
p
+. Hence, there is a basis (in some extension field) such that τ ′ and β(τ) both

diagonalize simultaneously. This implies that β(τ) = τ ′±1. Composing with an inner

automorphism of Ŵ ′
p
+ we can assume that β : W → Ŵ ′

p is a monomorphism such that
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β(ω1ω2) = ω′1ω
′
2. Recall now the structure of the group Ŵ ′

p as discussed in section 2.

Ŵ ′
p is an extension of Z/2 by the abelian group Ŵ ′

p
+ ∼= Ẑp × Z/l and W ′ sits inside

Ŵ ′
p sending τ ′ to the element (1, 1) ∈ Ẑp × Z/l. Recall also that l is odd if p = 2.

From this description of the group Ŵ ′
p
+ it follows easily that given ω ∈ Ŵ ′

p
+ either

ω = γ2 or ω = γ2τ ′ for some γ ∈ Ŵ ′
p
+. Now, from β(ω1ω2) = ω′1ω

′
2 it follows that

there is ω ∈ Ŵ ′
p
+ such that β(ωi) = ωω′i. If ω = γ2 then β(ωi) = γω′iγ

−1, i = 1, 2,

while if ω = γ2τ ′ then β(ωi) = γω′1ω
′
σ(i)ω

′
1γ
−1, σ the non trivial permutation of {1, 2}.

In any case, it follows that β is, up to conjugation, either the natural inclusion or
the homomorphism which interchanges ω1 and ω2. Put β(ωi) = ω′ω′σ(i)ω

′−1 for some

ω′ ∈ Ŵ ′
p, i = 1, 2, σ a permutation of {1, 2}. Then, the matrix A = ω′−1M satisfies

Aωi = ω′σ(i)A, i = 1, 2 and so, as said before, this implies that A has the form stated
in the proposition.

The importance of p-admissible matrices in our work comes from the fact that they
appear naturally in the investigation of maps between classifying spaces, as shown by
the following proposition.

Proposition 5.2. Let f : BK → BK ′∧
p be a map. There is a p-admissible matrix

M such that f |BTp∞ is homotopic to the map induced by M .

Proof. By 4.7, f |BTp∞ is homotopic to the map induced by a homomorphism ρ :

Tp∞ → T ′
p∞ which is unique up to the left action of Ŵ ′

p. (Actually, 4.7 was stated for
K = K ′ but it is also valid in our more general situation, without any change at all.)

If ω ∈ W then ρω is another choice for ρ and so ρω = ω′ρ for some ω′ ∈ Ŵ ′
p.

6. Groups with the same classifying space

An special feature of (non-Lie) Kac-Moody groups is the fact that the classifying
space functor is not faithful, i.e. there are non-isomorphic Kac-Moody groups K 6∼= K ′

with the same classifying space up to homotopy BK ' BK ′. If this happens then K
and K ′ have, in particular, the same homotopy type. While there are non isomorphic
semi simple Lie groups of the same homotopy type (see [3]), there is a theorem of
Notbohm ([20]) which shows that two compact Lie groups are isomorphic if and only
if their classifying spaces are homotopy equivalent. This is not true for Kac-Moody
groups.

In this section we will classify the rank two Kac-Moody groups with classifying
space of the same homotopy type. First, we recall the classification of these groups
up to continuous isomorphism. To simplify the notation, we denote by K = K(a, b),
K ′ = K(a′, b′) rank two Kac-Moody groups with Weyl groups W and W ′ respectively.

Proposition 6.1. K ∼= K ′ if and only if {a, b} = {a′, b′}.
Proof. Let φ : K → K ′ be a continuous isomorphism. We know ([16]) that a maximal
torus in a Kac-Moody group is a maximal connected abelian subgroup and two such
subgroups are conjugated. Hence, we can assume that φ sends TK to TK′ . Then, φ is



14 JAUME AGUADÉ AND ALBERT RUÍZ

represented by a matrix M ∈ GL2(Z) which is admissible in an obvious sense. Then,
an argument similar to the one in 5.1 (but easier) shows that this matrix M can exist
only if {a, b} = {a′, b′}.

Next we obtain a characterization of rank two Kac-Moody groups K, K ′ with
BK ' BK ′. (Recall that we always assume ab > 4.)

Theorem 6.2. BK ' BK ′ if and only if the following conditions hold:

a) ab = a′b′ and gcd(a, b) = gcd(a′, b′).
b) One can order a′, b′ in such a way that aa′ is a square (in Z) and ab′ is a square

in Ẑp for all primes p such that νp(a) 6= νp(a
′).

Proof. Assume we have a homotopy equivalence f : BK → BK ′. Then there is
also a homotopy equivalence K ' K ′. The integral cohomology of these spaces
has been computed in [18] and it turns out that H4(K(a, b);Z) ∼= Z/gcd(a, b)Z and
H6(K(a, b);Z) ∼= Z/(ab− 1)Z. This shows that condition a) is necessary.

For each prime p the homotopy equivalence f produces, by proposition 5.2, a p-
admissible matrix Mp such that the composition BTp∞ → BK → BK ′∧

p is induced

by Mp. By 5.1, Mp = ω′A with ω′ ∈ Ŵ ′
p and A is of one of the two types that appear

in 5.1.
Let q, q′ be the quadratic forms associated to K and K ′, respectively. They are

invariant by the corresponding Weyl groups and it follows easily that they are also

invariant by the p-completed Weyl groups Ŵp and Ŵ ′
p. Hence, if λ, µ are the non-zero

entries of A, we have f ∗(q′) = λµq and since f is a homotopy equivalence, we obtain
λµ = ±1. Now there are two possibilities depending on the actual type of A for the

prime p. In the first case, ±a′/a is a square in Ẑ∗p and in the second case ±a/b′ is a

square in Ẑ∗p.
The existence of a homotopy equivalence BK ' BK ′ has led us to the fact that

for each prime p at least one of the rational numbers ±a′/a or ±a/b′ is a square in

Ẑ∗p. Now, it is a well known arithmetic fact that given non-squares x, y ∈ Q there are

infinitely many primes p such that x, y are non-squares in Ẑp. This shows that the
minus sign cannot happen, i.e. f must have degree +1 and it implies also that either
a/a′ or a/b′ are squares in Q. Let us order {a′, b′} in such a way that a/a′ is a square
in Q. Then aa′ is also a square. Moreover, if νp(a) 6= νp(a

′) then a/a′ is not a unit

in Ẑp and so a/b′ has to be a square in Ẑp and so does ab′ as well. This shows that
condition b) is necessary.

To prove the converse we have to construct a homotopy equivalence f : BK ' BK ′

assuming conditions a) and b). We do it by constructing maps fp : BK → BK ′∧
p one

prime at a time and then applying 3.3 to glue together these maps and get a global
map.

First we notice that a) and b) imply that for each prime p either a/a′ or a/b′ are

squares in Ẑ∗p. Let us call a prime p plain if a/a′ is a square in Ẑ∗p and twisted if it is
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not (and so a/b′ is a square in Ẑ∗p). Recall that we have push out diagrams

BK∧
p '

(
hocolim

{
(BH1)

∧
p

¾ (BTK)∧p - (BH2)
∧
p

})∧
p

BK ′∧
p '

(
hocolim

{
(BH ′

1)
∧
p

¾ (BTK′)∧p - (BH ′
2)
∧
p

})∧
p

where Hi, H ′
i are compact Lie groups of rank two which depend on the parity of

a, b, a′, b′. We will define fp on each node of these diagrams. Roughly speaking, at the
plain primes, we map each node of the push out diagram for K to the corresponding
node of the push out diagram of K ′ while at the twisted primes we permute the
“exterior” nodes of the push out before mapping them.

We introduce the following maps. For any prime p and any p-adic unit λ define

Φλ : BU(2)∧p → BU(2)∧p

Φλ : (BS3 ×BS1)∧p → (BS3 ×BS1)∧p
as the maps extending the self maps of the maximal torus given by the p-adic matrices

(
λ+λ−1

2
λ−1−λ

2
λ−1−λ

2
λ+λ−1

2

)
,

(
λ 0
0 λ−1

)
,

respectively. Existence and uniqueness (up to homotopy) of these maps follow from
corollary 3.5 in [12]. For odd primes p we consider also the map ϕ : (BS3×BS1)∧p →
BU(2)∧p which is given on the maximal torus by the matrix

(
1 1/2
−1 1/2

)
. ϕ is a

homotopy equivalence and its existence follows easily from the fact that the Weyl
groups of the two Lie groups involved have order two.

Choose now a plain prime p and let a/a′ = λ2, λ a p-adic unit. We will define a
map fp : BK∧

p → BK ′∧
p . We distinguish several cases according to the parities of a

and b.

Case 1: a and b even.
In this case a′ and b′ are even too and the Lie groups Hi, H ′

i, i = 1, 2 are all
isomorphic to S3 × S1. A direct computation shows that the following diagram
commutes up to homotopy:

(BS3 ×BS1)∧p ¾

(−a
2

1
1 0

)

(BTK)∧p

(
1 − b

2
0 1

)

- (BS3 ×BS1)∧p

(BS3 ×BS1)∧p

Φλ−1

?
¾(
−a′

2
1

1 0

) (BTK)∧p

(
λ 0
0 λ−1

)

?
(

1 − b′
2

0 1

)- (BS3 ×BS1)∧p

Φλ

?

and we get a map fp : BK → BK ′∧
p .
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Case 2: a and b odd.
In this case a′ and b′ are also odd and the Lie groups Hi, H ′

i, i = 1, 2 are all
isomorphic to U(2). We get also a map fp : BK → BK ′∧

p from the commutative
diagram (up to homotopy)

BU(2)∧p ¾

(
1−a
2

1
1+a
2

−1

)

(BTK)∧p

(
1 1−b

2

−1 1+b
2

)

- BU(2)∧p

BU(2)∧p

Φλ−1

?
¾(

1−a′
2

1
1+a
2

−1

) (BTK)∧p

(
λ 0
0 λ−1

)

?
(

1 1−b′
2

−1 1+b′
2

)- BU(2)∧p

Φλ

?

Case 3: a odd and b even.
In this case a′ and b′ have also different parity and we need to distinguish between

two cases. If a′ is odd and b′ is even then the map fp : BK → BK ′∧
p comes from the

commutative diagram (up to homotopy)

BU(2)∧p ¾

(
1−a
2

1
1+a
2

−1

)

(BTK)∧p

(
1 − b

2
0 1

)

- (BS3 ×BS1)∧p

BU(2)∧p

Φλ−1

?
¾(

1−a′
2

1
1+a′

2
−1

) (BTK)∧p

(
λ 0
0 λ−1

)

?
(

1 − b′
2

0 1

)- (BS3 ×BS1)∧p

Φλ

?

If a′ is even and b′ is odd then p is odd and the map fp : BK → BK ′∧
p comes from

the commutative diagram (up to homotopy)

BU(2)∧p ¾

(
1−a
2

1
1+a
2

−1

)

(BTK)∧p

(
1 − b

2
0 1

)

- (BS3 ×BS1)∧p

(BS3 ×BS1)∧p

ϕ−1Φλ−1

?
¾(
−a′

2
1

1 0

) (BTK)∧p

(
λ 0
0 λ−1

)

?
(

1 1−b′
2

−1 1+b′
2

) - BU(2)∧p

Φλϕ

?

Now we have fp : BK → BK ′∧
p for any plain prime p and we need to deal now

with the twisted primes. If p is twisted then p is plain for BK(b′, a′) and we construct
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the map f ′p : BK → BK(b′, a′)∧p as above; then we obtain fp composing with the
equivalence BK(b′, a′) ∼= BK ′.

All these maps fp : BK → BK ′∧
p are rationally compatible and they produce a

map f : BK → BK ′. To see that f is a homotopy equivalence notice that the
even mod p cohomology of BK injects in the mod p cohomology of BTK and the
effect of each fp on H∗(BTK ;Fp) shows that each fp is a mod p equivalence. Hence,
f : BK ' BK ′.

In spite of this result, which shows that the classifying space functor is not faithful
among Kac-Moody groups, we believe that the results in this paper show that the
homotopy type of BK is, nevertheless, rich enough to reflect a good deal of the
properties of the group K.

7. Adams maps

As it happens in the case of compact connected Lie groups, the Adams maps will
play a fundamental role in the study of self maps of classifying spaces of Kac-Moody
groups.

If L is a Kac-Moody group and λ is an integer, we define an Adams map ψλ as
any map ψλ : BL → BL such that ψλ extends (up to homotopy) the map Bρ :
BTL → BTL where ρ : TL → TL is the homomorphism t 7→ tλ. Notice that we are not
claiming (yet) homotopy uniqueness of Adams maps: any map extending the λ-power
self-map from BTL will be called an Adams map ψλ. When L is a compact connected
Lie group this definition is equivalent to the classical definition of unstable Adams
operations. The Adams maps form a monoid under composition, isomorphic to the
multiplicative monoid of the integers, since ψλψµ = ψλµ.

Proposition 7.1. There is an Adams map ψλ : BK → BK if and only if λ is an
odd integer or λ = 0.

Proof. Recall that K has an outer automorphism Ψ−1 extending the automorphism
t 7→ t−1 of TK (see section 2). Hence, we only need to consider Adams maps ψλ with
λ ≥ 0. For ψ0 we take the constant map. Now we use the existence of Adams maps
in compact connected Lie groups G (see [23]). There is a map ψλ : BG → BG if (and
only if, see [9]) λ is prime to the order of the Weyl group of G. This implies that we
have Adams maps ψλ : BHi → BHi, i = 1, 2, for any odd integer λ, where Hi are
the proper parabolic subgroups of K. Then the push out diagram for BK gives an
Adams map ψλ : BK → BK.

Now we have to prove that ψλ does not exist if λ is even. Essentially, the same proof
as in the Lie group case ([9]) works here. Let ω be one of the generating reflections of
the Weyl group and let ω̃ be a representative of ω in the normalizer of TK . It is known
([22]) that we can choose ω̃ such that ω̃4 = 1. Assume that there is ψλ : BK → BK
with λ even. Since any element of finite order of K can be conjugated to TK we see
that the map ψλ2

is nullhomotopic when restricted to B〈ω̃〉. Choose n ≥ 1 and let
N be the subgroup of the normalizer of TK generated by T2n (the elements of TK

of order dividing 2n) and ω̃. N is a finite 2-group and so (theorem 4.1) there is a
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homomorphism ρ : N → K such that ψλ2|BN ' Bρ. Now ρ is trivial on ω̃ and ρ is

t 7→ tλ
2

on TK . Hence, we obtain that ω acts trivially on tλ
2

for any t ∈ T2n . Taking
n big enough we get a contradiction.

A special feature of the non-Lie Kac-Moody groups is the existence of another
family of self maps different from the Adams maps. For simplicity, we define these
maps only in the case of the rank two groups K. Given (non zero) integers λ, µ we
define a twisted Adams map ψλ,µ as any map ψλ,µ : BK → BK such that it extends

up to homotopy the self map of BTK given by the matrix

(
0 λ
µ 0

)
.

Proposition 7.2. There is a twisted Adams map ψλ,µ : BK → BK if and only if λ
and µ are odd integers such that aλ = bµ.

Proof. The proof is similar to the proof of 6.2 and uses the idea of mapping the push
out diagram for BK to itself in a twisted way.

By hypothesis, a and b have the same parity. If they are both even then we consider
the homotopy commutative diagram

BS3 ×BS1 ¾

(−a
2

1
1 0

)

BTK

(
1 − b

2
0 1

)

- BS3 ×BS1

BS3 ×BS1

ψλ × ψµ

?
¾(

1 − b
2

0 1

) BTK

(
0 λ
µ 0

)

?
(−a

2
1

1 0

)- BS3 ×BS1

ψµ × ψλ

?

which produces the map ψλ,µ : BK → BK. If a and b are odd then we consider the
diagram

BU(2) ¾

(
1−a
2

1
1+a
2

−1

)

BTK

(
1 1−b

2

−1 1+b
2

)

- BU(2)

BU(2)

γ(λ+µ
2

, µ−λ
2

)

?
¾ (

1 1−b
2

−1 1+b′
2

) BTK

(
0 λ
µ 0

)

?
(

1−a
2

1
1+a
2

−1

) - BU(2)

γ(λ+µ
2

, λ−µ
2

)

?

Here γ(x, y) : BU(2) → BU(2) denotes a map which extends the map

(
x y
y x

)
on

the maximal torus. This map exists if x 6≡ y (2). This follows easily from the results
in [12].
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We have to prove now that the conditions on λ and µ are necessary for the existence
of a map ψλ,µ. The condition aλ = bµ follows from the study of admissible matrices
done in 6.2. Since the composition ψλ,µψλ,µ is an Adams map ψλµ it follows from 7.1
that λ and µ must be both odd.

If we complete at a prime p then we can generalize the Adams maps above (both

ordinary and twisted) to p-adic degrees. If λ, α, β ∈ Ẑp with aα = bβ then there are
maps ψλ, ψα,β : BK∧

p → BK∧
p for any odd p. If p = 2 then ψλ, ψα,β exist if and only

if λ, α, β 6≡ 0 (2). The proofs of these facts are completely analogous to the proofs of
7.1 and 7.2. Notice that proposition 3.2 implies that this concept of a p-adic Adams
map is compatible with the integral concept introduced before.

For each prime p choose a map fp : BK∧
p → BK∧

p which is an Adams map (ordinary
or twisted). If these maps fp are rationally compatible then they lift to a global
map f : BK → BK. The maps constructed in this way will be called generic
Adams maps. As seen in 3.3, the rational compatibility reduces to the existence of
an integral degree g such that f ∗(q) = gq where q ∈ H4(BK;Z) is the quadratic form
introduced in section 2. More precisely, a generic Adams map f is described by its

type {(εp, λp)} ∈
∏

p

({0, 1} × Ẑp

)
. εp = 0 means that fp is an ordinary Adams map

ψλp while εp = 1 means that fp is a twisted Adams map ψλp,µp with µp = aλp/b ∈ Ẑp.
We want to determine now the set of degrees of generic Adams maps. The following

result gives a complete description of these degrees in an effective way, in the sense
that given an integer g one can decide in a finite number of steps if g is the degree of
some generic Adams map or not. Put d = gcd(a, b), a′ = a/d, b′ = b/d.

Proposition 7.3. Let g 6= 0 be an integer.

a) If g is a square then g is the degree of some generic Adams map if and only if g
is odd;

b) If g is not a square then g is the degree of some generic Adams map if and only
if g is odd and there exist integers A, B, r such that
1) g = A2r, a′b′ = B2r;
2) If B is even then r ≡ 1 (8);

3) If p is odd and νpB > νpA then r is a square in Ẑp.

Proof. Clearly, g is the degree of some generic Adams map if and only if, for each

prime p, g can be written either as g = λ2
p for some λp ∈ Ẑp (λ2 ≡ 1 (2)) or g = λpµp

for some λp, µp ∈ Ẑp with a′λp = b′µp (λ2, µ2 ≡ 1 (2)). In particular, g is odd and
part a is clear.

Assume that g is not a square but we have g = A2r, a′b′ = B2r with A, B, r
satisfying the conditions of the proposition. We have to prove that g is the degree of

some generic Adams map. Choose a prime p. If g is a square in Ẑp, we can realize

g at the prime p by a p-adic Adams map. If g is not a square in Ẑp then we realize
g at the prime p by a twisted Adams map ψλp,µp with λp = b′A/B and µp = a′A/B.
One checks immediately that g = λpµp and a′λp = b′µp but we also need to check

that A/B ∈ Ẑp and that λ2, µ2 ≡ 1 (2). Notice that r is not a square in Ẑp (otherwise
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g would be a square in Ẑp and it is not). Then, if p is odd condition 3 implies that

A/B ∈ Ẑp. If p = 2 and B were even then by condition 2 we would have r ≡ 1 (8)

and r would be a square in Ẑ2, which is not. Since g is odd so are A and r. Hence,
a′ and b′ are also odd and λ2, µ2 ≡ 1 (2).

Next, we will prove that the conditions on g are necessary. We need a little lemma
which is an easy exercise on quadratic residues. We are grateful to Enric Nart for his
advise on these topics.

Lemma 7.4. Let x, y ∈ Z, x an odd non-square, y > 0. The following two conditions
are equivalent:

a)
(

y
p

)
= −1 for all p prime to y such that

(
x
p

)
= −1.

b) There is r ∈ Z such that x = A2r and y = B2r.

We apply this lemma to x = g and y = a′b′. If g is a non-square mod p for some

p prime to a′b′ then g is a non-square in Ẑp and so g = λµ with aλ = bµ. Hence,

a′b′λ2 = b′2g and a′b′ is a non-square in Ẑp. Hence, condition a in the lemma is
satisfied and this implies that we can write g = A2r, a′b′ = B2r for some integers A,

B, r. If B is even then a′b′ is even too and so g has to be a square in Ẑ2. Hence,

r ≡ 1 (8). If r is a non-square in Ẑp then g is a non-square in Ẑp and so g = λµ

with a′λ = b′µ. This implies that g/a′b′ = (µ/a′)2 ∈ Ẑp and so νp(B) ≤ νp(A). The
theorem is proved.

It is an easy matter to use an algebraic computer language to write a short program
which, given the values of a, b and g, decides if BK(a, b) admits a generic Adams
map of degree g.

Proof of 7.4: Recall the following well known fact from the theory of quadratic re-
sidues: given different primes p1, . . . , pr, q1, . . . , qs and given ε ∈ {±1}, there are
infinitely many primes ` such that

(
pi

`

)
= 1, 1 ≤ i ≤ r,

(
qi

`

)
= −1, 1 ≤ i ≤ s and(−1

`

)
= ε.

The implication b⇒a is obvious. Write x = ±pa1
1 · · · pam

m with pi odd and a1 odd.
Write y = 2kpb1

1 · · · pbm
m · · · pbn

n with bi ≥ 0. If x < 0 then choose a prime ` such that(−1
`

)
= −1 while

(
pi

`

)
=

(
2
`

)
= 1. Then we would have

(
x
`

)
= −1 but

(
y
`

)
= 1 in

contradiction to condition a. Hence, x > 0. If some aj is odd, then choose a prime `
such that

(
2
`

)
=

(
pi

`

)
= 1 for i 6= j while

(pj

`

)
= −1. Then, condition a implies that bj

is odd too. If some aj is even, choose a prime ` such that
(

2
`

)
=

(
pi

`

)
= 1 for i 6= 1, j

while
(

p1

`

)
=

(pj

`

)
= −1. Then, condition a implies that bj is even too. We deduce

that x and y can be written as x = A2r, y = 2kC2r where r is an odd non-square.

Let ` be such that
(

r
`

)
=

(
2
`

)
= −1. Then −1 =

(
y
`

)
=

(
r
`

) (
2
`

)k
and so k is even and

y = B2r.

For each integer g and each prime p let us consider the set

Sg,p =

{
M ∈ gl2(Ẑp)

∣∣∣M =

(
λ 0
0 λ

)
, λ2 = g or M =

(
0 α
β 0

)
, αβ = g, aα = bβ

}
.
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Let us consider the equivalence relation in Sg,p given by

M ∼ M ′ ⇔ M = ωM ′, ω ∈ Ŵp.

The following lemma describes the cosets under this relation. Let us recall that in
section 2 we introduced integers l = l(K, p) and y = y(K, p) which are related to the

structure of the group Ŵp.

Lemma 7.5. Let M,M ′ ∈ Sg,p. Then

1. If l is even then M ∼ M ′ if and only if M = ±M ′.
2. If p = 2 then M ∼ M ′ if and only if M = M ′.

3. If l is odd and p 6= 2 then M ∼ M ′ if and only if M = M ′ or M =

(
λ 0
0 λ

)
,

M ′ =
(

0 α
β 0

)
and λ = βy.

Proof. Recall that Ŵ+
p
∼= Ẑp × Z/l and so Ŵ+

p has an element of order two if and
only if l is even. This matrix of order two has to be −I. Hence, M ∼ −M if and
only if l is even.

On the other hand, if p and l are odd then by lemma 2.1 we can find a matrix

ω =

(
0 y

1/y 0

)
in Ŵp with ω

(
λ 0
0 λ

)
=

(
0 α
β 0

)
. Conversely, if

(
λ 0
0 λ

)
∼

(
0 α
β 0

)

then there is a matrix ω ∈ Ŵp with the property that (ωω2)
2 = ω1ω2 and this implies

that l and p are odd.

This lemma can be used to decide when two generic Adams maps are homotopic
on BTK .

Proposition 7.6. Let f, f ′ : BK → BK be generic Adams maps of types {(εp, λp)},
{(ε′p, λ′p)} and degrees g, g′, respectively. f |BTK

' f ′|BTK
if and only if the following

holds:

1. g = g′;
2. εp = ε′p for p = 2 and for any p such that l(K, p) is even;

3. λp = y(K, p)εp−ε′pλ′p for any p such that l(K, p) is odd.

Proof. It is clear that g = g′ is a necessary condition for the existence of a homotopy
f |BTK

' f ′|BTK
.

Now f and f ′ are homotopic on BTK if and only if they are homotopic on BTp∞ for
all primes p (by 3.2). By proposition 4.6 this holds if and only if at each prime p the
matrices used to define f and f ′ are related by the equivalence relation considered
above. Then 7.5 yields the result stated.

We would like to put the results of this proposition in a more transparent way.
For instance, given a prime p and an integer g, one would like to have a set of
representatives of p-adic Adams maps ψ : BK∧

p → BK∧
p (up to homotopy on BTp∞).

The following table displays this information:
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g a square ag/b a square p l(K, p) representatives of p-adic

in Ẑp? in Ẑp? Adams maps of degree g

no no any any none

yes: no 2 odd ψλ, ψ−λ

g = λ2 odd even ψλ

no yes: 2 odd ψα,β, ψ−α,−β

ag = bβ2, αβ = g odd even ψα,β

yes: yes: 2 odd ψλ, ψ−λ, ψα,β, ψ−α,−β

g = λ2 ag = bβ2, αβ = g odd even ψλ, ψα,β

odd ψλ, ψ−λ

Remark 7.7. In the case of compact connected simple Lie groups, rational coho-
mology classifies self maps. More precisely, one of the main results of [11] is that
for f, f ′ : BG → BG, G as above, f is homotopic to f ′ if and only if H∗(f ;Q) =
H∗(f ′;Q). One could wonder if there is a result of this type for Kac-Moody groups.
In particular, one would like to replace a cohomological classification by the charac-
terization in proposition 7.6, which is precise but aesthetically not so pleasant as the
corresponding result for Lie groups.

First of all, it is clear that rational cohomology is not enough, since two self maps of
BK induce the same homomorphism in rational cohomology if and only if they have
the same degree. Unfortunately, integral cohomology does not suffice either. Let us
discuss this in more detail. For any odd prime p we have (see section 2) H∗(BK;Fp) ∼=
Fp[x4, y2k] ⊗ E[z2k+1] with βr(y2k) = z2k+1. Here x4 is the mod p reduction of the
integral class q. Hence, Heven(BK;Z(p)) ∼= Z(p)[q] while Hodd(BK;Z(p)) is torsion.
Then, the even integral cohomology does not carry any more information on self maps
than the degree, but some additional information could be read on H2k+1(BK;Z(p)) ∼=
Z/pr. The action of a generic Adams map f : BK → BK on H2k+1(BK;Z(p)) can
be determined from the transgression τ in the fibration K/T → BT → BK

τ : H2k(K/T ;Z(p)) ³ H2k+1(BK;Z(p))

and the knowledge on H∗(K/T ) given by its Schubert calculus (see [18]).
Given a, b, choose an odd prime ` such that l(K, `) is odd. Then, let f = ψ`n

and
let f ′ be the generic Adams map given by f ′p = ψ`n

for p 6= ` and f` = ψ−`n
. By

proposition 7.6, f and f ′ are not homotopic but if we choose n big enough then f
and f ′ both induce the same endomorphism on H∗(BK;Z(p)) for all p.

We finish our discussion of Adams maps with the important result which claims
that all self maps are Adams maps :

Theorem 7.8. Let f : BK → BK be a map. Then f is a generic Adams map.
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Proof. This is an immediate consequence of 4.7, 5.2 and 5.1.

8. Homotopically trivial self maps

In this section we want to prove the following result:

Theorem 8.1. Let f : BK → BK be a map. The following are equivalent:

1. f is nullhomotopic.
2. f |BTK

is nullhomotopic.
3. deg(f) = 0

We prove first a couple of lemmas. Recall that a p-toral group is a group which is
an extension of a finite p-group by torus.

Lemma 8.2. Let P be a p-toral group and let L be a Kac-Moody group. Then the map
BL∧p → Map(BP, BL∧p )0 (whose image is the space of constant maps) is a homotopy
equivalence.

Proof. We approximate BP (up to p-completion) by classifying spaces of finite p-
groups. Now, according to 4.1, for a p-group π we have Map(Bπ, BL∧p ) ' ∐

BCL(ρ)∧p
where the disjoint union is over all representations ρ : π → L. If we consider nullho-
motopic maps, then each of these centralizers is equal to L and the result follows.

Lemma 8.3. Let f : BK → BK∧
p be a map such that f |BTK

is nullhomotopic. Let
P be a subgroup of K which is an extension of a finite p-group by TK. Then f |BP is
nullhomotopic.

Proof. For each n, let Pn be the subgroup of P which is an extension of P/TK by Tpn .
Since Pn is a finite p-group, by 4.1 there is a homomorphism ρn : Pn → K such that
f |BPn ' Bρn. For each x ∈ K consider the map

B(xTKx−1 ∩ Pn) → BPn → BK
f→ BK∧

p .

Since f |BTK
is nullhomotopic and since conjugation by x induces a self map of BK

which is homotopic to the identity, we deduce that the above composition is nullho-
motopic. Hence, ρn is trivial on xTKx−1 ∩ Pn. But Pn is covered by the conjugates
xTKx−1 (each element of finite order in a Kac-Moody group is in a maximal torus
and two maximal torus are conjugated, see [16]) and so ρn = 1 for all n and f |BPn

is nullhomotopic for all n. Since BP∧
p ' (hocolim BPn)∧p , to conclude that f |BP is

nullhomotopic it is enough to check the vanishing of some obstructions which live in
lim←-------

1 π1 Map(BPn, BK∧
p )0. Each of these mapping spaces is homotopically equivalent

to BK∧
p , which is simply connected. Hence, the obstructions vanish and the result is

proven.

Lemma 8.4. Let M be a Z(p)[W ]-module with p odd. Then Hj(W ;M) = 0 for
j ≥ 2. If M has trivial W -action then Hj(W ;M) = 0 for j ≥ 1.

Proof. The Weyl group W is infinite dihedral and so it is an extension of an infinite
cyclic group by a group of order two with non-trivial action. Since M is a Z(p)-
module with p odd, the Serre spectral sequence of this group extension collapses
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to an isomorphism H∗(W ;M) ' H∗(Z;M)Z/2 and the lemma follows easily from
this.

Proof of theorem 8.1: The implications 1 ⇒ 2 ⇒ 3 are obvious. Assume f has degree
zero. By 7.8, f should be an Adams map ψ0. Hence, f |BTK

is nullhomotopic.
It remains to prove the implication 2 ⇒ 1. Let us denote by Map(BK, BK∧

p )0̄ the
space of maps which are nullhomotopic on BTK . We want to prove that this space is
connected. Let us first consider the case of p > 2. In this case BK∧

p ' BN∧
p , where

N is the normalizer of TK in K and we have

Map(BK, BK∧
p )0̄ ' Map(BTK , BK∧

p )hW
0 ' (BK∧

p )hW ' Map(BW,BK∧
p ).

By lemma 8.4, the space BW is p-acyclic and Map(BK, BK∧
p )0̄ ' BK∧

p is connected.
When p = 2 we proceed in the following way. Let H denote any of the standard

parabolic subgroups of K. H is a compact Lie group isomorphic to either S1 × S3

or U(2). There is an important bibliography on colimit decompositions of classifying
spaces of compact Lie groups. In our case, it is known (see, for instance, [10]) that
H is 2-equivalent to the homotopy colimit of a small diagram of the form

Σ3 © BP1

Σ2\Σ3--- BP2

where P1 and P2 are 2-toral groups. The derived functors limi over this category
are well understood (see [1]) and are know to vanish in the category of Z(2)-modules

except for lim0 and lim1.
We prove now that f |BH ' ∗. Lemma 8.3 implies that f |BP ' ∗ for any P

appearing in the diagram for BH. Hence, we just need to show that some obstructions
vanish. These obstructions live in lim1 π1 Map(BPi, BK∧

2 )0 but this is trivial because
of 8.2.

We observe now that BK is the push out of BH1 ← BTK → BH2. Hence, to
conclude that f is nullhomotopic we check the vanishing of the obstruction set in
lim1 π1 Map(BHi, BK∧

2 )0. This higher limit is a quotient of π1 Map(BTK , BK∧
2 )0 =

π1BK∧
2 (by lemma 8.2) and so it vanishes because BK is 3-connected.

Now the triviality of f : BK → BK∧
p for all primes p implies the triviality of

f : BK → BK by 3.3.

9. Detecting maps on the maximal torus

In this section we will prove the final result that we need in order to have a complete
picture of the self maps of BK.

Theorem 9.1. Let f, f ′ : BK → BK. The following are equivalent:

1. f and f ′ are homotopic.
2. f |BTK

and f ′|BTK
are homotopic.

Proof. Of course, only the implication 2 ⇒ 1 needs a proof. This theorem has already
been proved in the case in which f |BTK

is nullhomotopic (see 8.1). Hence, we can
assume that f |BTK

is not nullhomotopic. By 3.3, we have to prove that f and f ′ are
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homotopic after completion at each prime p. We treat the odd primes and the prime
two separately.

The case of an odd prime: In this (easier) case, we have that BK∧
p ' BN∧

p '
[(BTK)hW ]∧p where N is the normalizer of TK in K. Since f and f ′ coincide up to
homotopy on BTK , to prove that they coincide up to homotopy on BK∧

p we check
that the obstructions to uniqueness for maps defined on a homotopy colimit vanish.
In our case, these obstruction live in Hj(W ; πj Map(BTK , BK∧

p )f |BTK
) for j ≥ 1.

By 4.5, f |BTp∞ is induced by a homomorphism ρ : Tp∞ → K with finite kernel.
Hence, we can use 4.3 to conclude that Map(BTK , BK∧

p )f |BTK
' (BTK)∧p . Using now

lemma 8.4 we see that all obstructions vanish and f and f ′ are homotopic on BK∧
p .

The case of the even prime: We know that f and f ′ are generic Adams maps
of odd degree (see 7.8, 7.3). Then, by considering the action of these maps on mod
2 cohomology we see that they are mod 2 homotopy equivalences. This reduces our
problem to the case in which we have f : BK → BK∧

2 with f |BTK
homotopic to

the map induced by the inclusion and we need to prove that f is homotopic to the
identity. To simplify the notation we call “identity” (id) the map induced by any
natural inclusion which is clear from the context.

BK is a push out

BK ' hocolim(BH1 ← BTK → BH2).

Assume we have proved that both f |BH1 and f |BH2 are homotopic to the identity.
Then the obstruction to the existence of a homotopy between f and the identity is
in lim←-------

1 π1 Map(B∗, BK∧
2 )id where ∗ ranges on {TK , H1, H2}. This is a quotient of

π1 Map(BTK , BK∧
2 )id which is trivial by 4.3 and the theorem is proved.

Let us denote by H any of the maximal (proper) parabolic subgroups of K. We
have just seen that it is enough to prove that f |BH ' id. H is a rank two compact
Lie group with Weyl group WH of order two and maximal torus TK . The group H is
isomorphic to U(2) or to S1 × S3, depending on the parity of a and b. Let us denote
by NH the normalizer in H of TK . NH is a 2-toral group.

Consider the map h : BH∧
2 → BK∧

2 induced by the inclusion of H on K and let

h] : Map(BTK , BH∧
2 )id → Map(BTK , BK∧

2 )id

be the map induced between mapping spaces. By 4.3 and [8], this map is a homotopy
equivalence. WH acts on BTK and WH is a subgroup of the Weyl group of K. Hence,
WH acts on the source and target of h] and h] is equivariant with respect to this
action. Hence, h] induces a homotopy equivalence

(h])hWH :
[
Map(BTK , BH∧

2 )id

]hWH '→ [
Map(BTK , BK∧

2 )id

]hWH

and we conclude that the inclusion of H on K induces a homotopy equivalence

Map(BNH , BH∧
2 )id ' Map(BNH , BK∧

2 )id

where the subscript id means that we consider all components of maps which are
homotopic to the identity on BTK . Now, if g : BNH → BH∧

2 is a map such that
g|BTK

' id then by 3.1 in [11] we can lift g to a global map ĝ : BNH → BH by
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taking the identity map at all odd primes. Then, by the results in [19], ĝ comes from
a representation ρ : NH → H with ρ|TK

= id. Then, if H ∼= U(2) it is easy to check
that ρ = id and so ĝ ' id. In the case H ∼= S1 × S3 one has to be a bit more
careful since besides the identity, there is another representation ρ : NH → H which
is the identity on TK . To rule out this representation we use the following argument.
Consider Γ1 = {±1} × Q8 as a subgroup of NH and consider Bρ : BΓ1 → BK∧

2 . If
f |BΓ1 ' Bρ then this map Bρ should extend to BH. There is a conjugation in H
which gives an automorphism σ of Q8 of order 3. This implies that Bρ(id× σ) ' Bρ
in BK∧

2 . Then, since Γ1 is a finite 2-group and since ρ does not factor though TK ,
we see that Bρ(id× σ) ' Bρ in BH. Hence, the representations ρ(id× σ) and ρ are
conjugated in H and this is not true. Hence, we have proved that f |BNH

' id.
One checks immediately that the centralizer of NH in H is the center of H. Hence,

Map(BNH , BK∧
2 )id ' BZH∧

2 '
{

K(Ẑ2, 2), H ∼= U(2)

K(Ẑ2, 2)×K(Z/2, 1), H ∼= S1 × S3.

Let us recall now the homotopy colimit decomposition of BH (up to 2-completion)
that we have used in the proof of 8.1. Let C be the small category

C : Σ3 © 1
Σ2\Σ3 --- 0.

Then there is a diagram F : C → T with F (0) ' BNH , F (1) ' BΓ and such that
BH∧

2 ' (hocolimC F )∧2 . Here Γ is a certain 2-toral subgroup of NH . If H ∼= U(2)
then Γ is the subgroup of the matrices

(±α 0
0 ±α

)
,

(
0 ±α
±α 0

)
, |α| = 1.

It is an extension of an elementary abelian 2-group of rank two by S1. In the case
in which H ∼= S1 × S3, Γ is the product of S1 by the quaternion subgroup Q8 of S3.
In any case, Γ is 2-toral and the intersection Γ ∩ TK is isomorphic to S1 × Z/2. If
we replace the toral part of Γ by 2n-roots of unity, n ≥ 1 we obtain subgroups Γn of
Γ which are finite 2-groups with the property that hocolimn{BΓn} approximates BΓ
up to 2-completion. One sees easily that the centralizer of Γn in H coincides with the
center of H. Hence, by the main theorem in [8] we have

Map(BΓn, BH∧
2 )id '

{
K(Ẑ2, 2), H ∼= U(2)

K(Ẑ2, 2)×K(Z/2, 1), H ∼= S1 × S3.

Then, to compute the homotopy type of the mapping space Map(BΓ, BH∧
2 )id we have

to take the homotopy limit of a tower which is indeed constant. Hence, we obtain a
homotopy equivalence Map(BΓ, BH∧

2 )id ' Map(BΓn, BH∧
2 )id.
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We investigate now the mapping space Map(BΓ, BK∧
2 )id. By 4.1 we have a push

out diagram up to 2-completion

Map(BΓn, BTK
∧
2 ) - Map(BΓn, BH∧

2 )

Map(BΓn, (BH ′)∧2 )
?

- Map(BΓn, BK∧
2 )

?

where H ′ denotes the maximal parabolic subgroup of K other than H. Notice that the
representation Γn ↪→ H does not factor through any representation Γn → TK . Hence,
the component Map(BΓn, BH∧

2 )id cannot be amalgamated to any other component
and so the above push out implies that

Map(BΓn, BK∧
2 )id ' Map(BΓn, BH∧

2 )id.

Also,

Map(BΓ, BK∧
2 )id ' Map(BΓ, BH∧

2 )id.

We are ready now to finish the proof of theorem 9.1. f |BH , id : BH → BK∧
2 are two

extensions of id : BNH → BK∧
2 to BH which is 2-equivalent to a homotopy colimit.

The obstructions to uniqueness of the extension are in lim←-------
i
C πi Map(B∗, BK∧

2 )id for
i > 0 where ∗ ranges over {BΓ, BNH}. The proof is finished if we see that these
obstruction sets are trivial.

To see this we need to recall the computation of higher limits over C. A suitable
reference for this is [1]. For a general functor F from C to the category of Z(2)-modules
we have that lim←-------

i
C F = 0 for i > 1 while there is an exact sequence

0 → lim←-------
0

C
F → F (0) → F (1)Z/2

/
F (1)Σ3 → lim←-------

1

C
F → 0.

In our case F is the functor πi Map(B∗, BK∧
2 )id and the computations done above

show that F is valued in the category of Z(2)-modules. Hence, the only obstruction
is in lim←-------

1
C π1 Map(B∗, BK∧

2 )id which is a quotient of

(π1 Map(BΓ, BK∧
2 )id)

Σ2
/
(π1 Map(BΓ, BK∧

2 )id)
Σ3

and this vanishes. Now the proof of 9.1 is complete.

10. [BK, BK]

In this short final section of this paper we just notice that the results in the preced-
ing sections give a complete description of the monoid [BK, BK] of homotopy classes
of self maps of BK.

There is a canonical map

deg : [BK, BK] → Hom(H4(BK;Z), H4(BK;Z)) ∼= Z
from the set [BK, BK] to the group endomorphisms of H4(BK;Z). This map is a
monoid homomorphism and sends each self map of BK to its degree.



28 JAUME AGUADÉ AND ALBERT RUÍZ

Then, 7.3 gives a complete description of the image of deg, since it characterizes
the integers that can appear as the degree of a generic Adams map and 7.8 shows
that any self map of BK can be represented by a generic Adams map. Also, 7.6
describes when two generic Adams map are homotopic on BTK . By 8.1 and 9.1, two
maps are homotopic if and only if they are homotopic on BTK . Hence, the table
following 7.6 gives a complete description of the fibers of deg, together with their
monoid structure. In this sense, we can say that we have a complete description of
the structure of [BK,BK].
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