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1. Introduction

We consider representations of the infinite dihedral group D∞ in
GL2(Zp) (Zp is the ring of p-adic integers for a chosen prime p). Each
of these representations is given by a pair of involutions σ1, σ2 up to
conjugation. These representations were classified in [1] using some nu-
merical invariants which were introduced in that paper in a completely
formal way. Actually, these invariants appeared in a natural way in
the computations of the mod p cohomology of the classifying spaces
of rank two Kac-Moody groups and some related spaces as discussed
in [2], but the proofs in [1] are independent of all the topological ma-
chinery in [2]. The interested reader may read section 7 in [1] for a
quick overview of the relationship between representations of D∞ and
rank two Kac-Moody groups.

In the present paper we provide a new classification of the represen-
tations of D∞ in GL2(Zp) and new proofs for the classification the-
orems in [1]. The proofs that we present here are simpler and more
illuminating than the proofs in [1]. These new proofs are geometrical,
non-computational, and more complete than the rather abstract orig-
inal proofs. The key idea here is to use the geometry of the tree of
GL2(Zp) as studied in the classic book [6]. In this way we obtain geo-
metrical interpretations of the algebraic invariants that we introduced
in [1] and all the theory in that paper fits into a much sharper and
simpler picture.

2. The tree of GL2(Zp)

In this section we review the tree of GL2(Zp) as it is described in [6],
Ch. II, §1, we fix some notation that will be used along this paper and
we state a couple of technical results that we need later.

Let V be a Qp-vector space of dimension two. On the set of all rank
two Zp-lattices in V we identify L ∼ αL for any unit α ∈ Qp. Let X

The author is partially supported by grants MTM204-06686, SGR2005-00606
and PR2007-0097.

1



2 JAUME AGUADÉ

be the quotient set. There is a well defined distance in X such that
two (equivalence classes of) lattices L, L′ are at distance n if and only
if there is a sublattice L′′ of L such that L′′ ∼ L′ and L/L′′ is a cyclic
group of order pn. Then, if we join by an edge any two points of X
which are at distance one, one can show that the graph X is indeed a
tree and the distance in X coincides with the graph-theoretic distance.

Let us choose a base point [L0] ∈ X. Then it is easy to see that
the points at distance n from [L0] are in one-to-one correspondence to
points in the projective line P1(Z/pnZ). In particular, points at dis-
tance one are in one-to-one correspondence to points in the projective
line P1(Z/pZ) and this implies that exactly p + 1 edges meet at each
vertex of X. By letting n grow to infinity, we see that the set X∞ of
ends of X can be identified to P (L0) ∼= P (V ). More precisely, this
correspondence sends a line R ∈ P (V ) to the end of the path with
vertices [Ln]

Ln = pnL0 + (L0 ∩R).

From now one, let us choose a basis in V to identify V = Q2
p. Then

we can take L0 = Z2
p ⊂ Q2

p. For any {a, b} ∈ P1(Qp) we can choose a
representative such that a, b ∈ Zp and at least one of the coordinates
is a unit. In this case, the path from [L0] to the end {a, b} ∈ X∞ is
given by the sequence with vertices {[La,b

n ], 0 ≤ n < ∞} with

La,b
n = pnL0 + Zp(a, b).

We leave as an exercise to the reader the proof of the next result:

Proposition 1. Let ω, ω′ be the unique irreducible paths starting
at [L0] and pointing to the (different) points {1, 0}, {a, b} in X∞ =
P1(Qp), respectively. Then ω ∩ ω′ consists of exactly n edges, where
n = max{νp(b/a), 0}. �

There is a natural action of GL(V ) on X via graph automorphisms,
Φ : GL(V ) → Aut(X). When we pass to the set of ends X∞ this
action becomes the natural projective action of GL(V ) on P (V ) and
the kernel of Φ is the center of GL(V ). We are interested in the isotropy
groups of vertices of X:

Proposition 2. If φ ∈ GL2(Qp) fixes [L0] ∈ X, then φ has the form
αM for some α ∈ Q∗

p and M ∈ GL2(Zp).

Proof. φL0 ⊂ αL0 for some α ∈ Q∗
p implies φ =

(
αu αu′

αv αv′

)
for u, v, u′, v′ ∈

Zp. φ−1αL0 ⊂ L0 implies that uv′ − vu′ 6≡ 0 (p). �

Hence, if we restrict to elements of GL(V ) whose determinant is a
unit in Zp, then the isotropy group of the base point [L0] is GL(L0) =
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GL2(Zp). This fact is used in this paper in the following way: assume
we have two matrices A, B ∈ GL2(Zp) which are conjugate in GL2(Qp)
by a matrix P . Then P induces an automorphism of X and if we are
able to show (e. g. by a geometric argument) that this automorphism
fixes the vertex [L0] ∈ X, then P can be chosen in GL2(Zp) and the
matrices A, B are conjugate in GL2(Zp). This basic idea is the leit-
motiv of this paper.

3. Pairs of involutions over a field

In this section we classify the irreducible representations of D∞ in
GL2(K) for any field K of characteristic different from 2. We obtain
geometrical interpretations of the results of section 6 of [1] and of the
papers [3], [5].

Any non-central involution σ in GL2(K) is conjugate to ( 1 0
0 −1 ) and

so σ determines two lines σ+, σ− in K2 which correspond to the
eigenspaces of eigenvalues +1 and −1, respectively. Hence, an irre-
ducible representation ρ = 〈σ1, σ2〉 of D∞ in GL2(K) produces four
points σ+

1 , σ−1 , σ+
2 , σ−2 in the projective line P1(K), uniquely de-

termined up to an automorphism of P1(K). Notice that these four
points are only subjected to the restrictions σ+

1 6= σ−1 , σ+
2 6= σ−2 and

{σ+
1 , σ−1 } 6= {σ+

2 , σ−2 }.
Let us define Γ(ρ) to be the cross-ratio

Γ(ρ) = (σ+
2 , σ+

1 , σ−1 , σ−2 ).

Recall that given four points a, b, c, d in a projective line, a, b, c distinct,
the cross-ratio (a, b, c, d) is defined as the element x ∈ K ∪ {∞} such
that there is an element in PGL2(K) which sends a, b, c, d to ∞, 0, 1, x,
respectively. The property of a, b, c being distinct can be weakened by
defining (a, a, c, d) = 1, (a, b, a, d) = 0, (a, b, b, d) = ∞.

In our case, we always have Γ(ρ) 6= ∞ and we have Γ(ρ) 6= 0, 1 if
and only if the four points σ+

1 , σ−1 , σ+
2 , σ−2 are all different. Γ provides

a surjection from the set of irreducible representations D∞ → GL2(K)
into K. Also, if Γ 6= 0, 1 then the cross ratio is the only projective in-
variant of these four points, and Γ(ρ) = Γ(ρ′) 6= 0, 1 implies ρ ∼ ρ′. For
each value of Γ in {0, 1} there are two non-equivalent representations.
Let us introduce a new invariant to distinguish between them:

τ =

{
1 if σ−1 ∈ {σ+

2 , σ−2 }
0 if σ+

1 ∈ {σ+
2 , σ−2 }

Then, the invariants Γ ∈ K, τ ∈ Z/2 provide a complete classifica-
tion of the irreducible representations of D∞ in GL2(K).
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A generic representation ρ is given by the two involutions σ1 = ( 1 0
0 −1 )

and σ2 = M−1 ( 1 0
0 −1 ) M for some matrix M = ( x y

z t ) ∈ GL2(K). Then,
it is straightforward to compute the invariants Γ(ρ), τ(ρ) as functions
of the entries x, y, z, t. We get:

Γ(ρ) =
xt

xt− yz

τ(ρ) =

{
0 xz = 0

1 xz 6= 0

and so we recover the invariants of section 6 of [1].

4. Integral representations: the regular case

From now on we consider representations ρ of D∞ in GL2(Zp) given
by two involutions σ1, σ2 ∈ GL2(Zp). Up to conjugation, the elements
of order two in GL2(Zp) are ±I, ( 1 0

0 −1 ) and ( 0 1
1 0 ). Moreover, these last

two elements are conjugate if p is odd. In this section we assume that
the two involutions σ1, σ2 are both equivalent (in GL2(Zp)) to ( 1 0

0 −1 ).
We call this the regular case (it was called the Rep1,1 case in [1]). For
an odd prime p, all irreducible representations are regular.

As in the previous section, ρ determines four points σ+
1 , σ−1 , σ+

2 , σ−2
in P2(Qp). Recall from section 2 that the points of P2(Qp) are identified
to the ends of the tree X which was defined there. It makes sense to
consider the geodesic path joining two ends. By this we mean a Z-
indexed sequence of consecutive edges which points to these two ends
and does not have any repeated edge. Such a sequence is unique up to
translations in the indexing set.

Let Σ1, Σ2 be the geodesic paths joining σ+
1 to σ−1 and σ+

2 to σ−2 ,
respectively. Since σ1 and σ2 are both (integrally) conjugate to ( 1 0

0 −1 )
and since we saw in section 2 that the geodesic path joining {1, 0} to
{0, 1} passes through the vertex [L0], we have that also Σ1, Σ2 pass
through [L0]. These two paths will then coincide along some edges on
both sides of [L0] and eventually diverge and never meet again.

This observation allows us to introduce two discrete invariants α, β
of the representation ρ:

α(ρ) = #{edges of Σ1 ∩ Σ2 between [L0] and σ+
1 }, 0 ≤ α(ρ) ≤ ∞

β(ρ) = #{edges of Σ1 ∩ Σ2 between [L0] and σ−1 }, 0 ≤ β(ρ) ≤ ∞
Conjugation in GL2(Zp) gives an automorphism of X leaving [L0]

fixed. Since α and β are defined in a graph-theoretical way, they depend
only on the representation class of ρ. If the points σ+

1 , σ−1 , σ+
2 , σ−2 are
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all different, then α and β are both non-negative integers while if they
are not all different, then α or β may have the value ∞.

We can also consider the invariant Γ(ρ) which we introduced in the
previous section. The computations we made there show that if ρ is
integral, then Γ(ρ) ∈ Zp.

Theorem 3. Γ, α and β are a complete set of invariants for the rep-
resentations of D∞ in GL2(Zp) in the regular case.

Proof. We mean that two representations are equivalent if and only if
the invariants Γ, α and β are the same for both. This follows easily
from the properties of the tree X. Assume ρ and ρ′ are two irreducible
representations with the same invariants. First of all, we have that ρ is
conjugate to ρ′ in GL2(Qp). This is clear if Γ 6= 0, 1 since we saw that
in this case Γ classifies the representations over Qp. Also, if Γ = 0, 1
we need a further invariant τ to classify the representations, but it is
clear that the value of τ can be deduced from the values of α, β.

Hence, there is a matrix P ∈ GL2(Qp) which conjugates ρ to ρ′.
Since we can always multiply P by any central matrix, we can assume
that P has entries in Zp. Then P gives an automorphism of the graph
X which sends the geodesic paths Σ1, Σ2 to the corresponding geodesic
paths Σ′

1, Σ′
2. The equality of the invariants α, β for both ρ and ρ′

implies that this automorphism must fix the vertex [L0]. Hence, by
proposition 2, P can be chosen in GL2(Zp). �

Let us finish this section by effectively computing the invariants that
we have introduced above. Consider the generic representation ρ given
by the two involutions σ1 = ( 1 0

0 −1 ) and σ2 = M−1 ( 1 0
0 −1 ) M for some

matrix M = ( x y
z t ) ∈ GL2(Zp). Then we saw in the previous section

that the invariant Γ is given by

Γ(ρ) =
xt

xt− yz
.

The values of α and β can be deduced from the computation in propo-
sition 1. If we let a = νp(z/t), b = νp(y/x), then proposition 1 gives α
and β as functions of a and b in the following way: If both a, b ≥ 0,
then α = a, β = b. If any of a, b is negative, then both a and b are
negative and α = −b, β = −a. Then, from the fact that M must be
invertible in GLa(Zp) we deduce

α(ρ) = νp(xz),

β(ρ) = νp(yt).

We have recovered theorem 1 in [1]. From here it is not difficult to see
that the range of the invariants Γ, α, β is Zp × {0, 1, . . . ,∞}2, subject



6 JAUME AGUADÉ

only to the restriction:

α + β = νp(Γ) + νp(Γ− 1).

Moreover, from this geometric interpretation of the invariants α and β
one can easily produce a complete list of representatives as in table 1
of [1].

5. Integral representations: the irregular case

In this section p = 2 and we consider representations ρ of D∞ in
GL2(Z2) given by two involutions σ1, σ2 which are both conjugate (in
GL2(Z2)) to ( 0 1

1 0 ). We call these representations irregular. As in the
previous section, let Σi be the geodesic path in X joining σ+

i and σ−i ,
i = 1, 2. Let Γ(ρ) ∈ Q2 be the invariant introduced in section 3. If
we write σ1 = ( 0 1

1 0 ), σ2 = M−1 ( 0 1
1 0 ) M for some matrix M = ( x y

z t ) ∈
GL2(Z2) then an easy calculation shows Γ(ρ) = (Γ∗(ρ)+2)/4 for a new
invariant

Γ∗(ρ) =
x2 − y2 − z2 + t2

xt− yz
∈ Z2.

Since p = 2, in the tree X there are now exactly three edges meeting
at each vertex. The vertices at distance one from our base point [L0]
are [L1,0

1 ], [L0,1
l ] and [L1,1

1 ] = [L1,−1
1 ] where we have used the notation

that we introduced in section 2. Notice that

L1,1
1 = L1,−1

1 = {(a, b) ∈ L0 | a ≡ b (2)}.
If we consider now the irreducible paths starting at the base point

[L0] and pointing to {1, 1} and {1,−1} respectively, we easily see that
these two paths have only one common edge. Then, the geodesic path
in X which joins the ends {1, 1} and {1,−1} contains the vertex [L1,1

1 ]
but does not contain the vertex [L0]. Hence, the geodesic path which
joins the ends σ+ and σ− for any involution σ which is conjugate to
( 0 1

1 0 ) does not contain the vertex [L0] but contains only one vertex at
distance one from [L0].

Proposition 4. For each odd λ ∈ Z2 there is exactly one irregular
representation ρ of D∞ in GL2(Z2) with Γ∗(ρ) = λ.

Proof. Assume ρ is a representation with Γ(ρ) odd and let σ+
i , σ−i ,

M , Σi be as above. The ends of Σ2 are σ+
2 = {t − y, x − z} and

σ−2 = {t + y,−x − z}. Then Γ∗(ρ) ≡ (t + y) + (z + x) (2) and since
Γ∗(ρ) is odd one of t + y, z + x is a unit and the other is not. Hence,
Σ2 contains the vertex [Lt−y,x−z

1 ] which is either [L1,0
1 ] or [L0,1

1 ]. This
implies that Σ2 cannot intersect Σ1. We have proved that if Γ∗(ρ) is
odd, then the geodesic paths Σ1, Σ2 are disjoint.
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Then, if Γ∗(ρ) = Γ∗(ρ′) is odd, then ρ and ρ′ are both irreducible and
equivalent in GL2(Qp). Let P ∈ GL2(Qp) be such that it conjugates ρ
into ρ′. Without loss of generality we can assume that P has entries
in Zp. Then P gives an automorphism of the graph X which sends
the geodesic paths Σ1, Σ2 to the corresponding geodesic paths Σ′

1, Σ′
2.

Since [L0] is the only vertex of X at distance one from both Σ1 and
Σ2, P must fix [L0]. Hence, P ∈ GL2(Z2) and ρ is conjugate to ρ′.

By taking M = ( 1 1
0 λ ) we prove the existence of at least one repre-

sentation ρ with Γ∗(ρ) = λ. �

Let us assume now that Γ∗(ρ) is even. In this case, x + y ≡ z + t (2)
and since the case x + y ≡ z + t ≡ 0 (2) would imply M ≡ ( 1 1

1 1 ) (2)
which is absurd, we have that both x+y and z + t are odd. Hence, the
geodesic paths Σ1, Σ2 both contain the vertex [L1,1

1 ]. This means that
ρ can be considered as a representation on L1,1

1 of regular type and,
as a representation on L1,1

1 , it is classified by the two invariants α, β
of section 4. Notice that the values α = 0 or β = 0 are not possible,
because in X there are only three edges meeting at each vertex. We
observe now that this classification over L1,1

1 gives also a classification
over L0. More precisely, if P ∈ GL2(Qp) fixes L1,1

1 and conjugates two
irregular representations with Γ∗ even, then one easily sees that P must
fix [L0] and so these two representations are equivalent.

To determine the values of α, β out of x, y, z, t we notice that on the
standard basis of L1,1

1 the representation ρ is given by the two involu-

tions σ̄1 = ( 1 0
0 −1 ) and σ̄2 = Q−1 ( 1 0

0 −1 ) Q with Q = ( 1 1
1 −1 )

−1
M ( 1 1

1 −1 ).
Then we obtain, for this induced representation ρ̄:

α(ρ̄) + 2 = ν2((x + y + z + t)(x + y − z − t))

β(ρ̄) + 2 = ν2((x− y + z − t)(x− y − z + t)).

Then, if for an irregular representation ρ with Γ∗(ρ) ≡ 0 (2) we define
α(ρ) and β(ρ) by the above formulas, we have proved:

Proposition 5. The invariants Γ∗, α, β are a complete set of invari-
ants for the irregular representations ρ with Γ∗(ρ) even. For any λ ∈
Z2, α = 1, 2, . . . ,∞, β = 1, 2, . . . ,∞ such that α+β = ν2(λ)+ν2(λ−1),
there is exactly one irregular representation ρ with Γ∗(ρ) = 4λ − 2,
α(ρ) = α, β(ρ) = β. �

In the paper [1] it remained open the problem of finding a com-
plete set of representatives for the representations as in the preceding
proposition. The present approach provides an easy way to solve that
problem: It is enough to take the representatives for the representa-
tions of regular type (excluding the cases α = 0 and β = 0) and to
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traanslate them from [L1,1
1 ] to [L0]. We leave these computations to

the reader.
The result in proposition 4 appears already in [1] (cf. proposition 5),

but the classification given by proposition 5 looks quite different from
the classification which we obtained in [1]. In that paper, to classify
the representations of irregular type we used the invariant Γ∗ plus three
other invariants. Let

ε = x− y + z − t

ε̄ = x + y + z + t

¯̄ε = x + y − z − t
¯̄̄ε = x− y − z + t

a = x2 − y2 + z2 − t2

b = xz − yt

δ = min {ν2(a), ν2(b)} .

Then, we proved in [1] that Γ∗, ν2(ε), ν2(ε̄), δ are a complete set of in-
variants for the representations of irregular type. Hence, it follows that
it should be possible to compute {Γ∗, α, β} out from {Γ∗, ν2(ε), ν2(ε̄), δ}
and viceversa. The remainder of this section is devoted to these com-
putations. Notice that if we show that {Γ∗, α, β} are determined by
{Γ∗, ν2(ε), ν2(ε̄), δ} and viceversa, then proposition 5 provides an inde-
pendent (and simpler) proof of theorem 3 in [1] and, in the same way,
theorem 3 in [1] provides an independent (and more computational)
proof of proposition 5 in this paper. Moreover, these computations
will clarify the appearance of the somewhat strange invariant δ in [1]
and will show that this invariant is really necessary for the classifica-
tion of representations of irregular type. Finally, let us mention that δ
appears in the mod 2 cohomology of the classifying spaces of rank two
Kac-Moody groups (see [2]) and so the computation of δ as a function
of {Γ∗, α, β} is necessary to complete the picture presented in [1] and
[2].

First of all, Γ∗ odd implies ν2(ε) = ν2(ε̄) = δ = 0 and there is nothing
to prove. Assume Γ∗ is even, and so are ε = x − y + z − t, ε̄, ¯̄ε and ¯̄̄ε.
The following identities are straightforward (∆ = xt− yz):

α + 2 = ν2(ε̄ ¯̄ε)

β + 2 = ν2(ε ¯̄̄ε)

ε̄ ¯̄̄ε = ∆(Γ∗ + 2)

ε ¯̄ε = ∆(Γ∗ − 2)

Assume first Γ∗ 6= ±2 so that all terms in the equations above are
finite. We have Γ∗ ≡ ±2 (8).
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If Γ∗ ≡ −2 (8), then ν2(ε)+ν2(¯̄ε) = 2 and since both ε, ¯̄ε are even we
must have ν2(ε) = ν2(¯̄ε) = 1. Then, ν2(ε̄) = α + 1 and ν2(¯̄̄ε) = β + 1.

If Γ∗ ≡ 2 (8) then the same argument proves that ν2(ε̄) = ν2(¯̄̄ε) = 1,
while ν2(ε) = β + 1 and ν2(¯̄ε) = α + 1.

This shows that for Γ∗ 6= ±2, the invariants {Γ∗, ν2(ε), ν2(ε̄)} are a
function of {Γ∗, α, β} and viceversa. In particular, the invariant δ is
redundant in this case. It is easy to see that the previous argument is
also valid for Γ = ±2 in the sense that it allows us to compute ν2(ε)
and ν2(ε̄) out of Γ∗, α, β. We summarize this in the following table:

ν2(ε) ν2(ε̄) ν2(¯̄ε) ν2(¯̄̄ε)

Γ∗ ≡ 1 (2) 0 0 0 0

Γ∗ ≡ −2 (8) 1 α + 1 1 β + 1

Γ∗ ≡ 2 (8) β + 1 1 α + 1 1

However, we notice that for Γ∗ = ±2 some values in this table are
∞ and so we cannot compute α or β out from {Γ∗, ν2(ε), ν2(ε̄)} in this
particular case. It is then that the invariant δ is needed.

Notice that ε = 0 implies

a = x2 − y2 + z2 − t2 = 2(yt− xz) = 2b.

Then,

¯̄ε¯̄̄ε = 2(x2 − y2 + z2 − t2) = 4(yt− xz).

Hence,

δ = min{ν2(a), ν2(b)} = ν2(b) = ν2(¯̄ε¯̄̄ε)− 2.

This allows us to compute α, β out from ν2(ε), ν2(ε̄), δ if Γ∗ = 2. The
case Γ∗ = −2 is similar and we can summarize the computation of α,
β out from ν2(ε), ν2(ε̄), δ for Γ∗ = ±2 in the following table:

α β

Γ∗ = 2, ν2(ε) 6= ∞ ∞ ν2(β)− 1

Γ∗ = −2, ν2(ε̄) 6= ∞ ν2(ε̄)− 1 ∞

Γ∗ = 2, ν2(ε) = ∞ δ ∞

Γ∗ = −2, ν2(ε̄) = ∞ ∞ δ
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To complete the picture we must show how the invariant δ can be
computed as a function of Γ∗, α, β. This is the trickiest part in all this
analysis. Notice that

¯̄ε¯̄̄ε = a + 2b, εε̄ = a− 2b

and, according to our previous computations, we have

ν2(¯̄ε¯̄̄ε) =

{
β + 2 if Γ∗ ≡ −2 (8)

α + 2 if Γ∗ ≡ 2 (8)
ν2(εε̄) =

{
α + 2 if Γ∗ ≡ −2 (8)

β + 2 if Γ∗ ≡ 2 (8)

Hence, if we assume α 6= β, then we see that ν2(a+2b) 6= ν2(a−2b) and
so ν2(a) = ν2(2b). Therefore ν2(b) < ν2(a) and δ = min{ν2(a), ν2(b)} =
ν2(b). Then, it follows that

ν2(b) + 2 = ν2((a + 2b)− (a− 2b))

= min{ν2(a + 2b), ν2(a− 2b)}
= min{α + 2, β + 2}

and we have δ = min{α, β}. It is easy to see that this argument holds
also for Γ∗ = ±2.

However, this argument fails if α = β and indeed in this case δ has a
more complex form as a function of Γ∗, α, β. Assume now that α = β
and notice that the quotient

ε̄¯̄̄ε

ε¯̄ε
=

Γ∗ + 2

Γ∗ − 2

is known since it is a function of Γ∗. Let us define a 2-adic unit u in
the following way:

u =


2−2α Γ∗ + 2

Γ∗ − 2
if Γ∗ ≡ −2 (8)

2−2α Γ∗ − 2

Γ∗ + 2
if Γ∗ ≡ 2 (8)

Then,

a =
¯̄ε¯̄̄ε + εε̄

2
= 2α+1(2−α−2¯̄ε¯̄̄ε + 2−α−2εε̄),

2b =
¯̄ε¯̄̄ε− εε̄

2
= 2α+1(2−α−2¯̄ε¯̄̄ε− 2−α−2εε̄).
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Assume Γ∗ ≡ −2 (8). Then ε¯̄ε/4 and ε̄¯̄ε/2α+2 are units (cf. the table
above). Hence

ν2(2
−α−2¯̄ε¯̄̄ε± 2−α−2εε̄) = ν2(2

−2α−4ε̄¯̄ε2 ¯̄̄ε± 2−2α−4εε̄2¯̄ε)

= ν2(2
−4uε¯̄ε3 ± 2−2α−4εε̄2¯̄ε)

= ν2(2
−2u¯̄ε2 ± 2−2α−2ε̄2)

= ν2(u(¯̄ε/2)2 ± (ε̄/2α+1)2)

where ¯̄ε/2 and ε̄/22α+2 are units. Then

u(¯̄ε/2)2 ± (ε̄/2α+1)2 ≡ u± 1 (4)

and this proves that

δ = min{ν2(a), ν2(b)} =

{
α + 1 if u + 1 ≡ 0 (4)

α + 2 if u + 1 ≡ 2 (4).

For Γ∗ ≡ 2 (8) we obtain the same results by this same method. This
finishes the computation of δ(ρ) as a function of Γ∗(ρ), α(ρ) and β(ρ)
and we have now an explicit translation between the classification of
representations of D∞ in [1] and the classification of representations of
D∞ in the present paper.

6. Integral representations: the mixed case

To complete the classification of all representations of D∞ in GL2(Z2)
it remains to consider the case when one of the involutions is conjugate
to ( 1 0

0 −1 ) while the other is conjugate to ( 0 1
1 0 ). We call this the mixed

case.
Like in the previous case, if we have the two involutions σ1 ∼ ( 1 0

0 −1 ),
σ2 ∼ ( 0 1

1 0 ), we can consider the geodesic paths Σ1, Σ2 in the tree X
joining σ+

1 to σ−1 and σ+
2 to σ−2 , respectively. We know that Σ1 contains

the distinguished vertex [L0] while Σ2 does not, but Σ2 contains a
vertex at distance one from [L0]. If Σ1 and Σ2 are disjoint, then [L0]
can be characterized geometrically as the only vertex in Σ1 which is
at distance one from Σ2. If Σ1 and Σ2 have some common edges,
then to geometrically determine the vertex [L0] we need an extra piece
of information, namely we need to know if [L0] lies between Σ1 ∩ Σ2

and σ+
1 or between Σ1 ∩ Σ2 and σ−1 . Let us define the intersection

type of a representation as null if Σ1 ∩ Σ2 = ∅, positive if [L0] lies
between Σ1 ∩Σ2 and σ+

1 , and negative if [L0] lies between Σ1 ∩Σ2 and
σ−1 . Then, an argument as in the previous sections shows that two
representations are equivalent if and only if they are equivalent over
Q2 and have the same intersection type. If we want to translate this
into a classification through invariants, we just need to perform a few
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computations. Let σ1 = ( 1 0
0 −1 ), σ2 = M−1 ( 0 1

1 0 ) M for some matrix
M = ( x y

z t ) ∈ GL2(Z2). In this case it is straightforward to see that we
can write Γ(ρ) = (1 + Γ∗∗(ρ))/2 for a new invariant

Γ∗∗(ρ) =
zt− xy

xt− yz
.

We also define a new invariant γ(ρ) = yt mod 2. We have:

(1) If Γ∗∗(ρ) = Γ∗∗(ρ′) 6= ±1, then ρ and ρ′ are equivalent over
Q2 by the results of section 3. Γ∗∗(ρ) = ±1 if and only if
(x + z)(x− z)(y + t)(y − t) = 0. If this happens, then an easy
analysis shows that γ(ρ) = yt ≡ x + z mod 2 coincides with
the invariant τ defined in section 3. Hence, Γ∗∗(ρ) and γ(ρ)
determine the representation ρ up to conjugation in GL2(Q2).

(2) We have σ+
2 = {t− y, x− z}, σ−2 = {t + y,−x− z}. Hence, the

vertex in Σ2 at distance one from [L0] is [Lt+y,x+z
1 ] and Σ1 and

Σ2 are disjoint if and only if this vertex is different from [L1,0
1 ]

and [L1,1
1 ]. It is easy to see that this is equivalent to Γ∗∗ ≡ 0 (2).

(3) If Γ∗∗ ≡ 1 (2) then the intersection type is either positive or
negative and it is easy to see that it is positive if γ = 1 and
negative if γ = 0.

Hence we have a new proof of theorem 2 in [1]:

Theorem 6. Γ∗∗ and γ are a complete set of invariants for the repre-
sentations of D∞ in GL2(Z2) in the mixed case. �

7. Computability

In this final section we want to show that the classification of repre-
sentations of D∞ given in [1] and in the present paper is effective in the
sense that one could easily write a computer program —in some suit-
able computer algebra language, like Magma ([4])— such that given a
prime number p and four 2× 2 matrices of order 2, σ1, σ2, σ′1, σ′2, the
program produces a true/false output depending if there is a matrix in
GL2(Zp) which conjugates σi to σ′i for i = 1, 2 or not. In this section we
could exhibit such a program but it is much shorter to give just some
few hints to convince the reader that this program may be written.

First of all, the program should determine for each of the matrices σ1,
σ2, σ′1, σ′2 if they are central (i.e. equal to ±I), regular (i.e. conjugate to
( 1 0

0 −1 )) or, in the case p = 2, irregular (i.e. conjugate to ( 0 1
1 0 )). This is

trivial to do. In the case of p = 2 we must notice that σ = ( a b
c d ) 6= ±I

is regular if and only if b and c are even.
Next, the program should solve the trivial case in which one of the

involutions is central. This will reduce the problem to the case when
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we know that none of the four matrices σ1, σ2, σ′1, σ′2 is central and σi

is conjugate to σ′i for i = 1, 2. In this situation, to decide if the two
representations of D∞ are the same we just need to check if the values
of the invariants that we have introduced in the preceding sections are
the same for the two representations. These invariants are explicitly
given as functions of x, y, z, t, where M = ( x y

z t ) is a matrix in GL2(Zp)
such that

M = Q−1P with Q, P ∈ GL2(Zp) such that Q−1σ2Q
and P−1σ1P are in standard form.

Here standard form means the matrix ( 1 0
0 −1 ) for p 6= 2 and either the

matrix ( 1 0
0 −1 ) or the matrix ( 0 1

1 0 ) for p = 2.
Hence, to effectively compute these invariants we need to solve the

following problem:

Given a 2× 2 matrix σ = ( a b
c d ) ∈ GL2(Zp) with σ2 = I

and σ 6= ±I, find M = ( x y
z t ) with entries in Zp such

that M−1σM is in standard form and det(M) 6≡ 0 (p).

To solve this problem we can proceed in the following way. Let
v1, v2 ∈ Z2

p be eigenvectors of σ with eigenvalues +1 and−1 respectively
and let us choose them such that they are not divisible by p. If σ
is conjugate to ( 1 0

0 −1 ) then we take M as the matrix formed by the
coordinates of v1, v2. If p = 2 and σ is conjugate to ( 0 1

1 0 ) then we take
M as the matrix determined by the coordinates of (v1±v2)/2. In either
case, is is easy to see that det(M) 6≡ 0 (p).

Is is a straightforward exercise to translate all this analysis into a
Magma language set of instructions.
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