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ABSTRACT. This paper is devoted to the computation of the mod p cohomology
of the classifying spaces of the quotients of (non-afine) Kac-Moody groups of rank
two by finite central p-groups, as algebras over the Steenrod algebra and higher
Bockstein operations. To this aim we enlarge the class of spaces by including some
homotopy theoretic constructions in such a way that the new class of spaces is
nicely parametrized by the integral p-adic representations of the infinite dihedral
group in rank two. Furthermore, we show how these representations encode enough
information in order to determine the mod p cohomology and Bockstein spectral
sequence of this class of spaces.

The goal of this paper is to compute the mod p cohomology algebra —including the
action of the Steenrod algebra and the Bockstein spectral sequence— of the classifying
spaces of the quotients of (non-afine) Kac-Moody groups of rank two by finite central
p-groups.

The wise have taught us (cf. [thaca in [6]) that in the trips which are really worth
doing what we see and learn along the trip always turns out to become more important
than the final destination. We think that the present work might be an example of
this. The rank two Kac-Moody groups have a large family of central subgroups
which yield a rather complex series of interesting unstable algebras over the Steenrod
algebra, and when we started computing these cohomology algebras we learned that in
order to study them in a systematic way we needed to relate them to representation
theory and to invariant theory. In this context, we believe than the relationship
between rank two Kac-Moody groups, representations of the infinite dihedral group,
invariant theory of pseudoreflection groups and cohomology algebras that we display
here is more interesting than the particular values of each cohomology algebra.

Although our starting point is to compute the cohomology of the spaces B(K/F),
for K a rank two Kac-Moody group and F' a central subgroup (we will be more
precise after this introduction), we soon realize that we should better compute the
cohomology of a larger family of spaces —the family which we call S*— which can
be viewed as a homotopy theoretic generalization (and also a p-adic completion) of
the spaces B(K/F'). The spaces in the set S* can be parametrized by matrices in
GL, (Zg) plus some extra data. A better parametrization of S* is given by a set called
R* WI/]\OSG elements are faithful representations of the infinite dihedral group D, in
G Ly(Z,) plus some obstruction classes, modulo the action of the outer automorphisms
of D.. Hence, our results depend on the integral p-adic representation theory of the
infinite dihedral group. This theory has been developed in [2] and we would like to
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point out that the work in [2] was motivated by the present paper and, moreover, the
cohomological results in the present paper helped us in shaping the results in [2].

We want to mention also that this work is part of a more general project which,
roughly speaking, aims to investigate the homotopy theory of the Kac-Moody groups
with the tools that have lead to the development of the homotopy theory of compact
Lie groups (see, for instance, the surveys [8] and [13]). We would like to point out
the papers [5] and [1] as further examples of how some of the homotopy theoretical
results and techniques of compact Lie groups can be extended, with some appropriate
reformulation, to Kac-Moody groups. This paper generated also our motivation for
the work in [3].

The present paper is organized as follows. In section 1 we recollect the notation
on Kac-Moody groups and their central quotients that we use later. In section 2
we introduce the colimit decomposition of B(K/F') that we will use to compute the
cohomology and we define the family of spaces S* which contains all spaces B(K/F).
In section 3 we relate the spaces in S* to representations of D, and we introduce a set
R* of representation data with obstruction classes which parametrizes S*. Moreover,
we review the results on representations of D, which we proved in [2], in a form which
is more appropriate to our needs. Then, in the next three sections, we compute, for
each data element of R*, the mod p cohomology of the space in S$* corresponding to
this data. The first of these three sections gives some generic information and the
two other sections consider the case of the prime two and the case of the odd primes,
respectively. We use the invariant theory of finite reflection groups as developed
in [14]. In the final section, we return to Kac-Moody groups and we compute, for
each quotient K/F, the representation data in R* which gives B(K/F') and we have
in this way enough information to compute the mod p cohomology algebras, the
Steenrod algebra actions and the Bockstein spectral sequences of all spaces, of the
form B(K/F'), but a few cases.

We are grateful to the Centre de Recerca Matematica for making possible several
meetings of the authors of this paper. J. Aguadé wants to thank the Department of
Mathematics of the University of Wisconsin-Madison for its hospitality during the
final stages of the preparation of this paper.

1. RANK TwWO KAC-MOODY GROUPS AND CENTRAL QUOTIENTS

We choose positive integers a, b such that ab > 4. Along this paper K will always
denote the unitary form of the Kac-Moody group associated to the generalized Cartan

matrix
2 —a
-b 2 )

Sometimes we write K (a,b) instead of K when we want to make explicit the values
of a and b used to construct K. The integers a and b can be interchanged, since the
group associated to (a,b) is isomorphic to the group associated to (b,a). The case
ab < 4 gives rise to compact Lie groups while the case ab = 4 is called the affine
case and will be left aside. These infinite dimensional topological groups and their
classifying spaces BK have been studied from a homotopical point of view in several
works, like [10], [9], [11], [12], [5], [1]. We recall here some properties of K and BK
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which we will use along this work and which can be found in the references that we
have just mentioned.

By construction, K comes with a standard maximal torus of rank two Tk which is a
maximal connected abelian subgroup of K. Any two such subgroups are conjugated.
The Weyl group W of K is an infinite dihedral group acting on the Lie algebra of Tk
through reflections w; and wy given, in the standard basis, by the integral matrices:

(=1 b (1 0
=10 1) 27\ a -1/

The matrices of determinant +1 in W form a subgroup W of index two which is
infinite cyclic generated by wyws.
The cohomology of K and BK was computed by Kitchloo ([12]) using, among
other tools, the existence of a Schubert calculus for the homogeneous space K /Tk.
The center of K is also well understood ([10]):

7K — 2Z/(ab—4) xZ/2, a=b=0 (mod 2)
) Z/(ab - 4), otherwise.

Hence, we have a family of central p-subgroups F' of K and the purpose of this
paper is to study the spaces B(K/F).

Let us fix now the notation that we will use in this paper to refer to the various
quotients of K by central subgroups. We denote by v, the p-adic valuation.

e If p is an odd prime or p = 2 and a or b is odd then there is a unique central
subgroup F of K of order p™ for any 0 < m < v,(ab —4). We denote K/F
by P,m K.

e If p = 2 and a and b are both even then the 2-primary part of the center
of K is non-cyclic of the form Z/2' x Z/2, t = vy((ab — 4)/2). There are
several quotient groups. We denote by Pf'K the quotient of K by the right
subgroup of the center of order two. We denote by PQLmK , 0 < m <t the
quotient of K by the left subgroup of the center of order 2. We denote by
PR K, 0 < m <t the quotient of K by the diagonal subgroup of the center
of order 2™. Finally, we denote by PJ... K, 0 < m < ¢ the quotient of K by
the non-cyclic subgroup of the center of order 2m+!,

2. COLIMIT DECOMPOSITIONS OF BK AND B(K/F) AND THE SPACES IN S*

A fundamental result in the homotopy theory of the classifying spaces of Kac-
Moody groups is the following (cf. [12]). If L is any Kac-Moody group with infinite
Weyl group and {P;} are the parabolic subgroups of L indexed by proper subsets [
of {1,...,rank(L)} then there is a homotopy equivalence

BL ~ hoc?lim BPF;.

Let us give a more precise description of this homotopy colimit in the case of the rank
two group K = K (a,b).
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There are group homomorphisms ¢;: SU(2) — K, i = 1,2, such that the images
of p; and ¢y generate K. If D is the unit disc in C and we write

N S e OV
i(u) = @i <_(1 _ HUH2)1/2 i )

then K has a presentation with generators {z;(u)|u € D, i = 1,2} and relations
(i) zi(u)zi(v) = zi(ww) if u,v € St.
(i) zi(u)zi(—u) = z(—1) if u € D\S™.
(ii1) 2;(u)z;(v) = z;(u')2; (V') if w,v € D\S', u # v, for some unique v’ € D\S* and
v e St
(iv) zi(u)z;(v)zi(u) ™t = z;(uv)z;(u=") if u € S*, v € D and (a;;) is the Cartan
matrix of K.

Then BK is a homotopy push out
BTy —— BH,

BHy —— BK

where H; and H, are rang two compact Lie groups which contain the maximal torus
Ty and can be described from the generators z;(u) in the following way: H; is gener-
ated by z;(u) for u € D and z;()) for j # i and X\ € S*. Hence, these groups are split
extensions

H; = SU(2) x S!

and the action of S* on SU(2) can be read from relation (iv) above and it turns out
to be

) =0 )

where ¢ = b for H; and ¢ = a for Hy. The Weyl group of both H; and H, is of order
two. Depending on the parity of the integer ¢, this group is isomorphic to either
SU(2) x St or U(2):

Proposition 2.1. Let H be the split extension of S* by SU(2) with action given by
(1). Then

o St xSU2), c even
U©), codd

Proof. If ¢ = 2¢/ then consider the isomorphism

H=SU(2) x S' —+ §' x SU(2)
(A7) — (7, AT_CI)
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If ¢ = 2¢ + 1 then consider the isomorphism

H=SU2)xS" -2 U(2)
¢ 0
(A, 7—) f— A ( TC/+1) . D

This proposition gives concrete descriptions of the push out diagrams for BK for
any value of a and b. We have:
e o =b=0 (mod 2). Then
1 0 0 1
. 1 —5 1 1 _%
BK ~ hocolim {BS x BSU(2) «~——~ BTy ———=%

e a=b=1 (mod 2). Then
|
(2 1)
BK =~ hocolim { BU(2) ~-2

e a=0,b=1 (mod 2). Then

BS' x BSU(2)}.
1 1=
(%)
BTy ~——22 BU(2)}.

(1), ()
—a 1 —1 1%
BK =~ hocolim { BS' x BSU(2) ~—* BTy 22 BU(2)}.

Here each matrix M written above an arrow means a map B(iop) where i: Ty — K
is the inclusion and p: T — Tk is the homomorphism inducing M on the Lie algebra
level.

If we want to work one prime at a time (and we will want to do so) then we can
complete the above push out diagrams and obtain BK zg\ as the p-completion of a push
out of the form (BH) «— BT} — (BH');.

Notice that the distinction between the three different types of diagrams above is
only important at the prime two, since BU(2) and BS!' x BSU(2) are homotopy
equivalent at any odd prime. Moveover, If N denotes the normalizer of Tk in K then
the natural map BN — BK is a mod p homotopy equivalence for any odd prime p
(see [12]).

Notice also that the classifying spaces of the central quotients of K have also a
colimit decomposition of this same form:

B(K/F) ~ hocolim{B(H/F) «— B(Tx/F) — B(H'/F)}.
The above considerations suggest considering the family S of all spaces X which

can be constructed out of two rank two compact Lie groups H, H' with Weyl group of
order two, as a push out BH < BT — BH'. We introduce the following definition:

Definition 2.2. Choose a prime p (which will be omitted from the notation) and

~

choose a matrix M € GLy(Z,). Let T be a torus of rank two. Then:
(1) If p is odd, define X (M) as the p-completion of the push out

(BS" x BSU(2)) M (BT)) . (BS" x BSU(2))) .
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(2) If p = 2, define X™ (M), k,1 € {0,1,2} as the 2-completion of the push out
M id
(BHy)y ~— (BT)y — (BH,);,
where Hy = S x SU(2), H; = S' x SO(3) and Hy = U(2).
The map called id is induced by the inclusion of the standard maximal torus and the
map called M is induced by the self equivalence of BT Iﬁ\ given by M (in the standard
basis) followed by the inclusion of the standard maximal torus.

Notice that a space obtained from a push out of the form

sy L (sroy & (1),
fits also in the above definition as X*! (M N~!) for some k, I. Hence, the set S
of all (homotopy types of) spaces of the form X*! (M) contains all spaces that we
want to study in this paper. Notice also that if we turn around the diagram used to
define X*! (M) we get the diagram for X**¥ (M 1) and so both spaces are homotopy
equivalent. Hence, we can assume k < [ without loss of generality.

Hence, we have enlarged the set of spaces that we are going to consider in this
paper in a way that we obtain a more general framework which will allow us a more
systematic study of the classifying spaces of the central quotients of the rank two
Kac-Moody groups. This larger family of spaces S is parametrized by a set M of
diagrams {M;{k,[}}, in the following way. We define M as the set of diagrams

) L (5T 2 (BHY,
with M € GLy(Z,) and k < [ in I, where I = {0} for p > 2 and I = {0,1,2} for
p = 2. The assignment {M; {k,1}} — X* (M) gives a surjection M —» S.

We can associate to each element {M;{k,l}} € M a subgroup W < GLQ(Z,) in

the following way. W is the subgroup generated by the matrices A; and M 1A, M

with
1 0 01
A0:A1:<O _1), AQZ(l 0).

This group W is a quotient of the infinite dihedral group and so it is either finite or
infinite dihedral. We denote by M* the set of elements in M whose corresponding
group is infinite dihedral, and we denote by S* the image of M* in S. Notice that the
spaces (BK/F) that we want to investigate in this paper are in §*. The surjection

d: M* — §F

gives a parametrization of the set $* in terms of p-adic matrices (with some indices,
if the prime is 2). In the next section we present another parametrization of $* which
will be more appropriate for our research of the cohomology of the spaces in S*.

3. SPACES IN S* AND REPRESENTATIONS OF D,

In this section we give another parametrization of the set S* which is related to
the integral p-adic representation theory of the infinite dihedral group and which will
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allow us to give a more intrinsic view of the spaces X*! (M) and will be useful to
organize the cohomological computations of the following sections of this paper.
We denote by R* the set of equivalence classes of pairs (p,c) where p is a faithful

A~

representation of the infinite dihedral group Dy in GL3(Z,) and c is an obstruction

class in H*(Dy; L), for L a 2-dimensional Zp—lattice with the action of D, induced
by p. The equivalence classes are taken with respect to the natural action of Out(D)
on the set of representations and on H*(Dy; L).

Remark 3.1. From a different point of view, we could denote by R = Ext(D,, (TZ)Q)
the set of equivalence classes of fibrations

(BT?)) BN BD..,

where two fibrations are equivalent if there are homotopy equivalences f’, f, and f”
such that the diagram

(BT?)) — BNy — BD,
~ f/ ~ f ~ f/l

(BT?)) — BNy —— BDq

is homotopy commutative. Such a fibration is known to be determined by a homo-
morphism p: Do, —— GLy(Z,), and an extension class ¢ € H*(Dy; L), for L the

2-dimensional Z,-lattice with the given action of D,. Moreover, two fibrations de-
termined by (p1,c1) and (pg, c2) respectively are equivalent if and only if p; and py
are conjugated and ¢; = ¢, up to the induced action of Out(Dy).

In case of Kac-Moody groups, BN would be a fibrewise p-completion of the maximal
torus normalizer. In the general case it might be understood as a homotopy theoretic
maximal torus normalizer. However, we not not plan here to go deeper into these
considerations.

We are interested in the case where the representation p is faithful. Consistently
with our notation in the previous section for S* and M*, we have thus chosen to
denote by R* the subset of equivalence classes of R determined by pairs (p, ¢) where
p is a faithful representation of D..

Recall that D, is generated by two involutions and the only non trivial outer
automorphism of D, permutes these two involutions. A representation p of D,
in GLQ(ZP) is given by two matrices of order two, Ry, Ry and, according to [2],
for p > 2 these matrices are conjugated to A; = (§ %), while for p = 2 they are
conjugated to either Ay or Ay = (9§). We write p € Rep, ;, i < j, to indicate that
p is defined by two involutions conjugated to A; and A;, respectively. Notice that
Out(Dy) identifies Rep; ; and Rep; ;. Since Do = Z/2+7/2, we see that H*(W; L) =
H3(ZJ2; L) & H3*(Z/2; L) and this vanishes if p > 2. Hence, the obstruction class ¢
is irrelevant in the the odd prime case and R* is just the set fRep(Dy) of faithful
representations of D, in GL2(zp), modulo the action of the outer automorphisms
of Do,. This set is equivalent to the set of all conjugacy classes of infinite dihedral
subgroups of GLQ(ZP).
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For p = 2, an elementary computation shows that

0, p € Repy
H*(Doo; L) = { Z/2, p € Repy,
7]2DZLJ2, p € Rep, ; .

Out(Dy) acts as the identity if p € Repy, [ [ Rep; 5 and permutes the two summands
if p € Rep; ;. We can summarize the structure of R* in this way:
e If pis odd then the elements of R* are the conjugacy classes of infinite dihedral
subgroups W < GLy(Z,), i.e., R* = fRep(Dy)/ Out(Dy).
e If p is even then R* splits as a disjoint union of four sets:
— The set of all (p,c) with p € fRep,, / Out(Ds) and ¢ = 0.
— The set of all (p,c) with p € fRep;, and c=0or c= 1.
— The set of all (p,c) with p € fRep,; / Out(Dy) and ¢ =0 or ¢ = (1,1).
— The set of all (p,c) with p € fRep,; and ¢ = (0,1).
There is a surjection W: M* —~ R* which assigns to {M;{k,l}} the represen-
tation p: Dy, — GLQ(ZD) given by the matrices R; = A;, Ry = M~'A;M and the
obstruction class given by

M* R*
M;{0,0} | [M] € Repy; | c=(1,1)
M;{0,1} | [M] € Rep,, | ¢ = (0,1)
M;{1,1} | [M] € Rep;; | ¢=0

M;{1,2}
M;{2,2}

€ Repyp| ¢=0

[M]
[M]
[M]
M;{0,2} | [M] € Rep,, | c=1
[M]
[M]

M} € Repyy| ¢=0

Remark 3.2. This assignment of an obstruction class is done in a way which reflects
the non-splitting of the maximal torus normalizer of SU(2) in contrast to the splitting
of the maximal torus normalizer of SO(3).

Then, we have a diagram

o
M* o S*
v
R*

and we claim now that & factors through R*, up to homotopy. This is an easy
consequence of the following result.

Proposition 3.3. Let D be the subgroup of diagonal matrices in GLZ(Z,) and let Y
be the subgroup of matrices (y %) € GLo(Z,). Then:
(1) D is the centralizer of Ay = Ay and Y is the centralizer of As.
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(2) XM (M) ~ XU (ML),
(3) X® (M) ~ XM (AMB) for any A in the centralizer of A; and B in the
centralizer of A;.

Proof. The proof of part 1 is straightforward and part 2 has already been discussed
in the preceding section. To prove part 3, notice that the corollary 3.5 in [7] shows
that any diagonal matrix lifts to self equivalences of (BS* x BSU(2))) and (BS' x
BSO(3));, while any matrix in ) lifts to a self equivalence of BU(2);. Using this, it

is not difficult to construct an equivalence between the diagram for X*! (M) and the
diagram for X*®! (AM B). O

We have thus obtained a surjection (up to homotopy)
$: R* — §*

which allows us to parametrize the homotopy types of spaces in S* by (faithful integral
p-adic) representations of Dy, plus (for p = 2) some obstruction classes.

Remark 3.4. An interesting question which arises naturally in this context is whether
the map ® is injective. The injectivity of ® could be interpreted as saying that the
spaces in S* and, in particular, the completions of the classifying spaces of central
quotients of rank two Kac-Moody groups, are determined by the normalizer of a
maximal torus. We are not going to consider these type of problems here.

Hence, the study of the homotopy type of the classifying spaces of the central
quotients of rank two Kac-Moody groups has led us, in a natural way, to the rep-
resentation theory of D, in GLQ(Z,,). This theory is developed in [2] in a purely
algebraic way and thus a complete description of these representations is available.
We reproduce here the results of [2] with a slightly different notation which is more
convenient for the applications in the next sections of this paper.

First of all, the set Rep(D4,) of representations of D, in GL2(2,,) splits as a disjoint
union

Rep(Doo) = H Rep;
1,€T
where the index set 7 is {0, 1,2, 3} for p = 2 and {0, 1, 3} for p > 2. Rep, ; contains all
representations such that the two generating involutions rq, 7o of Dy, are conjugated
to R; and Rj, respectively, where

1 0 01
R0:]7 RIZ(O _1)7 RQZ(l 0)7 R3:_I

~

Given a matrix M € GLy(Z,) and given representations o;, o; of Z/2 given by
matrices R;, R;, we can consider the representation p € Rep, ; given by p(r1) = R;
and p(r2) = M~'R;M. This assignment yields a bijection

C(R)\GLa(Zy) [ C(Ry) = Rep,
where C(R) denotes the centralizer of R in G L,y (Zp). After this identification, the non

trivial outer automorphism of D, interchanges Rep; ; and Rep;; and acts on Rep,,
by M — M~!. To avoid trivial cases, we only need to consider Rep, ; for p > 2 and



10 JAUME AGUADE, CARLES BROTO, NITU KITCHLOO, AND LAIA SAUMELL

Rep; 1, Rep;, and Rep, , for p = 2. Each of these sets has a description by double
cosets:

Rep,, = D\GLs(Z,)/D
Rep,, = Y\GLa(Zy)/D
Repyy, = V\GLo(Zy) /Y

where the subgroups D and ) are as defined in 3.3. We use the notation Rep, ; to
denote the mod p reductions of the representations in Repm-.1

Proposition 3.5 ([2]). The functions I'1 1, 01 and o2 defined on GLQ(ZP) by

01 (i ‘;{) = vp(z2),
(2 7) = i)
x y\ ot o~
Iy (z t) T € Ly,

are well defined in Rep,; and are a complete system of invariants. Using these
invariants, Rep; | is tabulated in table 1.

Here and below, when we say that some functions form a complete system of
invariants we mean that two matrices M and N are in the same double coset if and
only if these functions take the same value in M and N. One can check easily that
the table 1 gives a complete set of representatives for Rep, ; without repetition. One

sees also that the range of the invariants I'y 1, d1, dy is 21, x {0, ...,00}?, subject only
to the restrictions:

51+(52:OO = FLl:O,l
0< (51 + (52 <0 = Vp(Fl,l — 1) = 51 —+ 62 — yp(FLl)
0h+d0=0 = Vp(rLl) = Vp(rl,l — 1) =0

The non-trivial outer automorphism of D, leaves I'; ; invariant. It also leaves ¢,
and &, invariant in the types III to VI in the table and permutes 6; and d, in the
other types.

For p = 2 it remains to describe Rep; , and Rep, 5.

Proposition 3.6 ([2]). The functions I'1 5 and 05 defined on GLg(zg) by
x Yy zZt—xy o
T = € Zo.
1,2 (Z t) xt —yz 2

s (T YY) Z 0 yt even
\z t) 1 yt odd.

are well defined on Rep, 5, and are a complete system of invariants.

!Notice that Rep; ; does not give a classification of representations in G Ly (IF,).
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R,iepljl Rele Fl’l 51 (52
p 1\ (0 1 0 1
I Gé) Loz \L p?)7\L 0) | 22 0|>0[>0
$s>0,z=0 (mod p)
11 1 1
11 (1 0> 1z =0 [>0
x=0 (mod p)
01 » 1\ [0 1
1T 1 =z 1 z/°\1 1 pfxljj:[’ 0| 0
x#0 x#0 (modp), s>0
oy G ) G 1))
1
II1 <0 1> z 1 0 1) |45 1|>0/>0
r=0 modp) r,s >0
10
Vv z 1 T 1 1 1_1”, 0 | >0
x#0 xZ0 modp) r>0
. <1 1>
\% (0 1> z 1 = |>0] 0
z=0 (mod p)
1 1 1 1
vi| \z 1 z 1 L 0|0
x#0,1 x#0,1 (mod p)

TABLE 1. Representations of type (1,1). Classes I, II, II" cor-
respond to I'y; = 0 (mod p). Classes II and II’ are permuted by
Out(Dy). Classes III, IV, V, VI correspond to I';; # 0 (mod p).
Class VI is void for p = 2.

Proposition 3.7 ([2]). The functions I'aa, €1, €1 and 4 defined by

2042 2,2
Py vy :x—i— Y : € Zs
“\z 1 xt —yz

er=wmr+z—y—t)
51:V2<x+2+y+t)
— ' — %), e(22 — yt))

Jorm a complete system of invariants for Repy .

€9 = min(yg(:v2 + 22

Any coset [( ] ¥)] has a representative of the form (§ %) (cf. [2, Proposition 5]), but
uw and v are not uniquely determined.



JAUME AGUADE, CARLES BROTO, NITU KITCHLOO, AND LAIA SAUMELL

%172 RepLQ FLQ (53
10 1 0
I (0 1> z 1 z 0
z=0 (mod 2)
Lo <1o>
11 (1 1> z 1 z 0
z#0 (mod 2)
Ly
T (é }) (0 1) 1
y#Z0 (mod 2)

TABLE 2. Representations of type (1,2), p = 2.

R76132,2 Rep2,2 DY
1 1
1 <(1) i) 0 v v
v=1 (mod 2)
1 u
11 <(1) ?) 0 v 71*122)%2
u=0,v=1 (mod 2)

TABLE 3. Representations of type (2,2) p = 2. In class II, different
matrices (§ %) might represent the same element in Rep,, (see Propo-

sition 3.7).

4. COHOMOLOGY COMPUTATIONS. I: GENERAL

Now, for any representation data (p,c) € R*, we want to compute the mod p
cohomology of the associated space X = ®(p,c) € S*, including the action of the
Steenrod algebra and the Bockstein spectral sequence. Since X is defined as (the
mod p completion of) a push out

id
(BT?), — (BH),

|

(BH,)) —— X

M

the obvious tool to compute the cohomology of X is the Mayer-Vietoris long exact
sequence associated to this push out diagram.
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The first observation that we want to point out is that a knowledge of the matrix
M modulo some p-th power p" is enough to determine the structure of H*(X) up to
level n, in the following sense.

Theorem 4.1. Assume thatp >2,n>1orp=2,n>1. Let M and N be matrices
such that M = N mod p*. Then H*(X®'(M)) and H*(X*®! (N)) are isomorphic as
algebras. Moreover, this isomorphism respects the action of the Steenrod operations
Pi(Sq¢* if p=2) and the higher Bockstein homomorphisms () of height r < n.

Proof. Let A be the mod p™ reduction of the matrices M and N. Let T(n) denoted
the abelian subgroup of the torus 7 of elements of order smaller than or equal to p™.
Define the space X(A) as the push out
A ld N
(BT(n))} - (BHL),

A

(BH,), — X(4)

It is easy to verify using the Mayer-Vietoris sequence that the natural map X (A) —
XH® (M) induces a monomorphism in cohomology. We may investigate this map
further as follows.

Let I € H*(BT(n)) be the ideal consisting of nilpotent elements. It is clear from
the definition that I is a H*(X(A))-submodule of H*(BT(n)), where the H*(X(A))-
module structure on H*(BT(n)) is given by restriction. Notice that [ is invariant
under the Steenrod operations P* (S¢* if p = 2) and the higher Bockstein homo-
morphisms (3, of height » < n. Let J = 6(/) be the image of I under the boundary
homomorphism §: H*(BT(n)) — H**'(X(A)) in the Mayer-Vietoris sequence. It
follows from standard facts that § is a map of H*(X(A))-modules. Hence J is an
ideal in H*(X(A)) invariant under the above operations.

Using the Mayer-Vietoris sequence, we see that the natural map H*(X*! (M)) —
H*(X(A))/J is an isomorphism of algebras which commutes with the action of the
cohomology operations mentioned earlier. The same holds for the matrix N and thus
the proof is complete. [l

The computations of the cohomology of the spaces in S* is done in the following
two sections of this paper: the first deals with the prime 2 and the next deals with
the odd primes.

5. COHOMOLOGY COMPUTATIONS. II: THE EVEN PRIME CASE

Throughout this section we work at the prime 2, (p, ¢) will be an element in R* and
X will denote the space ®(p, ¢) € S*. We choose a matrix M = (§ 5) € GLy(Zs) and
indices k, [ such that X = X*! (M). We consider separately the cases of Rep; 1, Repy 5
and Rep,, and we denote by I'y 1, I'1 2, I'a2, 01, 02, 03, €1, € and €, the invariants
defined in section 3.
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5.1. Representations of type Rep, ;. According to table 1, these representations
fall into five classes I to V. (Notice that Out(D,,) identifies the classes IT and II”,
and class VI is void for p = 2.) The obstruction class may take three different values:
c=(1,1), ¢c=(0,1) or ¢ = 0.

Theorem 5.1. If W is of type Rep, ; and c = (1,1) then the cohomology algebra of
X and the action of the Steenrod algebra and the higher Bockstein operations are as
described in table 4.

Cohomology ring | Steenrod squares BSS

Bis)ya = 25

I | Plzg,ys | @ F Sqtzs =0
(24, 4] [z5] | Sq*zs 5 = min{6y, 6} + 1> 2

Sqtzs =0

I P[LU4, y4] b2y E[Z5] 1
Sq ys = 25

Bsy) T2 = 23
T3 = X923 & 09 = min{dy, s
B(s)ya = T223 <> 01 = min{d, 02}

S = min{dl, 52} +1

SqPys = Sq*z3 =0

IV | Plea, ya] ® Blzg] Sqlys = woz3

Bsy)T2 = 23

Sq'ys = 25

V | Plzs,ys] ® Ezs] Sqtzs =0

TABLE 4. Rep,; and obstruction ¢ = (1,1).

Proof. The Mayer-Vietoris long exact sequence associated to the push out which
defines X has the form

(2) .. —— H'(X) — H'(BS' x BSU(2)) & H'(BS" x BSU(2)) "4

—— HY(BT?) — H"(X) — ...

and it is a sequence of H*(X)-modules. The map labelled M! is induced by the
transpose of the mod 2 reduction of the matrix M and j indicates the map induced
by the inclusion of the standard maximal torus of S' x SU(2).

For simplicity, we write Py = H*(BT?) = Fy[u,v] and we identify H*(BS' x
BSU(2)), with its canonical image Fy[u,v?] in H*(BT?). In order to distinguish
between the two components in the Mayer-Vietoris sequence (2), we will write P, =
Fy[u, v2] for the first component and P, = Fy[u,v?] for the second one. Using this
notation, and by degree reasons the sequence (2) becomes

(3) 0 — HYYX) —> P ® Py —+ Py — S'H¥4(X) — 0
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with ¢ = M! + j. In particular, H**"(X) = Ker ¢ and H°(X) = ¥ Coker ¢. We
distinguish between two cases.

e Type I, IT, or V; that is 3 = 1 mod 2. In this case ¢(u) = au + v and ¢(v?) =
Au? 4+ pv?, while p(u) = u and ¢(v?) = v?, hence, the sequence (3) gives H*(X) = 0
and in degree 4 we get that Fy[u? + au? + v%, 0% + Mu? + uv?] C Ker ¢. In particular,
there are elements x4, y4 € H*(X;'; Fy) that project to @*+au?+v? and 524 M+ pv?
respectively, thus P[zy4, y4] is a subalgebra of H*(X) and (3) might be seen as an exact
sequence of P[zy, y4]-modules.

After dividing out by P, in Py @ P, and in Py, (3) is simplified to
(4)
0 — Kery — Plu, v?] L [v] Fo[u?, v?] @ [uv] Fo[u?, v*] —— Coker p —— 0

where [p](u) = [au + v] = [v]. It follows that Ker¢ = P[xy,y4] and Cokerp =
[uv] Plu?,v%] = [uv] Plzg, ya].
Therefore, we have a splitting exact sequence of P|xy, y4]-modules

(5) 0 — Y[uwv] Play, ys] — H*(X) — Plxg,ys] — 0.

The action of the Steenrod squares on wv is easily computed in Py = Plu,v] and it
follows that the action on its class [uv] in [uv] P[u?, v?] is trivial. Now, if we call z;
the image in H*(X) of the suspension of [uv], we have that the Steenrod squares act

trivially on z5 and in particular that 22 = S¢°z5 = 0, hence
H*(X) = Fafzs, ya] ® E(25) .

e Type III, or IV; that is f = 0 mod 2. In this case ¢(u) = au and we obtain a
generator of Ker ¢, i+ cu, in degree two. Also, as in the previous case 92 + pu? + v?
is a generator in degree four of Ker ¢, and Fy[u + au, 02 + pu? + Mv?] C Ker ¢. Thus,
we obtain now a subalgebra Plzs, y4] of H*(X) and then (3) is an exact sequence of
P|xq,ys)-modules. Now, the quotient by P, in (3) gives a new exact sequence

(6) 0 — Kery — Plu, v?] LR [v] Fy[u, v?] —— Coker ¢ — 0

with [p] = 0, so that Kery = P[ry,y4] and Coker p = [v] Plu,v?| & [v?] Plzs, y4l,
as P[za,y4]-modules. Again the Steenrod squares act trivially on the class [v], so
therefore if 23 is the image in H*(X) of the suspension of [v], we have

H*(X) = Plr, ys] & E(z3) .

Finally, notice that Sq¢?(y4) = 0 in the quotient P[xs,y4], and then, by degree reasons
it is also trivial in H*(X). The action of all other Steenrod operations, besides Sq¢?,
follows from the properties of the Steenrod squares, in a straightforward way.
Finally, it remains to compute, for all cases, the action of the higher Bockstein
operations, including the primary Bockstein 3 = Sq'. R
The argument uses the Mayer-Vietoris long exact sequence with coefficients in Z,

~

(7) 0 — HYNX;Zy) — Zolti, v°] @ ZoJu, v?] —— Zo[u, v] —
— - NTHOY(X: 7)) —— 0
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in low dimensions. A first observation is that Ker ¢ is torsion free. Coker ¢ is, in
each degree, a finitely generated ig—module that can be easily classified in terms of
the homomorphism ¢; that is, in terms of the matrix M'. We obtain in degree 2
Coker ¢?) = 22/622. Hence in case f = 0 mod 2; that is, for types III, or IV,
we have H3(X;Zg) = 22/522 = 22/2”2(5)22. Notice that v5(8) coincides with the
invariant 0, in these cases (cf. table 1), hence the result s, (z2) = 23.

Finally, we compute the cokernel of ¢ in degree four and we get

Coker p®) = 22/2 ged(af, M) - Zs .

Again, we can check at table 1 that vy(af) = do and ve(Ap) = d1, so, if we write
s =14 min{0y, 05}, then H®(X:Zy) = Zn/2°Zs.

We can choose generators such that Sq'ys = 2 in cases IT and V, and f(s)ys = 2,
s > 2,1in case I. In cases of type III, or IV we already have [, 72 = 23, hence
By (x3) = 0 for r < 0y, and Bs,41)(23) = w223, if these classes survive to the d; + 1
page of the Bockstein spectral sequence. We have then that Sqly, = 2925 in case IV,
and for case III, s > 2 and then ﬁ(s)x% = xo23 if 63 = min{dy, o2} but Bgyys = 223,
otherwise. 0

All other calculations in this section use the same kind of arguments and we will
omit the proofs. The interested reader will have no difficulty in completing the missing
details.

Theorem 5.2. If W is of type Rep,; and c = (0,1) then the cohomology algebra of
X s
Plz, 23, 24, 25)

(25 + 2324)
and the action of the Steenrod algebra and the higher Bockstein operations are as
described in table 5. U

12

HA(X)2J =

Notice that here we are using subscripts as in J; to denote different Steenrod algebra
actions on the same algebra J.

Theorem 5.3. If W s of type Rep, ; and ¢ = 0 then the cohomology algebra of X s
H*(X) =K = P[U)Q, Ws, Ujg, ’lf)g]/(wgwg)

and the action of the Steenrod algebra and the higher Bockstein operations are as
described in table 6. O

5.2. Representations of type Rep;,. According to table 2, these representations
fall into three classes I, IT and III. The obstruction class ¢ may take two different
values: ¢ =0 or ¢ = 1.

Theorem 5.4. If W is of type Rep; 5 and ¢ = 1 then the cohomology algebra of
X and the action of the Steenrod algebra and the higher Bockstein operations are as
described in table 7. U
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Cohomology ring

Steenrod squares and BSS

Plzy, 23, 24, 25]

Sqtze = z3, Sqtzq = Sqlzs =0,

I Ji=—%5—">5 SqPz3 = 223, Sq®24 =0, Sq’z5 = 2522 + 2473,
(25 + z324) A
Sq*z5 = 242329
B(S)Z4 = 25 < (52 = min{él, (52}
,3(5)2% =25 & 01 = min{&l, 52}
s =min{d1,02} +2 >3
P | Sq'zy =23, Sq'za=0, Sq'zs =23,
29,23, 24, 2
1I Jo = # Sq’z3 = 25, Sq’z4 = z%, Sq?z5 =0,
(25 + 2324) 5ot 5
q 25 = 2524 + 23
Bay7s = 25+ 2322
P | Sq'za =23, Sq'za=Sq'z =0,
29,23, 24, 2
Ir Ji = % Sq%z3 = 2023, Sq?24 =0, Sq’25 = 2520 + 2423,
(25 + 2324) 4
Sq ZH — 242329
B2)za = 25
Sqtzg = Sq'z3 = Sqtz4 =0, Sq'zs = 23,
Plz9, 23, 24, 25 ’
111 J3 = % Sq?23 =25, Sq*z4 =23, S¢*z; =0
(25 + z324) 4 3
Sq 25 = 2524 + 23
B(sy+1)22 = 23
,3(5)24 = 2923 <= (51 = min{&l, 52}
,B(S)Z% = 2923 <= 52 = min{&l, 52}
s =min{d1,02} +2 >3
Sqlze = Sqtzs = Sqtzy =0, Sqlzs = 22,
Plz9, 23, 24, 25 ’
IV J3 = % S¢?z3 = 25, Sq¢Pz4 = z%, Sq?zs =0,
(25 + z324) 4 3
Sq 25 = 2524 + 23
5(52+1)22 = 23, 5(2)24 = 2273
P | Sq'zg =23, Sq'za =0, Sq'zs =23,
v Jo = Ples, 23, 24, 2] Sq*z3 =25, Sq*za =23, Sq¢*z5 =0,

(23 + 2324)

Sqtzs = 2524 + zg’

B2)25 = 25 + 2322

TABLE 5. Rep,; and obstruction ¢ = (0, 1).

17
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Cohomology ring Steenrod squares and BSS

o | Sq¢twe =ws,  Sqtwy = w3
| K1 = P[wg,’w?,,wg,’wg]/(wgwg) 2 ’ 2 _ ’, _
Sq w3z = waws, Sq W3 = W3

ﬂ(s)w% = wowW3 8= min{él, (52} + 2

o | Sgtwe = ws,  Sqtwy = w3
IT | Ky = Plwy, w3, w2, w3)/(w3w3) 9 ’ 9 _ o _
Sq w3 = waws, Sq W3 = WaWs3 + w3

Blayw3 = waws

o | S¢twe = ws + w3, Sqlws =0,
IIT | K3 = Plwz, ws, w2, ws]/(wsws) | 4 g _
Sq w3 = waws, Sq w3 = waws3

Bsy4+1)W2 = W3

B(S)w% = wows3 < 01 = min{dy, da2}
,B(S)ﬁ)% = Wowg & dy = min{él, (52}
s = min{él, 52} +2

o _ | S¢twe = wy + w3, Sqlws =0,
IV | Ky = Plwz, w3, we, w3]/(wsws) | 9 o
Sq w3 = waws, Sq W3 = w3 + Waw3

B(s,41)W2 = W3
Blayws; = waws

o | Sqtwy = w3 + w3,  Sqlwy = ws,
V | K5 = Plwz, w3, w2, w3]/(wsw3) 9 o _ _
Sq w3 = waws, Sq w3 = waws

72 — — —
B(2)W5 = wa3 + Wa3

TABLE 6. Rep; ; and obstruction ¢ = 0.

Theorem 5.5. If W is of type Rep, , and ¢ = 0 then the cohomology algebra of X is

P[227 3, 24, 25}

H (X)=2 L=
(X) (22 + 252320 + 2423)

and the action of the Steenrod algebra action and the higher Bockstein operations are
as described in table 8. U
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Cohomology ring Steenrod squares and BSS

I Plxg, ys] ® Elz] Sqys = ways, Sqtz9 = w429, S¢¥29 =0

Bsyys =29 s=1+1e(l12)>2

Sq'ys = 29, Sq'ys = zays, Sq*z9 = w429

I1 Plxg, ys| @ Elz] Sz = 0

P[$2798] Sl = Tz SQ =0 SQZ =0
I % q-ys 227, q-ys ) q-z7

4, _ o9 A, _ 2
Elzs, 21]/ (w223, 2327) | ST Ys = Ys¥2,  Sq 21 = 2123 + 23Ys

Bsyra = 23, s=v2(l12+1)

B(Qs)x% = 27

TABLE 7. Rep, 5 and obstruction ¢ = 1.

Cohomology ring Steenrod squares and BSS

1 1 1 P
Sq zo =23, Sq'zs =25+ 2322, Sq 25 =23,
P[22,23,24,Z5]

I L= Sq?z3 = 25, S¢*z4 = 2420, Sq’z5 =10
(zg + 252329 + 24z§) A ’ ) 5 ’
Sq 25 = 2524 + 2525 + 25 + 232422
, Sqtzg = 23, Sq'zs = 2z,
29, 23, 24, %
IT | Ly = — 22, 23, 24, 2] 5 | SPz3 = 2023,  S¢Pz4 = 2420, SqP25 = 2473
(22 + 252320 + 2425) A )
Sq*zs = 2525 + 242322
, Sq'zy = 2023, Sq'zs =23,
29, 23, 24, %
III | L; = (22, 28, 21, 2] SqPa3 = z5, SqPz4 = 22+ 22, Sqz5 =0

2 2
(22 + 252320 + 2425) Gty — o 3
q°z5 = 2524 + 2525 + 25 + 242322

5(3)22 =23 S§= I/Q(FLQ + 1) +1>1

TABLE 8. Rep, 5 and obstruction ¢ =0

5.3. Representations of type Rep,,. Here we use the classification in types I and
IT of table 3. We obtain the following result.

Theorem 5.6. If W is of type Rep, o then the cohomology algebra of X and the
action of the Steenrod algebra and the higher Bockstein operations are as described in
table 9. U
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Cohomology ring Steenrod squares and BSS

Sq*zs =vys, SqPys =0, Sq'ys = zays

1 P[l‘4, yd © E[Z7] Sq427 = T4R7

Bsyye =27 s=w2(l'22+1)

II | Plog,ya] @ Elzs] | SqPzs = 2223 Sq*ys = xays

B T2 = 23

2 —
5(52)3:2 = X923 & €1 &1 =¢&2

Bles)Ya = T223 <> €1+ €1 > €2

TABLE 9. Repy,.

6. COHOMOLOGY COMPUTATIONS. III: THE ODD PRIME CASE

Throughout this section we work at a fixed odd prime p. We choose an element in
R* an we want to compute the mod p cohomology of the space X in S* associated to
that element in R*. As we saw in section 3, for an odd prime p,Athe elements in R*
are just conjugacy classes of infinite dihedral subgroups in GLs(Z,). Hence, we have
such a subgroup which we denote by W and which can be given either by a two by
two matrix M € GLso(Z,) or by three invariants I' = I'; 1, 1, do. The classification
of these groups is summarized in table 1. We organize the statements in this section
according to the six types of representations of the group W, labelled I to VI in
table 1. Notice that we do not need to consider type II’. We denote by Xy the space
in $* which corresponds to the group W.

Let us point out that the invariants I', d;, ds classify all representations of D,
including those which are not faithful, while we are only interested in the spaces Xy,
for W of infinite order. The following result provides a partial answer to the question
of which values of I'; §; and 5 yield Weyl groups of infinite order.

Proposition 6.1 ([2]). Let p: Doy — GLg(ip) (p odd) be a representation with
invariants I, &1 and §3. Assume I' = 0,1 (p). Then p(Ds) has finite order if and
only if 6y =9y =00 orp=3 and I' = 3/4, 1/4. O

This proposition implies that in the case in which d; + d, > 0 (i.e. all types except
type VI) we only have to eliminate the representations given by the matrices

0 1 10 . .

1 O y O 1 y oranyprlme,
3 1 11 1 3 1 1 for 3
1 —1)°\1 =3)>\=1 1) \=3 1) *OrP=2

Let L be the p-adic lattice of rank two with a WW-action given by the inclusion of
W in GLs(Z,) and let us denote by P the symmetric algebra on the F,-vector space
Hom(L,F,). P is thus a polynomial algebra on two generators P = F,[u,v] which
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we grade by assigning degree two to the variables v and v. P inherits an action of
the group W and we are interested now in the subalgebra of invariant elements P".
Notice that the action of W on P is dual to the representation of W on L. Moreover,
if we denote by W, the mod p reduction of W then the action of W on P factors
through W,. The group W, is finite dihedral and throughout this section we denote
by k the integer defined as

_ Wl

5
Let us call W exceptional if it belongs to types III or IV and let us call it ordinary
otherwise.

We will use tools from the invariant theory of reflection groups. A very useful
reference is the beautiful book [14].

k

Proposition 6.2. The ring of invariants of W is a polynomial algebra on two gener-
ators, P 2 TF,[x,y], with deg(x) deg(y) = 8k. If W is exceptional then x has degree
2 and if W is ordinary then x has degree 4.

Proof. Obviously, P" depends only on the group W, and we only need to study
the mod p reductions of the matrices in table 1, which are displayed in the column
labelled R_epm.

In the exceptional case we have the identity matrix and the matrices Ay = (19).
In the case of the identity matrix (i.e. type III), we have that W, has order two and
is generated by the linear map which fixes v and sends v to —v. The invariants are
Fplu, v?].

The representations corresponding to A, are those of type I'V. One sees easily that

W, is conjugated to
1 0 1 0
(6 5) ()

This dihedral group has order 2p and its invariant theory is discussed in pages 128-
129 of [14]. The invariants are polynomial in degrees 2 and 4p, namely PV =
F, [, (vur! — ).

Let us discuss now the case in which W is ordinary. Table 1 provides the matrices

01 11 11
s=(10) a=(3 1) o= (] o)

The matrix B produces type I. W, is the representation of the elementary abelian
2-group of order 4 by u +— +u, v — +v. Then PV = F,[u? v?].
The matrix Cy gives the representation

=0 4)( 4))

This is again a dihedral group of order 2p and this representation is also studied in
pages 128-129 of [14]. The invariants are polynomial in degrees 4 and 2p, namely
PV =TF,[v* u(uP~ —vP~1)]. This is type V.
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The matrix D gives a group conjugated to

el 5 (0 )

It is a dihedral group of order 4p and has a subgroup H of index two which is of the
type Cp that we have just studied. Then P¥ = F,[z4,y2,] and one sees that W/H
fixes  and sends y to —y. Then PV = F,[v? u?(uP~! —vP~1)?]. This is type IL.

Let us consider finally the case of the matrices C for A # 0,1. This is type VL. k
is then the order of the matrix obtained multiplying the two generating reflections of

W,. This matrix is
1 14+ A 2
TTI a2 140

The discriminant of the characteristic polynomial of this matrix does not vanish.
Hence, 7 diagonalizes over 2 and so the order of 7 is a divisor of p?> — 1. This
implies that the order of W), is coprime to p and, since W), is generated by reflections,
the classical Shephard Todd theorem ([14], 7.4.1) implies that P" is a polynomial
algebra. \u? — v? is an invariant of degree 4 and there are no invariants of degree 2.
Hence, PV = F,[z4, yor). O

Along the proof of the previous proposition we have obtained a computation of the

value of k = |[W,|/2:
Proposition 6.3. The value of k is given by

Type I: k = 2.
Type II: k = 2p.
Type IIT: k = 1.

Types IV and V: k = p.
Type VI: k is equal to the multiplicative order in Fp2 of the roots of the poly-
nomial X* —2(2I' = 1) X + 1. O

We determine now the mod p cohomology of the spaces Xy,. As usual, we use
subscripts to denote the degrees of the generators of an algebra and we denote by
E(z,y,...) the exterior IF,-algebra with generators z,v, ...

Theorem 6.4. Let p be an odd prime and let W be an infinite dihedral subgroup of
GLQ(Z ). Put k= |W,|/2. Then:

(1) He*( Xy ) = H*(BT)V

(2) If W is ordinary then H*(XW) Fylxa, yor]) ® E(25+1)-

(3) If W is of type IIT then H*(Xw) = Fplze, ya) ® E(z3).

(4) If W is of type IV then H"( Xy ) = Fp[xg,y4p] and we have

p—? Heven
H (Xw) 2 B 10 ('

i—0 $2Heven

even
: Z4¢+3> O H" - 24y

as an H"( Xy )-module.
Proof. The proof uses the Mayer-Vietoris sequence of the push out diagram (B H. 2)2 —
BT} — (BH,)) with Hy = Hy = BS' x BSU(2). Notice that, since p is odd,
H*(BH;) = H*(BT)%" for i = 1,2, where wi, w, are the generating reflections of .
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For simplicity, let us write P = H*(BT), H = H°%(Xy,). Then the even cohomology
of Xy coincides with the invariants of P under the action of the Weyl group, while
the odd cohomology is given by the exact sequence

0—-PYV purgp: P Y 'H 0.

Notice that this is an exact sequence of P"-modules. The Poincaré series of P can
be deduced from the information provided by 6.2. Then, the above exact sequence
gives the Poincaré series of H°(Xy,).

Assume first that W is ordinary. Then one sees easily that the Poincaré series of
H is the same as the the Poincaré series of the free P"-module 2y, P". Let us
prove that H is indeed a free P"-module. By [14] 6.1.1, it is enough to prove that
TorfW (F,, H) = 0. By [14] 6.7.11, the above exact sequence is a free resolution of H
as a P"-module, hence

Ker (F, ®pw (P** & P*2) - F, ®@pw P)

Tor?" (F,, H) = :
1 ( p ) Im (Fp ® pw PW _, ]Fp ® pw (pw1 D pwz)

Now, since p is odd, we can use the averaging map x +— (z + w; - )/2 and we see
that F, ® pw P* = (F, @pw P)“ and the diagonal inclusion P — P“!* & P2 has a
section. Hence, F, @ pw PV — F, @ pw (P“* & P“?) is a monomorphism and

Ker (F, ®pw (P & P*?) > F, ®pw P) = (F, ®pw P)".

If the order of W), is prime to p then it is well known ([14], 7.5.2) that F, ® pw P is
the regular representation of W,. Hence (F, ®pw P)" =F, and Tor] v (F,,H)=0.

If the order or W), is not prime to p then F, ® pw P is not the regular representation
([14], p. 221). When this happens, we have seen in the proof of 6.2 concrete descrip-
tions of the invariants P". From these descriptions, it is not difficult to write down
explicitly the coinvariants F, ® pw P and see that there are no invariants of positive
degree.

We have to consider now the case in which there is an invariant in degree 2, i.e.
the case in which W is exceptional. In this case, we have also seen in the proof of 6.2
concrete descriptions of the ring of invariants P". If §; # 0 then it is very easy to
compute the cokernel directly. If §; = 0 then the above proof breaks down because
H is not a free P"-module anymore. However, one can also compute directly H as a
cokernel, at least as a P"-module. We have PV = F,[u, (vu?~" — v?)?] and we want
to compute the cokernel H of

o: Fylu,v?] @ Fyfu, (u+ 0)?] = Fyfu, o]

as a P"-module. ¢ is a linear map between free P"-modules. We can take basis in
the following way: 1,v% ..., v*~% is a basis of F,[u,v?]; 1,(u+v)?, ..., (u+v)*2
is a basis of Fylu, (u+v)? and 1,v,...v*~1 is a basis of F,[u,v]. Then, if we study
the matrix of ¢ in these basis, we see easily that 24,3 = §(v**™) fori=0,...,p—1
generate H as a P"-module (§ denotes the connecting homomorphism of the Mayer-
Vietoris exact sequence). Also, we see that uv?*! € Imp for i = 0,...,p — 2. This
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gives an epimorphism

< p_2 Heven

i=0 ToHeven

: Z4i+3> ® H"" - 24p 1 — H.

Then, a computation of the Poincaré series which is left to the reader proves that this
is an isomorphism. O

The results of these last two propositions are displayed in the column “cohomology
rings” of table 10.

We want to compute now the action of the mod p Steenrod powers on H*( Xy ) and
the differentials in the mod p Bockstein spectral sequence. Since the even dimensional
part of H*(Xw) coincides with the invariants of the mod p Weyl group W, we
only need to describe the values of the Steenrod powers on the odd dimensional
generators. If x and y are in H*(Xyy) the notation 3 (z) = y means that §;(x) =0
for i < r (i.e. = survives to the E,-page of the Bockstein spectral sequence) while
By (x) =y + Im B,_1). We consider each type I to VI separately.

e TYPE I. In this case
H*(Xw) = Fplza, ya] @ E(25).
01
The integral representation is given by a matrix (p 1
The integral cohomology of BH; and BH, is given by Zp[p‘slu + v, (u + Mv)?| and

~

i\) with v,(A\) = &2 (cf. table 1).

Z,|u, v?] respectively. As an integral lift of the class z5 we can take the element &(uv).

Then, in a similar way as we did above, one sees that there are Bockstein relations

Bs,)(ya) = 25 and Bs,)(w4) = 25. The action of the Steenrod powers on z; is given by
p=1l  p-1

the relation P(z5) = (z,% +y,° )zs.

e TyYPE II. We have

H*(Xw) = Fplad, yap) @ E(zap11)-

The integral representation is given by a matrix G i\) with A = Flplli and v,(\) =

1
dy (cf. table 1). The integral cohomology of BH; and BHj is given by Z,[u +v, (u+
)?)] and Z,[u, v?] respectively. Then,

(a) Analyzing the map

0p: Fplu,v?] @ Fplu + v, u*] — Fplu, v]

in degrees 4p and 2(3p—1) we see that uv?~! ¢ Im ¢, while 2uPv?P~! —uv®~2 €
Im ¢p,,.
(b) Analyzing the map
gt Z/p*[u,v*] @ Z/p*[u+ v,w*] — Z/p[u, V]
in degree 4p (notice that A? = 0 (p?)) we see that puv?~!
the case in which p =3 and A = 3(9).

€ Im g2, except for
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From these facts, we can conclude that we can take as generator 24,41 any non
trivial multiple of §(uv*~1). Also, 24,41 has to be in the image of a primary Bockstein
(except for p = 3 and A = 3(9)) and we can define 24,11 = ((ys,). The identity
PHuw®~l) = wPv®~! — 4v*P~2 shows that Pl(z411) = —2P /22 and the Adem
relation P!3PP~! = — 3PP 4+ PPj3 determines the value of PP(zy,,1). The exceptional
case in which p = 3 and A = 3(9) can be investigated directly. We obtain that there
is a Bockstein of order two joining yio and 213 and also P3(z13) = (y12 + 23)213. The
description of H*(Xyy ) is then complete.

e TvyPE III. In this case

H*(Xw) = Fylra, ys) @ E(z3).

A1
The integral cohomology of BH, and BH, is given by ip[u + p2v, (M + v)?] and
ip [u, v?] respectively. As an integral lift of the class z3 we van take the element §(v).
Then, notice that p®?v € Im{P“*@®P“2 — P}. This produces a relation (s,)(2) = 3.
On the other side, one sees that p®'uv € Im{P“*@® P“2> — P} and so there is a relation
Bior)(ys) = w223,

The action of the Steenrod powers on 23 is given by the relation P!(z3) = y:? 23.

This follows from z3 = §(v) and the fact that the Steenrod powers commute with the
connecting homomorphism.

, o (1 p*
The integral representation is given by a matrix ( P

) with v,(A) = 6; (cf. table 1).

e TyPE IV. We will not compute the action of the Steenrod algebra nor the Bockstein
spectral sequence for the spaces of this (quite weird) type.

e TYPE V. This case is quite similar to the case in type II. We have

H*(Xw) = IFp[$4a y2p} ® E(ZQP—H)-

}\ }) with A\ = F}’i;l and v,(\) =

1 (cf. table 1). The integral cohomology of BH; and BH, is given by ip [u—+v, (Au+

v)?)] and ip[u, v?] respectively. We leave as an exercise to the reader to check that
the following holds:

The integral representation is given by a matrix (

(a) Analyzing the map
v Fylu,o7] @ Fyfu + v, 0%] — Fyfu o]

in degrees 2p and 2(2p — 1) we see that u?~'v ¢ Im @, while u?~1v? —u?~%0 €
Im ¢,,.
(b) Analyzing the map

Pp2: Z/pz[u, '02] @ Z/pQ[u + v,vz] — Z/pz[u, v]

in degree 2p (notice that A = 0 (p?)) we see that puP~'v € Im ¢, except for
the case in which p =3 and A =6 (9).
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From these facts, we can conclude that we can take as generator 25,41 any non trivial
multiple of §(uP~v). Also, 29,41 has to be in the image of a primary Bockstein (except
for p=3and A =6(9)) and we can define 29,11 = 3(ys,). The identity P (u~'v) =
uP~ P —u?P~%y shows that P?(z9,41) = 0 and the Adem relation P!gPP~! = — 3PP+
’]Dpﬁ y161dS Pp(22p+1) = xﬁ(p_l)/QZQPH.

The exceptional case in which p = 3 and A = 6 (9) can be investigated directly. We
obtain that there is a Bockstein of order two joining ys and z; and also P3(z7) = x32;.

In this way we have a complete description of the algebra H*(Xyy ), including the
Steenrod operations and the Bockstein spectral sequence.

e TyPE VI. First of all, there is a Bockstein of height r which connects o, and 29511
where the integer r is given by the following lemma:
Lemma 6.5. The integer r such that By (yax) = 2or41 @5 given by

o 1 is such that [Wy| = [Wpe| = = |[Wyr| < |[Wpr].

o Let (N\,) be the sequence defined recursively by Ag =0, A\; = 1,

)\Zn = )\Zn—l - )\271—2
)\2n+1 = 4F>\2n - )\211—1-
Then r s the p-adic valuation of Ay, and X\; is prime to p fori < k.

Proof. To prove the second part of the lemma, notice that the order of the finite
dihedral group W, is equal to twice the order in GLo(Z/p"Z) of the matrix

_fr—1 T
T=\ar—2 or—1
which is the product of the two generating reflections of W. In particular, k is the

smallest integer such that 7% = I (p) and r is the largest integer such that 7% = I (p").
The linear transformation
0 1
(1 Jor —1)

transforms 7 into the matrix A associated to the iterative system which produces the
sequence {\;} defined above. Then, an easy induction proof shows that

wi = (P ATy
Aoj  —Ag1 )

If A7 = I(p"), then \y; = 0(p") and Ayj—; = 1(p"). Consider the sequence
A0, ALy oy Agjo1, Agj. If we compute the value of the central term A; starting from
both extremes of the sequence, we obtain A\; = —\; (p™) and so A\; = 0 (p").

Conversely, if A; =0 (p") and 7 is odd, i = 25 + 1, then

W= 0 —4'\y; '
Aoj  —4IAg;
Since A has determinant equal to one, we obtain 41" \3 =1 (p"). Then, a computation
shows that A* = I (p). If i is even, i = 27, then we have

. ~Ayiig 0
AT = j+
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with Agj11 = £1(p"). If Ayj11 = —1(p™) then the same argument as above shows that
A; = 0(p") too. Hence, without loss of generality we can assume that \y;1; = 1(p")
and so A% =T (p").

From this relationship between the order of the matrix A and the p-adic valuation
of the elements in the sequence {\;} the second part of the proposition follows easily.

While we have been obtaining all the results in this paper in a pure algebraic
and homotopy theoretic way, the proof of the first part of the proposition will be
done using the geometric structure of the Kac-Moody groups. Let M be a matrix
which yields the space Xy. According to proposition 4.1, the cohomology algebra
of Xy and the Bockstein spectral sequence will not change if we choose any other
matrix M’ = M (p"), for some large N. The matrix M is characterized by its
invariant I'y ; which is any p-adic integer # 0,1 (p). On the other side, if we start
with a Kac-Moody group K(a,b), we obtain a space of the form X (M’) where M’
has invariant I'y ; = ab/4 (see proposition 7.2). This shows that it is possible to find
values of @ and b such that the Kac-Moody group K = K(a, b) has the property that
BK/)' ~ X(M') with M" = M (p") for some large N. Hence, the action of the higher
Bockstein operations on Xy should be the same as the action on BK. This action
was computed by Kitchloo ([12]), using the geometric structure of the homogeneous
space K /Ty (i.e. the Schubert calculus) and it agrees with the values given in this
proposition. [

Using what we have seen in the proof of the above proposition, we can produce now
concrete descriptions of the generators x4, yor, € H*(Xw ) in terms of the generators
u,v € H*(BT). Let {\;} denote the sequence defined recursively in the previous
proposition. Then we can choose

xy = u? — ATuv + 4702
k
Yok = H(Aqu — Agj_1v)
j=1
and this allows us, in principle, to compute the action of the Steenrod algebra on the
even dimensional part of H*( Xy ).

Let us see now how we can compute the action of the Steenrod powers on the odd
dimensional generator zop,1. If we write H = H°(Xy ), then H = 29,1 PV and
the Steenrod algebra action can be described by means of the Mayer-Vietoris exact
sequence (see Theorem 6.4)

0—-PV sp1gepP2 P —-Y'H—-DO0,

thus, the action of the Steenrod algebra on the class 29,1 is determined if we are
able to obtain a representative J € P for this class. We will show that the jacobian

Ox4 Oxy
ou ov
J = det )
Oyor  OYok

ou ov

is a representative for zop,q. This is a non trivial element of P, relative invariant
to the determinant; that is, for any g € W, ¢g(J) = det(g) - J. This implies that
J, does not belong to the image of P“* @ P“> — P. Assume otherwise that J can
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be written as J = p; + po, with p; invariant by w; and p, invariant by w,. Apply
wy to the equality J = p; + py and combine to get 2J = py — wips. Now apply wo:
—2J = py — (wowy)pa. Observe that J is invariant by wyw,, and therefore we can
obtain, inductively —2nJ = py — (wew;)"pe. Hence —2kJ = 0, and since k is coprime
to p, this contradicts the fact that J # 0.

We have shown that J represents a non trivial element in H. It has to be 291,
up to a unit of ), by degree reasons.

Remark 6.6. Notice that zy, P = H is a Thom module in the sense of [4]. For
any linear character x: W — F7, the relative invariants

P;V:{:vEP | w(z) = x(w)z }

form a Thom module over PV that is, a P"-U{-module which is free of rank one as
P%_-module [4]. The relative invariants of any non modular pseudoreflection group
with respect to the determinant are computed in [14], p. 227 (notice that in our

case we have det = det™'): PV _, = J.PW where J = det 2L if we have PV =
J

F,[fi,..., fa]. With this notation, the above argument shows that the composition
P} C P — Y7'H is an isomorphism of Thom modules.

7. BAcK TO KAC-MOODY GROUPS

In section 2 we have included the family of the p-completions of the classifying
spaces of the central quotients of the rank two Kac-Moody groups in a larger family
which we called S*. In section 3, we have seen how the spaces in S* are parametrized
by a set R* which is closely related to the representations of the infinite dihedral
group. Then, in the next sections, we have computed the cohomology of all spaces
in §*, as a function of the corresponding representations. In this final section we go
back to Kac-Moody groups and we will describe, for each space of the form B(K/F),
its parameters as an element of S* or R* and so we will obtain in this way a complete
description of the cohomology of the classifying spaces of the central quotients of the
rank two Kac-Moody groups.

We start with a lemma which identifies some central quotients compact Lie groups
of rank two.

Lemma 7.1. We have the following Lie group isomorphisms:
T

p™ 0 o~
1 : y y T.
”(0 p”) (@ 1), (L))
p™ =1\ T o
0 1 N <(€27Ti/pm, 627ri/pm)> e T
m—1 St % SU(2 ~
2 1Y S SUR) = )

@ (

0 (o 1) e ay

(@) (2 oY ) % 2§ % SO(3).

(5) (2: g) 5 X SUQ) S x SO(3).

L

1
1
. <(62m/2m> 1)7 (17 _[>>
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Riepm Cohomology ring Steenrod powers BSS
1
0 1 P(z) = By (y) = 2
I <1 O) Fp[x4;y4] ® E(zs5) (x(p—l)/Z + y(p—l)/Q)Z ,3(52)($) = 2

1 1
! (1 0) ol ® BCw) [ ) prapey) 4 gpoy)

except p = 3, % =3 mod 9: | Bo)(y) = 2

B (y) = xz
w| (5 9) | BleadeBG) | P =y o) =
1 0
IV <1 1) _
11 Pl(z) =0
AY (0 1) Fplaa, yop] @ E(2z2p+1) Pr(z) = LP0-1)/2, B(y) ==z

except p = 3, F}’llzl =6mod 9: | Bo)(y) = 2
1 1
By (y) =2
VI <w 1> Fplra, yor] ® E(2241) ™ 65
20,1 (see 6.5)

TABLE 10. Odd primary cohomology rings. The degrees of the
generators of the cohomology rings are specified by subscripts (which
are omitted in columns four and five).

Proof. Of course, the matrices that appear in the lemma represent the linear maps
induced by each isomorphism on the Lie algebra of the maximal torus. The isomor-
phisms in (1), (2) and (5) are obvious and we only need to discuss (3) and (4).
Notice that if A is a matrix in U(2) then A/v/det A has an indeterminacy in SU(2)
but it is well defined in SO(3) = SU(2)/£I. This fact allows us to define an epi-
morphism ¢: U(2) — S x SO(3) by A+ (det A>" ', A/v/det A). The kernel of ¢ is

a central subgroup in U(2) generated by e2™/2" I and one can easily check that ¢ is
2m—l 2m—1

given, on the maximal torus level, by the matrix ( 1 1 ) This proves claim

(4) in the lemma.
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We also have an epimorphism v: S* x SU(2) — U(2) given by (A, A) — A" A,
which describes U(2) as a quotient of S x SU(2) by the central subgroup of S*xSU(2)

generated by (e>™/2" —I). Again, on the maximal torus level, one sees easily that 1)
m—1

is given by (2m1 _11) and we have proven claim (3) in the lemma. U

We can now represent the classifying spaces of the central quotients of K as spaces
of the form X*! (M). We do first the case of an odd prime.

Proposition 7.2. Let p be an odd prime and 0 < m < v,(ab—4). Write Py K = K.

We have )
A o b/2 P
BEn Ky =X ((4—ab)/4pm Za)2)

Proof. The case m = 0 is trivial. For m > 0 we have
M id
B((S" x SU(2))/MF)) «~— (BT/F), “ B((S' x SU(2))/F),
B b/2 1
where M = ((4—ab)/4 —a/2
(e?m/P™ '1). Since p™ divides 4 — ab, we see that M F is the cyclic subgroup of T
generated by (e2™/P™ 1). Now the diagram above is equivalent to the diagram for

X(N) for
N= (p: (1)> M (1/(2)?m (1)> a ((4—%?/@7% —]z:;z)' -

From the above description we can immediately recover the representation associ-
ated to the space BP,m K(a, b)g as the one given by the invariants

ab
4 Y
In particular, this shows that, for p odd, any representation of D, whose invariants
are such that 4 < 4I'y; € Z and 0; + d2 < oo appears as a space of the form
BP,mK(a,b)) for some a, b, m.

Let us consider now the case of the even prime. This case is more involved since
we have to take into account the parities of a and b. Moreover, in some cases there
are central 2-subgroups which are not cyclic. Let us distinguish three cases.

> and F' is the cyclic subgroup of T generated by

Ii= 01 = vp(4 — ab) + v, (b) —m, 0y = vp(a) + m.

e a=b=1 (mod 2). In this case, there are no central 2-subgroups and we only
need to consider the case of the simply connected group K. We have

(Lma)(14b) | 4 (1—a)4(b—1)+1)
14b) :

2.2
BKjy ~ X ((1+a)4( ) tdl-n

4 4
e a=00b=1 (mod2). In this case, for each m such that 2" divides ab — 4

there is only one central subgroup of K of order 2™ and it is cyclic. To simplify the

notation, let us write a = 2a’, b = 2b' + 1. Then we have

1+V v )

1—d —db 1-a't

BK} ~ X°? (
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The matrices corresponding to the groups Pom K are given by:

Proposition 7.3. Let a =2d', b =20+ 1. Then

( boo2m!
X0t <4_ab a,> 0 <m < vy(ab—4);

2m+1 2

BPQmKé\ ~

a’ + om—2 a om—2
1,2 — _
X (24—ab _b b + g) m = vy(ab — 4).
( 2 2

2m+1 2m+1

Proof. Notice that the matrices above are in GLQ(zQ) because v5(ab —4) = 1 when
a’ is odd. Let us recall that BK is a push out
M id
B(S' x SU(2)) BT %+ BU(2)
1+b v
l—d —db 1-d¥
group F of order 2. This subgroup will be generated by the element (e
in T and U(2). To compute the image of this element in S* x SU(2) we need to apply
the matrix M to the vector (1/2™,1/2™). We get (b/2™, (4 — ab)/2™T!) and two
possibilities arise. If m < vy(ab — 4) then (4 — ab)/2™! is an integer and the image
of F' by M is the subgroup generated by (e?™/2" 1) in S* x SU(2). If m = vy(ab—4)
then (4 — ab)/2™"! is half an integer and so the image of F' by M is generated by
(e2/2" —T)in S' x SU(2). In either case, we have to transform a diagram
() Stx SU(12) M T id  U(2)
<(€27rz/2m’ i1)> <(e27m/2m7 627rz/2m)> <e27m/2mI>
in a diagram like the one used to define the spaces X*! (N) for some k, [ and N. Apply
the isomorphisms of lemma 7.1. We see that the right hand side of the diagram (x)
is equivalent to A: T'— S! x SO(3) with

-7 T )

If m < vy(ab — 4) then the left hand side of (*) is equivalent to B: T — St x SU(2)

with
B (2" 0 1+ v 1/2m 1/2m
V0 1 1—d —adb 1—-ab 0 1 ’

If m = vy(ab — 4) then the left hand side of (x) is isomorphic to U(2). In either case,
we can easily check the matrices in the proposition. 0

with M = ( > and we have to divide out by a central cyclic sub-

2mi /2™ 2w /2™
jam amifamy

e a=b=0 (mod 2). In this case we need to take into account the various groups
PL. K, PfK, Pf K and PJ,, K for 0 < m < vy((ab—4)/2). Put a = 2d’, b = 2.
One checks immediately that

/
BKQ:XW< b {).

1—-db —a
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Proposition 7.4. Let a = 2a', b =20 and let 0 < m < vy((ab—4)/2). Then
(1) If b is even then m =1 and

L ol 2a’ 1
BPyK ~ X (1 —aV —¥/2)
(2) If V' is odd then
( b/ 2m
X (1 - a’b’)/?m —a’ 0<m< V2((ab B 4)/2)’

BPL. K} ~

om 2 om 2

a’ + 2m—1 a — 2m—1
X0’2 <1—a’b' Y 1-—a'V + b_’) m = VQ((CLb — 4)/2)
\

Proof. The proof of this is similar to the proofs of 7.2 and 7.3. BPL, is given by a
diagram which is obtained from the diagram of Lie groups

St x SU(2) M T id St x SU(2)
(M(e2mi2™ 1)) ((exm/27, 1)) ((e*m/2", 1))

/
with M = 1 —ba’b’ —1a’ . When we apply the matrix M to the vector (1/2™,0)
we obtain (b'/2™, (1 —a'b')/2™) and we have to distinguish the cases of b even and ¥’
odd and also the cases when m < 15(2 — a’b) and m = v5(2 — d’b). Finally, we need

to use the identifications given by lemma 7.1. We leave the details to the reader. [J

The computations for the other central quotients Py*K, Ps. K and P, K can be
done using the same ideas and we will omit the proofs.

Proposition 7.5. Let a = 2d’, b = 2b'. Then
(1) If d’ is even then

20’ 1
BPRK) ~ XO! (1 Zay —a’/2) .

(2) If d’ is odd then

a +1)/2 a —1)/2
BPQRKQ = X1,2 (1(_ b/ _)C/L/bl 1(+ b/ —)é/b,) . |:|
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Proposition 7.6. Let a = 2a’, b =20 and 1 < m < v5(2 —a'b). Then
(1) If a'V is odd, then

b +1)/2 b —1)/2
[ ] BPQDKQ >~ )(1’2 (1(_ a/b/)_/a/ 1(_ a/b/L{@/)-

1—a'b’ v —a’ om—2 1-a’t/ b'+a’ om—2
DN ~ x22( am T o5t g T 5 T '
* BPnKy ~ X (MerHm—z ATl F
2m 2 2m 2
m < va(2 —a'b).

b/ 2m—1 b/ _ 2m—1
[ ] BPQLT)nKé\ ~ X0’2 <1_:/_b/ . a 1—a'b! + a_’)? me = V2(2 — CL,b).

om 2 om 2

(2) If ' and b are both even, then m =1 and

b +a'b' +a’ V+a'b'—a’
2 2

b —ad't'—d’ +1 b —a’bt'+d’
BPPK) ~ X*? 2 2 :
1

(3) If d’ is even and V' is odd, then m =1 and

Y +1)/2 b —1)/2
BPQDKQ ~ X1 <1(— a’b’)—/ a' 1(— a’b’)v{ a') :

(4) If ' is odd and V' is even, then m =1 and

b+ 1 b -1
D 1N ~ v0,2
BP2mK2 ~ X <<1_a/b1_a/)/2 (1_a’b/_|_a/)/2) .o

Proposition 7.7. Let a = 2a’, b=2V and 1 < m < 15(2 —a'b). Then

N 1,1 v 2m=1
15?132,”“[(::)(7((1_Cl,b,)/2m__1 _d). 0

This completes the description of the spaces B(K/F), as spaces in S*. From
the above computations it is straightforward to determine, for each central quotient
of each rank two Kac-Moody group, the values of their parameters in R* and then
to use the computations in the preceding sections to determine the cohomology of
its classifying space. In the case of the prime 2, the description of the invariants
associated to each space has not the simple form that it has for the odd primes,
except for the case in which the representation turns out to be in Rep,; ;, when we
always have I'y; = ab/4. The table 11 displays a part of the information which we
have obtained in the above propositions in a more user-friendly way.
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p>2
R€p1,1b
1=%
81 = vp(4 — ab) + vp(b) —m Py K
92 = vp(a) +m
p=2
N
c = O P2m+1K ab
m < 1p(2 - %)
Pom K
Repy _ _ P{K PFK
Ty —aba | ¢~ O ZgOVQb(Z ! éi a=0(4) b=0(4)
PL K
K 2
c:(lvl) — m<1/2(%)
a=b=0(2) b=2(4)
Pon K PEK PPK
c=0 m = va(ab—4) - -
K Pi K Ph K
— _ ab—4 _ ab—4
Rep; 5 c=1 =0 b=1(2) m = v(%%5-) 1 <m=uwy(%57)
T b=2(4) ora=2,b=0(4)
. PR.K
Reps 5 c=0 a=b=1(2) 1 <m < vo( %)
- ora=b=0(4)
TABLE 11.
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