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1. Introduction

In [28], Kitchloo constructed a map f : BX → BK∧p where K is a certain Kac-
Moody group of rank two, X is a rank two mod p finite loop space and f is such
that it induces an isomorphism between even dimensional mod p cohomology groups.
Here B denotes the classifying space functor and (−)∧p denotes the Bousfield-Kan
Fp-completion functor ([8]).

This space X —or rather the triple (X∧p , BX∧p , e) where e : X ' ΩBX— is a
particular example of what is known as a p-compact group. These objects were
introduced by Dwyer and Wilkerson in [15] as the homotopy theoretical framework
to study finite loop spaces and compact Lie groups from a homotopy point of view.
The foundational paper [15] together with its many sequels by Dwyer-Wilkerson and
other authors represent now an active, well established research area which contains
some of the most important recent advances in homotopy theory.

While p-compact groups are nowadays reasonably well understood objects, our
understanding of Kac-Moody groups and their classifying spaces from a homotopy
point of view is far from satisfactory. The work of Kitchloo in [28] started a project
which has also involved Broto, Saumell, Ruiz and the present author and has produced
a series of results ([2], [3], [10]) which show interesting similarities between this theory
and the theory of p-compact groups, as well as non trivial challenging differences.

The goal of this paper is to extend the construction of Kitchloo that we have
recalled above to produce rank-preserving maps BX → BK∧p for a wide family of
p-compact groups X. These maps can be understood as the homotopy analogues to
monomorphisms, in a sense that will be made precise in section 13. We prove:

Theorem 1.1. Let p be a prime and let X be a simply connected p-compact group
with Weyl group WX . Assume that the order of WX is prime to p and WX is generated
by pseudoreflections of order two. Then, there exists a Kac-Moody group K of the
same rank as X and a monomorphism from X to K∧p .

Actually, this paper contains more information than what is contained in this the-
orem. The proof of 1.1 is constructive and contains a concrete description of the
groups K involved, and the properties of these groups are investigated beyond what
is strictly necessary to prove 1.1. Also, the main technical ingredient in the proof
(theorem 8.3) —as well as our review of the classic work of Coxeter and Shephard
([13], [35]) on reflection groups— may have some independent interest. It should be
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pointed out that we provide counterexamples (see section 15) which show that the
hypothesis on WX in theorem 1.1 cannot be relaxed.

Our motivation for the research done in this paper has several aspects. First of all,
this paper can be viewed as a further step in understanding Kac-Moody groups and
their classifying spaces from a homotopy point of view. Secondly, we think that it
is interesting to relate p-compact groups —which are purely “homotopical” objects
which “live at a single prime”— to other “analytical”, “integral” objects as are Kac-
Moody groups. On the other hand, the maps f : BX → BK∧p that we construct
in theorem 1.1 give rise to new families of “homogeneous spaces” which may be
interesting on their own. For instance, the original map of Kitchloo in [28] produced
a fibration which looks like a particular case of the Anick fibration ([6]) —and which
it has been conjectured to be equal to the Anick fibration. In the same way, the maps
in 1.1 yield fibrations which may be related to Anick’s work and could be worth of a
closer investigation.

The author would like to thank PIMS at the University of British Columbia and
the Department of Mathematics of Kyoto University where parts of this work were
completed.

2. Kac-Moody groups

Kac-Moody groups are certain connected topological groups whose construction
and basic properties can be read in [25], [26] and [32]. Simply connected compact Lie
groups are particular examples of Kac-Moody groups, but most Kac-Moody groups
are infinite dimensional. We review here very quickly the basic facts about Kac-
Moody groups that we will need in our study and we refer to the works of Kac and
Peterson for any further study of these objects.

A generalized Cartan matrix is a square matrix A = (aij) with aii = 2, such
that aij are non-positive integers for i 6= j and aij = 0 implies aji = 0. Such
a matrix provides enough data to define a Lie algebra g(A) which is, in general,
infinite-dimensional. Actually, g(A) is finite dimensional if and only if A is positive
definite. These Lie algebras are called Kac-Moody Lie algebras and Kac proved that
they can be integrated in some way that we do not need to discuss here to give rise
to simply connected topological groups G(A) which are just the complex semisimple
Lie group associated to A if the Cartan matrix A is positive definite. G(A) has a
canonical involution and the unitary form K(A) is defined as the fixed point set of this
involution. Along this paper, the words “Kac-Moody group” refer to the topological
group K(A) associated to any generalized Cartan matrix A. The rank of K(A) is the
size of the matrix A. We point out that Kac-Moody groups are connected and simply
connected by construction. The center of a Kac-Moody group is well understood and
we can talk about “adjoint forms” of Kac-Moody groups. Other properties of these
groups will be introduced when needed.

Let us introduce the three families of Kac-Moody groups that we will study in
this paper. They depend on two positive integral parameters a, b. For any n ≥ 2
we denote by K1

n(a, b) the Kac-Moody group of rang n associated to the generalized
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Cartan matrix 
2 −a
−b 2 −1
−1 2 −1

...
2 −1
−1 2 −1
−1 2


The entries of this matrix are equal to 2 at the diagonal and equal to −1 at the lines
immediately above and below the diagonal, except for the first 2×2 block. All other
entries are zero. We assume ab ≥ 4 so that this matrix is never positive definite and
K1

n(a, b) is not a Lie group. The groups K1
2(a, b) were studied thoroughly in [28], [3]

and [2] where they were denoted K(a, b).
For n ≥ 3 we denote by K2

n(a, b) the Kac-Moody group of rang n associated to the
generalized Cartan matrix 

2 −a −1
−b 2 −1
−1 −1 2 −1

−1 2 −1

...
2 −1
−1 2 −1
−1 2


The entries of this matrix are equal to 2 at the diagonal and equal to −1 at the lines
immediately above and below the diagonal, except for the first 3×3 block. All other
entries are zero. This matrix is never positive definite and so K2

n(a, b) is not a Lie
group.

For n ≥ 5, K3
n(a, b) is the Kac-Moody group of rank n associated to the generalized

Cartan matrix 
2 −a −1 −1
−b 2 −1 0
−1 −1 2 −1 0

−1 2 −1 0

...
−1 0 0 0 ··· 0 2


consisting of the Cartan matrix for K2

n−1(a, b) with an extra row and column. Again,
K3

n(a, b) is never a Lie group.

3. Coxeter diagrams and Weyl groups

Each Kac-Moody group K has a maximal torus of finite rank —which is a maximal
connected abelian subgroup of K and all such subgroups are conjugate— and a cor-
responding Weyl group WK which is a Coxeter group. WK is finite if and only if K is
a Lie group. The entries in the Cartan matrix (aij) give immediately a presentation
for WK in the following way. If the rank is n then WK has generators w1, . . . , wn and
relations w2

i = 1 for all i and (wiwj)
mij = 1 where mij = 2, 3, 4, 6, 0 if aijaji = 0, 1, 2, 3

or > 3, respectively. Then, the Coxeter diagram for K is defined as the graph with
vertices 1, . . . , n, the vertex i is joined by an edge to the vertex j if mij > 2 and this
edge has a label mij if mij > 3. If mij = 0 then we use ∞ as a label instead of 0.

The Coxeter diagrams for the groups K1
n, K2

n, K3
n are as follows. The diagram for

K1
n(a, b) is
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u u u u u u· · ·
∞

The diagram for K2
n(a, b) is

u u u u u u· · ·

u��
�

�
m

(n vertices)

m is the order of w1w2. In this diagram, we order the vertices in the way that the
vertices in the top row are 1, 3, 4, . . . , n and the bottom vertex is 2. The diagram for
K3

n(a, b) is

u u u u u u· · ·

u��
�

�
m

The bottom vertex is 2 and the top left vertex is the last one.
The action of the Weyl group WK on the Lie algebra of the maximal torus gives

a well defined representation of WK in GLn(Z). Each generator wj acts on a certain
basis h1, . . . , hn as

wjhi = hi − aijhj.(1)

As an example, the three generators of the Weyl group of K2
3(a, b) as elements in

GL3(Z) are given by

w1 =

−1 b 1
0 1 0
0 0 1

 , w2 =

1 0 0
a −1 1
0 0 1

 , w3 =

1 0 0
0 1 0
1 1 −1

 .

4. Parabolic subgroups and a homotopy decomposition of BK

If K is any Kac-Moody group of rank n and I is a proper subset of {1, . . . , n} we
can consider the parabolic subgroup PI of K (see [25]). If I is empty, then PI is
just the standard maximal torus of K. We write PI(K) if we want to indicate which
Kac-Moody group we are considering.

A fundamental result in the homotopy theory of the classifying spaces of Kac-
Moody groups is the following result which follows from Mitchell’s theory of topolog-
ical Tits buildings ([29], see also [28] and [10]): If the Weyl group W is infinite then
there is a homotopy equivalence

BK ' hocolim
I

BPI .

In this way, we have a kind of inductive way to study the spaces BK. Notice that the
groups PI are not, properly speaking, Kac-Moody groups but many of the concepts
of Kac-Moody groups can be applied as if PI were a Kac-Moody group of rank n with
Weyl group WI generated by the reflections wi, i ∈ I. Also, if WI is infinite, then
the homotopy colimit decomposition above holds true for BPI and BPI is equivalent
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to the homotopy colimit of the spaces BPJ for J  I. Hence, in the homotopy
decomposition of BK given above, we only need to consider the parabolic subgroups
with finite Weyl group, i.e. the parabolic subgroups of K which are Lie groups:

(2) BK ' hocolim
WI finite

BPI .

Moreover ([10]), if WK is infinite, then we have homotopy equivalences

hocolim
I

BWI ' BW, hocolim
I

WI\W ' ∗

and

(3) hocolim
WI finite

BWI ' BW, hocolim
WI finite

WI\W ' ∗.

For a Kac-Moody group K we define its finiteness width fw(K) by fw(K) = r if
there are exactly r maximal parabolic subgroups of K which are compact Lie groups.

Notice that if K = Ki
n(a, b) is a Kac-Moody group belonging to the families that we

introduced in section 2 and ab > 4 then the Weyl group WI of a parabolic subgroup
PI of K is finite if and only if {1, 2} is not a subset of I. Hence, these Kac-Moody
groups have always finiteness width equal to 2.

If fw(K) = 2, then in the homotopy decomposition of BK we only need to consider
two maximal parabolic subgroups PI and PJ and one sees easily that BK is then a
push out

BK ' hocolim {BPI ← BPI∩J → BPJ} .

5. The structure of the maximal parabolic subgroups

To study the structure of the parabolic subgroups of the Kac-Moody groups Ki
n(a, b)

we can use the presentation of Kac-Moody groups that is described in [26]. If K has
rank n, then there are group homomorphisms ϕi : SU(2) → K, i = 1, . . . , n, such
that their images generate K. If D is the unit disc in C and we write

zi(u) = ϕi

(
u (1− ||u||2)1/2

−(1− ||u||2)1/2 ū

)
for u ∈ D, then K has a presentation with generators {zi(u) |u ∈ D, i = 1, . . . , n}
and certain relations (see [25] for the full details). In particular, we want to mention
that the standard maximal torus in K is

TK = {z1(λ1) · · · zn(λn) |λ1, . . . , λn ∈ S1}
and the maximal torus centralizes each SU(2)i = ϕi(SU(2)) = 〈zi(u) |u ∈ D〉 ⊂ K.
Moreover, the action of the maximal torus on each SU(2)i can be explicitly read out
from the Cartan matrix (aij) of K. We have:

zi(λ) zj(u) zi(λ)−1 = zj(λ
aiju) zj(λ

−aij), λ ∈ S1, u ∈ D.

We are interested in the structure of the maximal parabolic subgroups of the Kac-
Moody groups Ki

n(a, b) which are Lie groups. In each case, there are only two such
parabolic subgroups and if we denote by r the complement of {r} in {1, . . . , n}, they
are P1 and P2. It turns out that some of these groups are isomorphic to the groups in
a family of compact Lie groups that was studied by Notbohm and Smith in their work
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on fake Lie groups ([31]) where they described and classified all compact connected
Lie groups locally isomorphic to S1 × SU(n). Let us briefly review the results of [31]
which we will use here.

For each n, s, k ≥ 1 with s dividing n, Notbohm-Smith define a Lie group FUs,k(n)
as a quotient

FUs,k(n) = (S1 × SU(n))
/
Cs

where Cs is the central cyclic subgroup generated by

(ω−k, ω · id), ω = exp(2πi/s).

These Lie groups have the following properties ([31]):

i) FUs,k(n) is a compact connected Lie group locally isomorphic to S1 × SU(n)
and any compact connected Lie group locally isomorphic to S1 × SU(n) is
isomorphic to some FUs,k(n), for some integers s, k.

ii) π1(FUs,k(n)) ∼= Z⊕ Z/rZ with r = (s, k).
iii) FUs,k(n) ∼= FUs′,k′(n) if and only if s = s′, (s, k) = (s′, k′) and k ≡ ±k′

(mod s).
iv) FU1,k(n) ∼= S1 × SU(n), FUn,1(n) ∼= U(n).
v) These groups FUs,k(n) are determined by the representation

σs,k : Σn −→ GLn(Z)

given by the action of the Weyl group on the maximal torus. These represen-
tations are described in [31].

The structure of the parabolic subgroups of K1
2(a, b) can be found in [2]. For the

other groups introduced in section 2, we have:

Proposition 5.1. P2(K
i
n(a, b)) ∼= FUs,k(n) for i = 2, 3 and P1(K

1
n(a, b)) ∼= FUs,k(n),

where the integers s and k are determined in the following way: l = (n, r), t = r/l,
s = n/l, kt ≡ 1 (mod s) and

r =

{
b + 2− n if i = 2, 3

a if i = 1.

Proof. To simplify the notation, let us write P2 = P2(K
i
n(a, b)) for i = 2, 3 and

P1 = P1(K
1
n(a, b)).

Using the presentation of K discussed at the beginning of this section, we have
that P2 is generated by z2(λ) for λ ∈ S1 and zi(u) for u ∈ D and i 6= 2. Hence,
P2 is a semidirect product S1 n SU(n) and, as said, the action of S1 on SU(n) in
this semidirect product is given by the entries in the Cartan matrix. Explicitly, an
elementary computation shows that P2 = S1 n SU(n) with action

Aλ = MλAM−1
λ , A ∈ SU(n), λ ∈ S1

where Mλ is a diagonal matrix with diagonal entries λ−a, 1, λ, . . . , λ. A similar analysis
applies to P1 and we obtain that P1 can be described in exactly the same way as P2,
with Mλ now equal to the diagonal matrix with diagonal entries λ−a, 1, . . . , 1.

We define a homomorphism

φ : S1 × SU(n) −→ S1 n SU(n)
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φ(λ, A) = (λs, λtMλsA).

Then, the choices of s and t ensure that the matrix λtMλs has determinant one. Also,
it is straightforward to check that φ is a homomorphism and is surjective. The kernel
of φ is {(λ, λ−t · id) |λs = 1} and this coincides with the subgroup Cs in the definition
of FUs,k(n) above. �

In particular, in the rank three case there are only two possibilities for the groups
FUs,k(3) and we have

P1(K
2
3(a, b)) ∼=

{
S1 × SU(3) if a ≡ 1 (3)

U(3) if a ≡ 0, 2 (3)

Since a and b can be interchanged in K2
n(a, b) we have also a description of the

parabolic P1(K
2
n(a, b)). However, P2(K

1
n(a, b)) and P1(K

3
n(a, b)) do not admit a de-

scription in this way. These groups have the form S1n (SU(2)×SU(n− 1)) and the
action of S1 is such that S1 and SU(2) generate a group U(2) while S1 and SU(n−1)
generate a fake Fs,k(n − 1) with s, k depending on n and a (resp. b) like before. On
the other side, the (non-maximal) parabolic subgroup P1(K

2
n(a, b))∩P2(K

2
n(a, b)) has

an easier description:

Proposition 5.2. P1(K
2
n(a, b)) ∩ P2(K

2
n(a, b)) ∼= S1 × U(n− 1).

Proof. From the presentation of K described above, we see that the parabolic in the
statement is a semidirect product (S1 × S1)n SU(n− 1) with action given by

Aλ = NλAN−1
λ , A ∈ SU(n− 1), λ ∈ S1 × S1

where Nλ is the diagonal matrix with diagonal entries λ−1, 1, . . . , 1. Then one easily
checks that

φ : S1 × U(n− 1) −→ (S1 × S1)n SU(n− 1)

φ(λ, A) = (λ, λ−1 det(A), Ndet AA)

is an isomorphism. �

6. Reflections and pseudoreflections

If F is a commutative domain, an element φ ∈ GLn(F ) is a pseudoreflection if φ
has finite order and φ− I has rank ≤ 1.

Pseudoreflections are important in invariant theory because if F is a field and W
is a finite subgroup of GLn(F ), then a necessary condition for the ring of invariants
F [t1, . . . , tn]W to be a polynomial algebra is that W is generated by pseudoreflections.
Moreover, if F has characteristic zero or prime to the order of W , then this condition
is also sufficient.

Pseudoreflections are important in the theory of Kac-Moody groups because equa-
tion (1) shows that the standard generators of the Weyl group of a Kac-Moody group
are pseudoreflections (of order two) in GLn(Z).

Pseudoreflections are important in homotopy theory because the Weyl group of a
p-compact group of rank n is a pseudoreflection group in GLn(Zp). (Zp is the ring of
p-adic integers.) We will explain this in more detail later.
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The concept of a pseudoreflection is an obvious generalization of the classic concept
of an orthogonal or unitary reflection. Let V be an Euclidean (unitary) space, i.e. a
finite dimensional vector space over R (C) with a positive definite quadratic (Hermitic)
form. Then, a reflection on V is a linear map φ : V → V such that there exists a
vector v ∈ V and a root of unity θ such that φ is given by

φ(x) = x− (1− θ)
x · v
v · v

v.(4)

In the Euclidean case the order of a (non trivial) reflection is always two, while in
the unitary case a reflection can have order equal to any positive integer. Is is clear
that a reflection is an orthogonal (unitary) transformation and it is also clear that
a reflection is also a pseudoreflection. Conversely, if φ is a pseudoreflection on V ,
then we can always find a positive definite form on V such that φ leaves this form
invariant and so φ is a reflection with respect to this form. More in general, if W is a
finite group generated by pseudoreflections in V then, by averaging over W , we can
find a positive definite form invariant by W and so W is a group generated by true
reflections. In this sense, over a Euclidean or unitary space V , the concepts “finite
group generated by pseudoreflections” and “finite group generated by reflections” are
equivalent. However, this is no longer true if we consider infinite groups, like the
Weyl groups of Kac-Moody groups which are not Lie groups.

A square matrix is called symmetrizable if there is an invertible diagonal matrix D
and a symmetric matrix B such that A = DB. By comparing (1) and (4) we observe
that a necessary condition for the standard generators of the Weyl group of a Kac-
Moody group K to be reflections is that the Cartan matrix of K is symmetrizable.
In particular, if a 6= b then the Weyl groups of Ki

n(a, b), i = 2, 3, are not reflection
groups, even if they certainly are pseudoreflection groups, because one can easily
check that the Cartan matrices of these Kac-Moody groups are symmetrizable if and
only if a = b.

7. Finite unitary reflection groups and p-compact groups

The irreducible finite unitary reflection groups were classified by Shephard and
Todd in 1954 ([36], see also [12], [11], [35], [13]). Their list contains three infinite
families of groups and 34 more groups: 19 groups in dimension 2, 5 groups in dimen-
sion 3, 5 groups in dimension 4, one group in each dimension 5, 7 and 8, and two
groups in dimension 6. If necessary, we will denote by Ri the finite unitary reflection
group which appears as entry i in the list of Shephard and Todd. Besides the clas-
sification theorem, the paper [36] contains a large amount of information about all
these groups.

In the list of Shephard and Todd of finite unitary reflection groups we can also find
the classic real reflection groups. Since a real reflection must have order two, the real
reflection groups are generated by reflections of order two. But this property does
not characterize the real reflection groups among the unitary reflection groups, for
there are some finite unitary reflection groups which are generated by reflections of
order two but are not real. They are relevant for the purposes of the present paper
and were studied by Coxeter in [13].
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To simplify the notation, let us introduce the following terminology. A group
of type NCOT will be a finite group in GLn(C) for any n which is generated by
reflections of order two and which does not satisfy the crystallographic condition.
Two such groups which are conjugate in GLn(C) will be considered as equivalent.
The irreducible groups of type NCOT are (see [13]):

(1) The two real non-crystallographic groups usually denoted I4, I5. I4 = R23 of
order 120 is the symmetry group of the icosahedron, while I5 = R30 of order
14,400 is the symmetry group of the the 120-cell in dimension 4.

(2) The groups G(m, m, n) in dimension n > 2 with m > 2, of order mn−1n!, and
the groups G(m, m, 2) in dimension 2 for m 6= 2, 3, 4, 6, of order 2m, which
are a particular case of the family R2 in the list of Shephard-Todd.

(3) R24 of order 336 and R27 of order 2,160, both in dimension 3.
(4) R29 of order 7680 in dimension 4, R33 of order 51,840 in dimension 5 and R34

of order 39,191,040 in dimension 6.

We will say more about these groups in a following section of this paper.
Shephard ([35]) extended to unitary reflection groups the Coxeter graph of a real

reflection group. The Shephard graph of a unitary reflection group contains:

(1) A node for each generating reflection, with a label k if the reflection has order
k > 2.

(2) An edge between any two non commuting reflections, with a label m if the
two reflections generate a group of order 2m > 6.

(3) If the graph contains a circuit, this circuit has a certain label l (see [35] for
details).

Coxeter ([13]) changed the way to label the circuits in the Shephard graph. Anyway,
the only labeled circuit that we will use is a triangle with a label l and in this case
the meaning of l is as follows: If the nodes of the triangle correspond to reflections
R1, R2, R3 then l is the order of R1R2R3R2.

Then, Shephard shows ([35]) that the graph contains enough information to uni-
quely determine the reflecting hyperplanes and so the graph determines the reflection
group up to equivalence (it is not, however, always possible to find a set of reflections
corresponding to a given graph).

Clark and Ewing studied ([11], see also [7]) the character fields and Schur indices
of each group in the Shephard-Todd list and in this way we know, for each group Ri

in the list, the smallest number field where we can realize the representation of Ri.
This is significant because it allows a classification of non-modular pseudoreflection
groups in GLn(Zp) and GLn(Fp):

Proposition 7.1. ([17]) Let p be an odd prime. Then for any positive integers n and
m with m prime to p the following sets are in bijective correspondence:

(1) Conjugacy classes of subgroups W ⊂ GLn(Fp) such that W is generated by
pseudoreflections and |W | = m.

(2) Conjugacy classes of subgroups W ⊂ GLn(Zp) such that W is generated by
pseudoreflections and |W | = m.
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(3) Conjugacy classes of subgroups W ⊂ GLn(C) such that W is generated by
pseudoreflections, |W | = m and the character field of W can be embedded
in Qp. �

The investigation of the homotopy properties of compact connected Lie groups
and their classifying spaces eventually led to the concept of p-compact group (Dwyer
and Wilkerson, [15]). Recall that a loop space X is a triple (X, BX, e) in which
X is a space, BX is a connected pointed space, and e : X → ΩBX is a homotopy
equivalence. Given a prime p, a p-compact group is an Fp-complete loop space X with
finite mod p cohomology and such that π0X is a finite p-group. In particular, the
p-completion of a compact connected Lie group is an example of a p-compact group,
but there are examples of exotic p-compact groups, i.e. p-compact groups which do
not come from a compact Lie group. Is is remarkable that the complete classification
of all p-compact groups has been obtained recently ([4] for p odd and [5] for p = 2)
as a culmination of a long series of very relevant investigations in homotopy theory.

For a p-compact group X it is possible to define the concepts of maximal torus
TX and Weyl group WX . The action of WX on H2(BTX ;Zp) gives a representation
WX ⊂ GLn(Zp) and it turns out that WX is a pseudoreflection group. In this paper,
we do not need to get involved with the deepest theory of p-compact groups, because
we will only deal with the simplest case, namely the non-modular p-compact groups,
also called Clark-Ewing spaces ([11]). We briefly discuss here the construction of
these spaces.

Let p be an odd prime and let W be a unitary reflection group (i.e., W = Ri

for some i) of order prime to p, which can be realized in GLn(Zp). Let T be the
Fp-completion of a torus of rank n. Then, W acts on BT and the Clark-Ewing space
associated to p and W is defined as

BX(W, p) = (BT ×W EW )∧p .

This space (or, rather, the triple (X, BX, e)) is a p-compact group with maximal
torus T and Weyl group W . The mod p cohomology of BX(W, p) coincides with the
ring of invariants H∗(BT ;Fp)

W which is a polynomial algebra Fp[x1, . . . , xn] because
W is generated by pseudoreflections and W has order prime to p. We refer to [11] for
the full details of this construction and to [17] for a deeper study of these spaces.

8. The p-completed Weyl group

Let K be any Kac-Moody group with infinite Weyl group W ⊂ GLn(Z) and let
p be a prime. For any n > 0 we can consider the mod pi Weyl group of K, Wpn ⊂
GLn(Z/pnZ) defined as the reduction mod pi of W . Using the tower of finite groups
{Wpi}i>0 we can define the p-completed Weyl group of K as the inverse limit

W∧
p = lim

←
{Wpi}i>0 ⊂ GLn(Zp).

Example 8.1. If K = K1
2(a, b) then both Wp and W∧

p can be explicitly computed. See
[28] and [2] for full details. Since we are assuming ab > 4, W is an infinite dihedral
group and Wp is a finite dihedral group of order 2k. If we assume, for simplicity, that
p is odd, then k is given as follows:
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(1) k = p if p|ab− 4;
(2) k = 2p if p divides a or b but not both.
(3) k is the multiplicative order of the roots of X2 − (ab − 2)X + 1 in Fp2 in all

other cases.

From this we can also deduce the structure of W∧
p (see [3]): W∧

p is an extension of
Z/2Z by (W∧

p )+ = W∧
p ∩ SLnZp and

(W∧
p )+ ∼= Zp × Z/lZ

where l is given as follows:

(1) l = 1 if p|ab− 4;
(2) l = 2 if p divides a or b but not both.
(3) l is the multiplicative order of the roots of X2 − (ab − 2)X + 1 in Fp2 in all

other cases. �

We observe that W ⊂ W∧
p and we see that in general W∧

p may be larger than W .
The homotopy theoretical relevance of the group W∧

p is due to theorem 8.2 below.
Let us introduce first some notation. Let T be the standard maximal torus of K and
let us denote by Tp∞ and Tpi the p-torsion subgroup of T and the subgroup of T of
pi-th roots of unity, respectively. We denote by

Map1(BTp∞ , BK∧p )

the space of all maps f : BTp∞ → BK∧p such that, for all i, the restriction of f to BTpi

is homotopic to some map Bφi where φi is an injective homomorphism φi : Tpi → K.
We denote by

[BTp∞ , BK∧p ]1

the set of components of Map1(BTp∞ , BK∧p ). We extend these notations to BTpi

and we write Map1(BTpi , BK∧p ) and Map1(BTpi , BK∧p ) whose meaning should now
be obvious.

The linear group GLn(Z/piZ) acts on BTpi and the linear group GLn(Zp) acts on
BTp∞ . There is a map

Φ : GLn(Zp)→ [BTp∞ , BK∧p ]1

which sends a matrix M to the map B(i ◦M) where i : Tp∞ → K is the standard
inclusion.

Now we can state the two main results of this section, theorems 8.2 and 8.3, which
I learned from N. Kitchloo.

Theorem 8.2. Φ factors through a bijection:

W∧
p

∖
GLn(Zp)

∼=−→ [BTp∞ , BK∧p ]1.

This theorem is a corollary of a more general result which gives information about
the homotopy type of the spaces Map1(BTp∞ , BK∧p ). Let us consider the finite dis-
crete orbit spaces

Di = Wpi

∖
GLn(Z/piZ),

i > 0, with the obvious maps D1 ← D2 ← D3 ← · · ·
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Theorem 8.3. There is an inverse tower of pointed connected finite complexes

Y1 ← Y2 ← Y3 ← · · ·

such that there is a homotopy equivalence

Map1(BTp∞ , BK∧p ) ' BT∧p × holim
i
{(Yi)

∧
p ×Di}.

This equivalence is compatible with the quotient map GLn(Zp)→ W∧
p

∖
GLn(Zp).

Proof of 8.2. The homotopy equivalence in theorem 8.3 reduces the proof of 8.2 to a
computation of π0 of a homotopy limit. We have a surjection

[BTp∞ , BK∧p ]1 = π0 Map1(BTp∞ , BK∧p )→ lim←−
i

{Di}

whose fibres are in one-to-one correspondence to the set lim←−
1

i
{π1((Yi)

∧
p )}. The spaces

Yi may well be Fp-bad in the sense of Bousfield-Kan ([8]) but nevertheless these
obstruction sets are trivial because of the following argument. Goerss proved ([19])
that for spaces of finite type the (Bousfield-Kan) p-completion has the same weak
homotopy type as the Sullivan p-profinite completion ([40]). Now, the homotopy
groups of the p-profinite completion of a space are pro-p-groups ([40]) and it is well
known that lim←−

1 vanishes on towers of pro-p-groups. Hence, the obstruction sets are
trivial and the map above is a bijection. Moreover, an elementary argument using
that {Wpi} is a tower of epimorphisms, shows that lim←−{Di} = W∧

p

∖
GLn(Zp). The

information contained in the last sentence of 8.3 completes the proof. �

The proof of 8.3 relies on an important result of Broto and Kitchloo which extends
to Kac-Moody groups some properties that were known for compact Lie groups. In
[10] Broto-Kitchloo define a certain class G of topological groups. This class contains
all (a) Kac-Moody groups; (b) parabolic subgroups of Kac-Moody groups; (c) nor-
malizers of maximal tori in (a) and (b); (c) the adjoint forms of the groups in (a),
(b), (c); (d) Weyl groups of Kac-Moody groups. Then,

Theorem 8.4 (Broto-Kitchloo). If π is a finite p-group then

a) For any K ∈ G, there is a homotopy equivalence∐
ρ∈Rep(π,K)

(BCK(ρ))∧p
'−→ Map(Bπ,BK∧p )

where CK(ρ) denotes the centralizer in K of the image of ρ. In particular,
[Bπ,BK∧p ] ∼= Rep(π, K).

b) If {PI} denotes the poset of parabolic subgroups of a Kac-Moody group K, then
there is a homotopy equivalence(

hocolim
WI finite

Map(Bπ,BPI
∧
p )

)∧
p

'−→ Map(Bπ,BK∧p ).

Part (a) of this result is theorem C in [10]. Part (b) is a consequence of 4.2 in [9],
using the results of appendix 7 in [10]. �
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Proof of 8.3. Let I be any index such that WI is finite. By 8.4 applied to the Lie group
PI we know that any map BTpi → BPI

∧
p is homotopic to Bρ for some homomorphism

ρ : Tpi → PI . It is a well known property of compact connected Lie groups that if
ρ injective and i is large enough, then ρ factorizes through the maximal torus T
and has centralizer equal to T . Hence, each component of Map1(BTpi , BPI

∧
p ) for

large i is BT∧p . Also, the set of components of Map1(BTpi , BPI
∧
p ) is indexed by the

automorphisms of Tpi modulo the action of the Weyl group of PI which is WI . We
have

Map1(BTpi , BPI
∧
p ) ' BT∧p ×

(
WI

∖
GLn(Z/piZ)

)
.

Since we only consider indices I such thatWI is finite, we can assume that i is large
enough such that the composition WI ↪→ W � Wpi is injective for all I. Then, a
choice of a set theoretical section of GLn(Z/piZ)→ Wpi\GLn(Z/piZ) gives a bijection

WI

∖
GLn(Z/piZ) ∼= (WI

∖
Wpi)× (Wpi

∖
GLn(Z/piZ)) = (WI

∖
Wpi)×Di

compatible with the maps corresponding to inclusions I ⊂ J . We obtain

hocolim
I
{WI

∖
GLn(Z/piZ)} = hocolim

I
{WI

∖
Wpi} ×Di.

Then we define
Yi = hocolim

I
{WI

∖
Wpi},

which is a finite complex. It is possible to give a description of these spaces Yi as
follows.

Lemma 8.5. Let Ni be the kernel of the projection W → Wpi. Assume that i is large
enough so that WI ↪→ Wpi for all finite WI . Then Yi ' BNi. In particular, the spaces
Yi are connected.

Proof. Let us first introduce some notation. Let I be the category of indices I with
WI finite, with a single map I → J if and only if I ⊂ J . For any discrete group G,
let us denote by C(G) the category with a single object with endomorphism monoid
equal to G. Let F be the functor from I to CAT which sends the object I ∈ I to
the category C(WI), and the map I ↪→ J to the functor induced by the inclusion
WI ⊂ WJ . Let D = I

∫
F be the Grothendieck construction as in [41]. In this

particular instance, the category I
∫

F is quite simple: its objects are the same as
the objects of I and the morphisms are given by

Map(I, J) =

{
∅ if I 6⊂ J

WJ if WI ⊂ WJ .

If Y is any functor from D to spaces, we can use proposition 0.2 in [37] to compute
its homotopy colimit:

hocolim
D

Y ' hocolim
I

hocolim
C(WI)

Y (I).

Let Z be the functor from C(Ni) × D to spaces which sends each object to the
discrete space W and the morphism (h,w), h ∈ Ni, w ∈ WJ , to the map g 7→ wgh−1,
g ∈ W . Let us compute now the homotopy colimit of Z in two different ways:

hocolim
C(Ni)×D

Z = hocolim
C(Ni)

hocolim
D

Z ' hocolim
C(Ni)

hocolim
I

(WI\W ) ' hocolim
C(Ni)

∗ ' BNi
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Here we have used the colimit decomposition of BW for W infinite as seen in formula
3 of section 4. On the other side,

hocolim
C(Ni)×D

Z = hocolim
D

hocolim
C(Ni)

Z ' hocolim
D

(W/Ni) ' hocolim
I

(WI\Wpi) ' Yi.

�

Let us continue now with the proof of 8.3. By 8.4 we have

Map1(BTpi , BK∧p ) '(hocolim
I
{Map1(BTpi , BPI

∧
p )})∧p

'BT∧p × (hocolim
I
{WI\GLn(Z/piZ)})∧p

'BT∧p × ((Yi)
∧
p ×Di).

Finally, we notice that BTp∞ = hocolimi{BTpi} and we can complete the proof as
follows:

Map1(BTp∞ , BK∧p ) = holim
i
{Map1(BTpi , BK∧p )}

'BT∧p × (holim
i
{(Yi)

∧
p ×Di}).

To check that the last sentence in the theorem is true is not difficult if we follow
the behavior of GLn(Zp) along each step of the proof. �

9. The groups G(m, m, n)

For n, m ≥ 2, G(m, m, n) is defined as the group of linear transformations of Cn

given by
xi 7→ θrixσ(i) i = 1, . . . , n,

where x1, . . . , xn is the standard basis of Cn, σ ∈ Σn is any permutation of {1, . . . , n},
θ = exp(2πi/m) and the integers ri satisfy r1 + . . . + rn ≡ 0 mod m. As an abstract
group, it is isomorphic to a semidirect product Σn n (Z/mZ)n−1. If n = 2 then
G(m, m, 2) is a dihedral group. Clearly, G(m, m, n) does not depend on the choice of
θ, which can be any primitive m-th root of unity.

G(m, m, n) is generated by unitary reflections of order two with respect to the
hyperplanes

xi − xi−1 = 0, i = 2, . . . , n

x1 − θx2 = 0,

and so it is a finite unitary reflection group. Its Shephard graph with respect to these
generating reflections is as follows:

u u u u u u· · ·

u��
�

�
m 3

(n nodes)

Assume now n > 2. The group G(m, m, n) admits another description which will
be more useful to us. Let c = −1− θ−1 and consider the pseudoreflections w1, . . . , wn

on Cn given by
wj(xi) = xi − aijxj, i, j = 1, . . . , n
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where (aij) is the matrix 
2 −c −1
−c̄ 2 −1
−1 −1 2 −1

−1 2 −1

...
2 −1
−1 2 −1
−1 2


To prove that w1, . . . , wn generate a group which is equivalent to G(m, m, n) we could
prove that w1, . . . , wn leave invariant a positive definite Hermitic form, show that the
graph associated to w1, . . . , wn is the same as the Shephard graph of G(m, m, n)
discussed above and then use the result of Shephard that the graph determines the
group. Or we can provide an explicit equivalence between the two representations, as
follows. Let us consider the basis v1, . . . , vn of Cn given by

v1 = (1,−1, 0, . . . , 0),

v2 = (θ,−1, 0, . . . , 0),

vi = (θ,−1, θ − 1, . . . , θ − 1, 0, . . . , 0), i = 3, . . . , n, (n− i zeroes).

It is easy to check that these vectors have the following properties:

(1) v2 = w1(v1), vi = wi(vi−1) for i = 3 . . . , n.
(2) wi(v1) = v1 for i 6= 1, 2.
(3) w2(v1) = θ−1v2.
(4) w1(vj) = vj = w2(vj) for j 6= 1, 2.
(5) wi(vj) = vj for i 6= 1, 2, j 6= i, i− 1.

It follows that, with respect to the basis v1, . . . , vn, the pseudoreflections w1, . . . , wn

behave as the generating reflections of G(m, m, n).
If n > 2 then the character field for G(m, m, n) is Q(θ) and this group can be

realized over the p-adic integers if and only if Zp contains an m-th root of unity. We
have thus a Clark-Ewing p-compact group BX(G(m, m, n), p) for any p > n > 2
and any m|p − 1. The restriction p > n is necessary because the Clark-Ewing space
BX(G, p) is only defined when p does not divide the order of W which in this case
is equal to mn−1n!. Actually, if p < n (and m|p − 1), there is also a p-compact
group with Weyl group equal to G(m, m, n), but it has to be constructed by different
methods (see [30]).

The case n = 2 is special because the character field is Q(θ + θ−1) ([11]) and the
Clark-Ewing p-compact group BX(G(m,m, 2), p) exists for any m and any odd p ≡
±1 mod m ([11]). When n = 2 we can choose the basis of C2 given by v1 = (1,−1),
v2 = (1 + θ,−1− θ̄) and the generating reflections become

w1 =

(
−1 c
0 1

)
, w2 =

(
1 0
−1 −1

)
with c = −2− θ − θ̄.
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10. The remaining irreducible groups of type NCOT

We use the classic notation τ = (1 +
√

5)/2, ω = (−1 + i
√

3)/2. Let us discuss the
five non-real groups first. In dimension 3 we have the groups R24 and R27 of orders
336 and 2.160, respectively. According to Coxeter ([13]), these groups are generated
by three pseudoreflections of order two in C3 given by the matrices

w1 =

−1 c̄ 1
0 1 0
0 0 1

 , w2 =

1 0 0
c −1 1
0 0 1

 , w3 =

1 0 0
0 1 0
1 1 −1


where c is the complex number

R24 : c = (−1 + i
√

7)/2

R27 : c = −1− τω2

Is is easy to check that the Shephard graphs for these groups are as follows:

R24:

u u
u��

�
�

4 4 R27:

u u
u��

�
�

4 5

In the case of R24 the above representation is defined over Zp if and only if −7 is
a quadratic residue mod p and this happens if and only if p ≡ 1, 2, 4 mod 7. In the
case of R27 we notice that c + c̄ = −2 + τ and so the above representation is defined
over Zp if and only if both 5 and −3 are quadratic residues mod p. This happens if
and only if p ≡ 1, 4 mod 15. This coincides with the results of [11] about existence
of Clark-Ewing p-compact groups associated to the finite reflection groups R24 and
R27: BX(R24, p) exists for p ≡ 1, 2, 4 mod 7 and BX(R27, p) exists for p ≡ 1, 4 mod
15.

The Shephard graphs for the groups R29, R33 and R34 have the form of a triangle
with “tails”:

R29:

u u u
u��

�
�

4 R33:

u u u u
u��

�
�

3

R34:

u u u u u
u��

�
�

3

and the representations can be given as in the case of dimension three, with some
appropriate values for the complex parameter c (see [13]):

R29 : c = i

R33, R34 : c = ω.

i is a p-adic integer if and only if p ≡ 1 mod 4 and ω ∈ Zp if and only if p ≡ 1 mod 3.
Hence, we know for which primes p the given representation of these reflection groups



p-COMPACT GROUPS & KAC-MOODY GROUPS 17

is defined over Zp (this is in accordance to the results of [11]). For these primes, we
can construct the corresponding Clark-Ewing p-compact groups, except that in the
case of R29 we have to exclude the prime 5 because it divides the order of R29 and
in the case of R34 we have to exclude the prime 7 for the same reason. Thus, the
Clark-Ewing space BX(R29, p) exists for p ≡ 1 mod 4, p 6= 5, the Clark-Ewing space
BX(R33, p) exists for p ≡ 1 mod 3 and the Clark-Ewing space BX(R34, p) exists for
p ≡ 1 mod 3, p 6= 7. Actually, there is a 5-compact group with Weyl group R29 and
a 7-compact group with Weyl group R34 (see [1]), but they cannot be constructed
by the Clark-Ewing method as explained above and will not be used in this paper,
except for the proof of 15.1.

It only remains to discuss the two real reflection groups R23 and R30. The reader
can find an explicit description of the generating reflections of these groups in page
71 of the book [20]. R30 is the symmetry group of the regular polytope in dimension
four known as the 120-cell and it can be generated by orthogonal reflections with
respect to the hyperplanes

(τ + 1)x1 + x2 − τx3 = 0

−(τ + 1)x1 + x2 + τx3 = 0

τx1 − (τ + 1)x2 + x3 = 0

−τx1 − (τ + 1)x3 + x4 = 0

R23 is the symmetry group of the icosahedron and can be generated by orthogonal
reflections with respect to the first three hyperplanes above. In both cases, if we take
a basis consisting of unitary normal vectors to the reflecting hyperplanes, we obtain
the following generators for R23 and R30:

R23 =
〈(
−1 τ 0
0 1 0
0 0 1

)
,
(

1 0 0
τ −1 1
0 0 1

)
,
(

1 0 0
0 1 0
0 1 −1

)〉
,

R30 =

〈(
−1 τ 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
τ −1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

)〉
.

We see that these representations can be realized over Zp if and only if τ ∈ Zp

and this happens if and only if p ≡ ±1 mod 5. Hence, for these primes we have the
Clark-Ewing spaces BX(R23, p) and BX(R30, p).

For each group Ri in this section, we see that the inclusion Ri ↪→ GLn(Zp) depends

on some choice of elements in Zp like
√
−7,
√

5 or
√
−1. These choices are not unique

but different choices produce conjugate groups inside GLn(Zp), but not necessarily
conjugate representations. This can be checked directly or using proposition 7.1.

11. Cohomology of BK

Let K be a Kac-Moody group with standard maximal torus T and Weyl group W .
Recall from section 4 that fw(K) is the number of maximal parabolic subgroups of
K which are compact Lie groups.

Let us fix a prime p. In this section we want to compute H∗(BK;Fp) under some
suitable hypothesis. For simplicity, we write H∗(−) = H∗(−;Fp) throughout the
remainder of this paper.
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We say that K is non-modular if the order of the mod p Weyl group Wp of K is
prime to p. Notice that the action of W on T gives an action of the finite group
Wp ⊂ GLn(Fp) on H∗(BT ). As usual, we denote by H∗(BT )Wp the subalgebra of
invariant elements. Then,

Theorem 11.1. Let p be a prime and let K be a non-modular Kac-Moody group
which is a product of Kac-Moody groups with fw(K) = 2. Then,

(1) Heven(K) is a polynomial algebra.
(2) BT → BK induces an isomorphism Heven(BK) ∼= H∗(BT )Wp.
(3) H∗(BK) is a finitely generated free H∗(BT )Wp-module.

Proof. Clearly, it is enough to prove the theorem for a single Kac-Moody group K with
fw(K) = 2. First of all, Wp is a subgroup of GLn(Fp) generated by pseudoreflections
of order two and the non-modularity hypothesis implies that p is odd and H∗(BT )Wp

is a polynomial algebra. Hence, (1) follows from (2). To simplify the notation, let us
write S = H∗(BT ), I = H∗(BT )Wp .

Since fw(K) = 2 the colimit decomposition of section 4 reduces to a homotopy
push out:

(5) BK ' hocolim {BPI ← BPI∩J → BPJ}

which yields a Mayer-Vietoris exact sequence in cohomology. In this push out the
groups PI , PJ are compact connected Lie groups with Weyl groups WI , WJ respec-
tively.

Let L denote any of the indices I, J, I∩J . The finite group WL satisfies the following
properties:

(a) WL is a finite group of order prime to p.
(b) SWL is a polynomial algebra SWL ' Fp[x

L
1 , . . . , xL

n ].
(c) Fp ⊗I SWL = (Fp ⊗I S)WL .
(d) SWL is a finitely generated free I-module.

(e) H∗(BPL)
∼=−−→ SWL .

(a) follows from the well known fact that the kernel of the mod p reduction ho-
momorphism GLn(Zp) → GLn(Fp) is torsion free for all odd primes p. Hence, the
homomorphism WL ↪→ W � Wp is a monomorphism.

(b) follows from the theory of pseudoreflection groups: WL is a finite pseudoreflec-
tion group of order prime to p and so its ring of (modular) invariants is a polynomial
algebra.

To obtain (c) we just need to use the averaging homomorphism A : S → SWL

defined by A(x) = (1/|WL|)Σg∈WL
gx which is I-linear.

(d) is also well known (see, for instance, [38] 6.7.11).
(e) is a well known consequence of the existence of the transfer (see [18]).
The Mayer-Vietoris cohomology exact sequence induced by the push out (5) reads:

0→ Heven(BK)→ SWI ⊕ SWJ → SWI∩J → Hodd(BK)→ 0.

Notice that this is an exact sequence of I-modules. Part (2) of the theorem follows
immediately because WI and WJ generate W .
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Since SWI∩J is a finitely generated I-module by (d), so is Hodd(BK). It re-
mains to prove that Hodd(BK) is a free I-module. By [38] 6.1.1, it is enough to
prove that TorI1 (Fp, H

odd(BK)) = 0. By [38] 6.7.11, the above exact sequence is a
free resolution of Hodd(BK) as an I-module, and thus it can be used to compute
TorI(−, Hodd(BK)). We obtain

TorI1 (Fp, H
odd(BK)) =

Ker
(
Fp ⊗I (SWI ⊕ SWJ )→ Fp ⊗I SWI∩J

)
Im

(
Fp ⊗I I → Fp ⊗I (SWI ⊕ SWJ )

) .

Then, Fp ⊗I I → Fp ⊗I (SWI ⊕ SWJ ) is a monomorphism and property (c) above
shows that

Ker
(
Fp ⊗I (SWI ⊕ SWJ )→ Fp ⊗I SWI∩J

)
= (Fp ⊗I S)Wp .

The fact that the order of Wp is prime to p implies ([38], 7.5.2) that the Wp repre-
sentation Fp ⊗I S is the regular representation of Wp. Hence (Fp ⊗I S)W = Fp and
TorI1 (Fp, H

odd) = 0. Part (3) of the theorem follows. �

Therefore, the mod p cohomology of BK as a H∗(BT )Wp-module is well understood,
under the hypothesis of non-modularity and finiteness width equal to two. To obtain
the degrees of a set of free H∗(BT )Wp-generators of H∗(BK) we just need to perform
a Poincaré series computation. For a graded Fp-vector space V , let us denote its
Poincaré series as

P(V ) =
∞∑
i=0

(dim(V i)) zi.

The Mayer-Vietoris exact sequence that we have used in the proof of the theorem
above yields the identity

P(Σ−1Hodd(BK)) = P(I) + P(SWI∩J )− P(SWI )− P(SWJ )

and we get that if {ei} is a set of free generators of Hodd(BK) over I, and each ei

has degree |ei|, then∑
z|ei| = z

[
1 +
P(SWI∩J )− P(SWI )− P(SWJ )

P(I)

]
.

Example 11.2. Let us consider the Kac-Moody groups K2
n(a, b) with parameters a,

b such that the mod p Weyl group is equal to G(m, m, n). Then, the degrees of the
generators of the rings of invariants I, SWI , SWJ , SWI∩J are well known:

I has generators in degrees 2m, 4m, . . . , 2(n− 1)m, 2n

SWI and SWJ have generators in degrees 2, 4, . . . , 2n

SWI∩J has generators in degrees 2, 2, 4, . . . , 2n− 2.

Then,

P(Hodd(BK))/P(I) = z
[
qm−1(z

2) qm−1(z
4) · · · qm−1(z

2(n−1))
(
qn−1(z

2)− 2
)

+ 1
]
,

where qs(z) = 1 + z + z2 + · · · + zs. We see that, in general, the rank of H∗(BK)
over H∗(BT )Wp is very large. The problem of completely determining the algebraic
structure of H∗(BK2

n(a, b)) seems to be approachable only when and n = 2 and indeed
this structure was elucidated in [2].
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12. Mod p Weyl groups

In this section we denote Wp(K) the mod p Weyl group of a Kac-Moody group K.
The following theorem computes the mod p Weyl groups of the Kac-Moody groups
Ki

n(a, b) that we have introduced in section 2, under some suitable condition on the
integral parameters a and b.

Theorem 12.1. Let p be an odd prime and let a, b be positive integers.

(1) If (a + 1)(b + 1) ≡ 1 (p), then Wp(K
2
n(a, b)) = G(m, m, n) and Wp(K

1
2(a, b)) =

G(m, m, 2) for m equal to the order of −a− 1 in F∗p.
(2) If a + 1 ≡ 0 (p) and P (X) = X2 + (b + 2)X + 1 is irreducible over Fp, then

Wp(K
1
2(a, b)) = G(m,m, 2) where m is the order in F∗p of the roots of P (X).

The same conclusion holds if we interchange a and b.
(3) If ab ≡ 2 (p) and a + b ≡ −1 (p), then p ≡ 1, 2, 4 (7) and Wp(K

2
3(a, b)) = R24.

(4) If d = a + b + 2 satisfies d2 − d − 1 ≡ 0 (p) and e = (−1 − b)/d satisfies
e2 + e + 1 ≡ 0 (p), then p ≡ 1, 4 (15) and Wp(K

2
3(a, b)) = R27.

(5) If ab ≡ 1 (p) and a2 ≡ −1 (p), then p ≡ 1 (4) and Wp(K
2
4(a, b)) = R29.

(6) If ab ≡ 1 (p) and a2 + a + 1 ≡ 0 (p), then p ≡ 1 (3), Wp(K
3
5(a, b)) = R33 and

Wp(K
3
6(a, b)) = R34.

(7) If a ≡ b (p) and a2 − a − 1 ≡ 0 (p), then p ≡ ±1 (5) and Wp(K
1
3(a, b)) = R23

and Wp(K
1
4(a, b)) = R30.

Since the p-adic reflection groups G(m, m, n) and Ri are only defined up to con-
jugation, the notation Wp = Ri should be understood as saying that the groups Wp

and Ri are conjugate.

Proof. The theorem follows from inspection of the generators of the groups of type
NCOT given in sections 9 and 10 and comparison to the generators of W (K) as
described in section 3, and using 7.1. All further details are straightforward and are
left to the reader. �

What we will use in the proof of the main theorem of this paper is the following
corollary:

Corollary 12.2. Let p be a prime and let R ⊂ GLn(Zp) be a finite pseudoreflection
group of order prime to p generated by pseudoreflections of order two. Then, there
exist a Kac-Moody group K of rank n such that Wp(K) = R. K can be chosen to be
a direct product of Kac-Moody groups with finiteness width equal to two.

Proof. By 7.1 and the Shephard-Todd classification of finite unitary reflection groups,
R decomposes as a direct product of the Weyl group of a compact connected Lie
group and irreducible groups of type NCOT. The irreducible groups of type NCOT
are G(m, m, r), R23, R24, R27, R29, R30, R33 and R34 and each of these irreducible
groups can only appear if the prime p satisfies some congruences that were made
explicit in sections 9 and 10. Now we can use theorem 12.1 to see that in each case
we can find suitable parameters a, b such that we can define K as the direct product
of a Lie group and Kac-Moody groups of type Ki

r(a, b). We only comment the case of
G(m, m, 2) for m|p + 1. Let θ ∈ Fp2 be a primitive m-th root of unity. Since m|p + 1
we see that the Frobenius automorphism of Fp2 fixes η = θ + θ−1. Hence, η ∈ Fp.
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Take any positive integers a, b such that a ≡ −1 (p), b ≡ −2 − η (p), ab > 4. Then
Wp(K

1
2(a, b)) = G(m, m, 2) by 12.1(2). �

13. Monomorphisms from a homotopy point of view

A fundamental step in the study of finite loop spaces by Dwyer-Wilkerson ([15])
and others is a homotopical interpretation of some group-theoretical concepts. For
instance, in the theory of p-compact groups (see [15]), a homomorphism from X to Y
is a pointed map BX → BY , an element of order p in X is a pointed map BZ/pZ →
BX and a monomorphism is a homomorphism BX → BY whose homotopy fibre
is Fp-finite. We use the same ideas to define a notion of monomorphism which is
appropriate when we deal with both Kac-Moody groups and p-compact groups. We
need a concept from the Dror Farjoun theory of localization (see [14]):

Definition 13.1. ([14]) A space X is BZ/pZ-null if the evaluation map

e : Map(BZ/pZ, X)→ X

is a weak equivalence. This is the same as saying that the space of pointed maps
Map∗(BZ/pZ, X) is weakly contractible.

As a consequence of the theorem of Miller solving the Sullivan conjecture, the fact
that a space is BZ/pZ-null can be decided, under some mild hypothesis, by just
checking the mod p cohomology of this space:

Proposition 13.2. ([34], 8.6.2) If X is a connected nilpotent space such that H∗(X)
is of finite type and π1X is finite, then the following two conditions are equivalent:

(1) H∗(X) is locally finite as a module over the Steenrod algebra.
(2) X is BZ/pZ-null. �

A module M over the Steenrod algebra is locally finite if for any x ∈ M only a
finite number of Steenrod operations act non-trivially on x.

If X = (X, BX, e) is a loop space, we say that it is connected if X is connected.
We say that X is p-complete if both X and BX are Fp-complete spaces in the sense
of Bousfield-Kan. If X is connected, then X is Fp-complete if and only if BX is
Fp-complete (see the argument in [15] 11.9). p-compact groups and Fp-completions
of Kac-Moody groups are our main examples of p-complete loop spaces.

Definition 13.3. Let X = (X,BX, eX), Y = (Y,BY, eY ) be p-complete loop spaces.
A homomorphism f : X → Y is a pointed map f : BX → BY . A monomorphism is
a pointed map f : BX → BY such that its homotopy fibre is BZ/pZ-null.

As evidence that this definition is plausible, we point out the following facts.

Proposition 13.4. (a) If X and Y are p-compact groups, then a monomorphism
f : X → Y as defined above is the same as a monomorphism of p-compact groups in
the sense of [15].

(b) Let φ : L → K be an (algebraic, continuous) homomorphism between Kac-
Moody groups. Then, Ker φ contains no element of order p if and only if the homotopy
fibre of the induced map Bφ : BL∧p → BK∧p is BZ/pZ-null.
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Proof. Part (a) is a particular case of proposition 3.2 in [16].
Part (b) is a consequence of theorem 8.4. Let F be the fibre of Bφ : BL∧p → BK∧p

and consider the induced fibration of mapping spaces:

Map(BZ/pZ, F )→ Map(BZ/pZ, BL∧p )→ Map(BZ/pZ, BK∧p ).

By 8.4, [BZ/pZ, BL∧p ] = Rep(Z/pZ, L), [BZ/pZ, BK∧p ] = Rep(Z/pZ, K). Hence, If
Ker φ contains no element of order p we have a fibration

Map(BZ/pZ, F )→ Map(BZ/pZ, BL∧p )0 → Map(BZ/pZ, BK∧p )0

where Map(−,−)0 denotes the space of null homotopic maps.
By 8.4 again, Map(BZ/pZ, BL∧p )0 ' BL∧p , Map(BZ/pZ, BK∧p )0 ' BK∧p and the

fibration above shows that F is BZ/pZ-null. Conversely, if F is BZ/pZ-null, then

[BZ/pZ, BL∧p ]→ [BZ/pZ, BK∧p ]

has trivial kernel and Ker φ contains no element of order p. �

14. Proof of theorem 1.1

Now we have all ingredients of the proof of the main result of this paper.

Proof of 1.1. We have a simply connected p-compact group X with Weyl group WX

of order prime to p generated by reflections of order two. In particular, p must be
odd. The classification of p-compact groups for p odd ([4], theorem 1.2) tells us that
X ∼= G∧p ×Y where G is a compact simply connected Lie group and Y is a p-compact
group of Clark-Ewing type (see section 7), associated to a pseudoreflection group
R ⊂ GLr(Zp) of order prime to p and generated by pseudoreflections of order two.
Since G is itself a Kac-Moody group, this reduces the proof of 1.1 to the case in which
X is an irreducible p-compact group of Clark-Ewing type.

By corollary 12.2, there is a Kac-Moody group K such that Wp(K) = WX ⊂
GLn(Z/pZ) and fw(K) = 2. Let Tp∞ be the standard p-discrete maximal torus of
K. Tp∞ is also the standard p-discrete maximal torus of X and we will construct
a map BX → BK∧p extending the inclusion Tp∞ ↪→ BK∧p . We know that BX =
(BTp∞ ×WX

EWX)∧p , therefore, to construct this map, we need to check two facts:

(1) The inclusion Tp∞ ↪→ BK∧p is WX-equivariant up to homotopy.
(2) The obstructions to extend a map Tp∞ ↪→ BK∧p which is WX-equivariant up

to homotopy to a map (BTp∞ ×WX
EWX)→ BK∧p vanish.

To solve (1) we use the following argument. Since WX has order prime to p, we
can inductively lift WX to Wpi(K) for all i and eventually we obtain an inclusion
WX ↪→ W∧

p (K) ⊂ GLn(Zp). Proposition 7.1 shows that this inclusion must be
conjugate to the standard inclusion WX ⊂ GLn(Zp). Hence, we can assume that
WX ⊂ W∧

p (K). Then, proposition 8.2 implies that i : Tp∞ ↪→ BK∧p is WX-equivariant
up to homotopy.

To solve (2) we notice that the obstructions to an extension (BTp∞ ×WX
EWX)→

BK∧p belong to

Hr+1(WX ; πr(Map(BTp∞ , BK∧p )i), r ≥ 1.
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(see [42]). By proposition 8.3 we know that the groups πr(Map(BTp∞ , BK∧p )i) are
pro-p-groups. Then, the following lemma solves the problem.

Lemma 14.1. Let r ≥ 2 and let A be a pro-p-group, abelian if r > 2. Let G be a
finite group of order prime to p acting on A. Then, Hr(G; A) is trivial.

Proof. If A is abelian, the lemma is well known: Hr(G; A) is the standard cohomol-
ogy of the group G with coefficients in the G-module A, the order of G annihilates
Hr(G; A) and at the same time, multiplication by the order of G is an automorphism
of A. Hence, Hr(G; A) = 0.

If A is not abelian, then H2(G; A) is the set of extension of G by A (see [39]).
Since the classic Schur-Zassenhaus theorem extends to profinite groups (see theorem
2.3.15 in [33]), we know that there cannot be non trivial extensions of G by the
pro-p-group A. �

Hence, the obstructions must vanish and we have a map BX → BK∧p extending
(up to homotopy) the identity between the p-completions of the maximal tori. We
need to prove that the fibre F of this map is BZ/pZ-null. Since F is simply connected,
by proposition 13.2, we just need to check that H∗(F ) is locally finite.

Consider the principal fibration X → K∧p → F . We know that H∗(X) is an exterior
algebra on n transgressive generators. Also, theorem 11.1 tells us that BX → BK∧p
is surjective in cohomology. Hence, the Serre spectral sequence for X → K∧p → F
must collapse at E2 and we obtain that H∗(F ) injects in H∗(K). If we apply 13.4.b
to L = {1} we see that H∗(K) is locally finite. The proof is complete. �

15. Final remarks

In this final section we want to show that theorem 1.1 is, in some sense, the best
possible result that we can expect. To do this, we will provide counterexamples to
show that the hypothesis on WX cannot be removed and that we really need to use
Kac-Moody groups since compact Lie groups would not do the job.

Proposition 15.1. Theorem 1.1 becomes false if it is modified in any of these ways:

(1) If we omit the hypothesis that WX is generated by reflections of order two.
(2) If we omit the hypothesis that WX has order prime to p.
(3) If we add that K is a compact Lie group.

Proof. To prove (1), let X be the p-compact group of rank 1 with Weyl group WX =
Z/mZ for some large prime p and some large m|p − 1. By [11] such a p-compact
group exists. In rank one, the only available Kac-Moody group is SU(2). But a map
BX → BSU(2)∧p must be trivial in cohomology and its fibre cannot be BZ/pZ-null.

It is an easy consequence from the theory of p-compact groups (see [16]) that a
monomorphism f : BX → BY between connected p-compact groups of the same
rank induces a monomorphism WX ↪→ WY . Let X be a p-compact group of rank
two with Weyl group WX = D2m a dihedral group of order m|p − 1 for some large
prime p and some large m. By [11] such a p-compact group exists. If there is a
monomorphism BX → BG∧p for some compact connected Lie group G, then WG
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must contain a large dihedral group. But the order of the Weyl group of a Lie group
of rank two is bounded. This proves part (3).

The most interesting counterexample is the one that we need to prove part (2).
Along this paper, we have used the fact that the order of WX is prime to p in several
crucial points but the reader might have got the impression that this could be just
a way to simplify the proofs and that some more careful argument could be used to
handle the “modular” case. Part (2) claims that this is not so.

Let p = 5 and let BX be the classifying space of the 5-compact group of rank four
with Weyl group WX = R29. The existence of this 5-compact group was established
in [1]. We will show that there is no monomorphism from BX to BK∧5 for any Kac-
Moody group K of rank 4. Let f : BX → BK∧5 be any map. The Weyl group WX

contains a cyclic group π of order 5 which acts on the maximal torus TX through
its irreducible representation of degree 4. Let NX,5(TX) be the 5-normalizer of X,
which is the subgroup of the normalizer of TX in X which is an extension of π by TX .
Inside NX,5(TX) let us consider the group N of order 55 which is an split extension of
π ⊂ WX by an elementary abelian 5-group V = (Z/5Z)4 ⊂ TX . N is non abelian and
there is a map BN → BX. Composing with f we obtain a map g : BN → BK∧5 .

By theorem 8.4 we know that g is homotopic to the map induced by some repre-
sentation ρ : N → K. By [10], theorem 5.2, ρ is equivalent to some homomorphism
ρ : N → PI where PI is a parabolic of K with finite Weyl group. Hence, PI is a
compact connected Lie group of rank 4.

Assume first that PI is a proper parabolic in K. Then PI is a split extension of
a torus of rank at least one by a compact connected Lie group of rank at most 3.
Since the minimal non-trivial Q-representation of a cyclic group of prime order p is
in degree p − 1, we deduce that the Weyl group of PI has order prime to 5. This
implies (see lemma A.1 in [22]) that ρ(N) must be contained in some maximal torus
of PI . Since N is non abelian, we deduce that ρ is not a monomorphism. If we
assume now that the fibre of f : BX → BK∧5 is Z/5Z-null, we deduce that there is
a nullhomotopic map BZ/5Z → BN → BX. But ([15] 9.9) BNX,5(TX) → BX is
a monomorphism. Hence, we have an algebraic monomorphism Z/5Z ↪→ NX,5(TX)
inducing a nullhomotopic map BZ/5Z→ BNX,5(TX), a contradiction.

Hence, PI = K and K is itself a compact Lie group of rank 4. As above, a
monomorphism BX → BK∧5 implies the existence of a monomorphism WX ↪→ WK .
But WX = R29 has order 7680 and inspecting the orders of the Weyl groups of all
compact Lie groups of rank 4 we cannot find any with a Weyl group of order divisible
by 7680. �
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