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1. Introduction.

We want to study the representations of the infinite dihedral group D∞ in GL2(R),
where R is either the valuation ring Z(p) of rational numbers with denominator prime
to p or the ring of p-adic integers Zp for some prime p.

The motivation for this research comes from the homotopy theory of classifying
spaces of Kac-Moody groups. Associated to each generalized Cartan matrix (see, for
instance, the introduction of [2]), one can define a (not necessarily finite dimensional)
Lie algebra which can be integrated in some way which we will not discuss here (see
[5]) to produce a topological group K called a Kac-Moody group. These topological
groups, and their classifying spaces, have been studied from a homotopical point of
view in several recent papers ([6],[3], [2], [1]). Like in the Lie group case, K has
a maximal torus T and a Weyl group W which acts on the Lie algebra of T as a
cristalographic group. However, in contrast to what happens in the Lie group case,
this Weyl group can be infinite. If we start with a non-singular 2×2 Cartan matrix,
we have a (non-afine) Kac-Moody group of rank two and then the Weyl group is
infinite dihedral and we obtain a representation of D∞ in GL2(Z) associated to K.
In [1] we have investigated the cohomology of the classifying spaces of these rank two
Kac-Moody groups and their central quotients and we have seen that this cohomology
is intimately related to the representation theory of D∞ over Zp. This research has
lead us to investigate the representations of D∞ from a purely algebraic point of view
and the present paper, which can be read completely independently from [1] and
which does not use any result from the theory of Kac-Moody groups, is the outcome
of our research.

The set Rep(D∞) of rank two representations of D∞ over R is first divided into
different subsets according to the restriction of the representations to the two gener-
ating involutions of D∞ (see sections 2 and 3). Then each of these subsets is described
according to a system of numerical invariants, taking values in either R or N ∪ {∞},
that classify and parametrize each of these subsets (see Theorems 2, 3, and 4).

While the homotopy theory of Kac-Moody groups of rank two has been the main
motivation for the present paper, it is interesting to remark that the ideas behind our
classification theorems (the invariants called Γ, δ, etc.) also come from [1]. Hence,
this paper is a further example of the way in which cohomological invariants can lead
to the solution of problems in pure algebra.

The authors acknowledge support from MCYT grant BFM2001-2035.
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In a final section, we relate our results to those of [4], where one finds a classification
of the representations of D∞ over any field of characteristic 6= 2.

Through the paper we denote by νp the p-adic valuation on R.

2. Representations of Z/2Z.

We start understanding the representations of the group of two elements in GL2(R).
Consider the matrices

A0 = I, A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
, and A3 = −I.

Proposition 1. Up to conjugation, the matrices of order two in GL2(R) are A1, A2,
A3 for p = 2 and A1, A3 for p > 2.

Proof. Let σ be a representation of Z/2 in GL2(R) and let L be the corresponding
Z/2-lattice. Let r be the generator of Z/2. There is an exact sequence of Z/2-lattices

0 - LZ/2 - L - L
/
LZ/2 - 0 .

L
/
LZ/2 is torsion free since for any x ∈ L with αx invariant for some α ∈ R, x itself

is invariant. We can distinguish three cases according to the rank of LZ/2.

• LZ/2 of rank 2: In this case L
/
LZ/2 is of rank 0, hence trivial, and therefore

L = LZ/2. The representation is trivial: σ0(r) = I.
• LZ/2 of rank 1: Now LZ/2 = R with trivial action and then L

/
LZ/2 ∼= R is a

copy of R with action of Z/2 given by sign change. In fact, for any x ∈ L,

x + r(x) ∈ LZ/2, hence r(x) = −x in L
/
LZ/2.

• LZ/2 of rank 0: This is to say LZ/2 = 0. Same argument as above shows that
r(x) = −x for all x ∈ L. The representation is given by sign change; that is,
σ3(r) = −I.

It remains to describe the possible representations with invariants of rank one.
These Z/2-lattices will be all possible extensions

0 - R - L - R - 0

and such extensions are classified by Ext1
Z/2(R , R). The exact sequence of R[Z/2]-

modules

0 - R
f- R[Z/2]

g- R - 0

with f(1) = 1 + r and g(1) = 1, g(r) = −1 gives

Ext1
Z/2(R , R) ∼=

{
Z/2 , p = 2

0 , p > 2 .

Hence, there is only one representation for p odd and two non equivalent represen-
tations for p = 2 given by

σ1(r) =

(
1 0
0 −1

)
and σ2(r) =

(
0 1
1 0

)
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which are clearly non-conjugated because their mod 2 reductions are non-conjugated
in GL2(Z/2). �

3. Representations of D∞.

Recall that the infinite dihedral group D∞ has a presentation with two generators
r1, r2 of order two and no other relations: D∞ ∼= Z/2 ∗ Z/2. D∞ has an infinite
cyclic subgroup D+

∞ of index two generated by r1r2 and so we can se D∞ as an
extension of Z/2Z by D+

∞
∼= Z. On the other side, D∞ has only one non trivial outer

automorphism which interchanges the two generators r1 and r2.
A representation of D∞ in GL2(R) gives two representations σ1, σ2 of Z/2. These

representations have been studied in proposition 1. Thus the set Rep(D∞) of repre-
sentations of D∞ in GL2(R) splits as a disjoint union

Rep(D∞) =
∐

i,j∈Rep(Z/2)

Repi,j ,

where Repi,j stands for the subset of Rep(D∞) of representations that restrict to
i ∈ Rep(Z/2) on r1 and to j ∈ Rep(Z/2) on r2. Notice that by proposition 1
the index set Rep(Z/2) can be identified to {0, 1, 2, 3} for p = 2 and to {0, 1, 3}
for p > 2 (0 means the trivial representation). Given a matrix M ∈ GL2(R) and
given representations σi, σj of Z/2 given by matrices Ai, Aj, we can consider the
representation ρ ∈ Repi,j given by ρ(r1) = Ai and ρ(r2) = M−1AjM . This assignment
yields a bijection

C(Aj)
∖
GL2(R)

/
C(Ai) ∼= Repi,j

where C(A) denotes the centralizer of A in GL2(R). After this identification, the non
trivial outer automorphism of D∞ interchanges Repi,j and Repj,i and acts on Repi,i

by M 7→ M−1. Then, since the matrices A0 and A3 are central, in order to determine
Rep(D∞) we only have to study Rep1,1 for any prime and Rep1,2 and Rep2,2 for p = 2.

The abelianization of D∞ is the non-cyclic group of order four. Hence, there are four
one-dimensional representations of D∞ which produce ten reducible two-dimensional
representations. Eight of these belong to each of the eight sets Repi,j where i or j
belongs to {0, 3}. The other two representations are in Rep1,1 and they correspond
to the matrices I and ( 0 1

1 0 ).

4. Representations of type (1, 1).

The centralizer of A1 is the subgroup D of diagonal matrices in GL2(R). Hence,
Rep1,1

∼= D
∖
GL2(R)

/
D. Let α, β, Γ1,1 be the functions defined on GL2(R) by

α

(
x y
z t

)
= νp(xz),

β

(
x y
z t

)
= νp(yt),

Γ1,1

(
x y
z t

)
=

xt

xt− yz
∈ R.
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Theorem 2. The functions Γ1,1, α and β are well defined on Rep1,1 and are a com-
plete system of invariants.

Proof. One checks immediately that Γ1,1, α and β are well defined on the double cosets
of D

∖
GL2(R)

/
D. By a complete system of invariants we mean that two matrices are

in the same coset if and only if the invariants take the same value on both matrices.

Let M =

(
x y
z t

)
. If Γ1,1(M) 6≡ 0 (p) then M ∼

(
1 y/x

z/t 1

)
. If M ′ =

(
x′ y′

z′ t′

)
and Γ1,1(M) = Γ1,1(M

′), νp(xz) = νp(x
′z′) and νp(yt) = νp(y

′t′) then we see that
yz/xt = y′z′/x′t′ and yx′/xy′ is a unit or yz = 0. In any case, we see that M and M ′

are in the same coset.
If Γ1,1(M) ≡ 0 (p) then, since det(M) is a unit, we have yz 6≡ 0 (p) and we can

repeat the same argument above, after interchanging the two columns. �

One can check easily that the table 1 gives a complete set of representatives for
Rep1,1 without repetition.

Γ1,1 α β

1

(
1 0
pr 1

)
r = 0, . . .,∞ 1 r ∞

Γ1,1 6≡ 0 (p)

2

(
1 ps

x 1

)
s ≥ 0, x ∈ R, psx 6≡ 1 (p) 1

1−psx
νp(x) s 6= ∞

3

(
0 1
1 pr

)
r = 0, . . .,∞ 0 ∞ r

Γ1,1 ≡ 0 (p)

4

(
ps 1
1 x

)
s ≥ 0, x ∈ R, psx 6≡ 1 (p)

s = 0 ⇒ x ≡ 0 (p)
psx

psx−1
s 6= ∞ νp(x)

Table 1. Rep1,1

One sees also that the range of the invariants Γ1,1, α, β is R × {0, 1, . . . ,∞}2,
subject only to the restrictions:

α + β = ∞ ⇒ Γ1,1 = 0, 1

0 < α + β < ∞ ⇒ νp(Γ1,1 − 1) = α + β − νp(Γ1,1)

α + β = 0 ⇒ νp(Γ1,1) = νp(Γ1,1 − 1) = 0

The non-trivial outer automorphism of D∞ leaves Γ1,1 invariant. It also leaves α
and β invariant in the types 1 and 2 in the table and permutes α and β in the types 3
and 4. Recall also that the two reducible representations in Rep1,1 are precisely those
with α = β = ∞.



REPRESENTATIONS OF D∞ 5

5. Representations of type (1, 2).

We can assume from now on that p = 2. The centralizer of A2 in GL2(R) is the
subgroup

S =

{(
a b
b a

)
∈ GL2(R)

}
.

Hence

S
∖
GL2(R)

/
D

∼=- Rep1,2

Let Γ1,2, γ be the functions defined on GL2(R) by

Γ1,2

(
x y
z t

)
=

zt− xy

xt− yz
∈ R.

γ

(
x y
z t

)
=

{
0 yt even

1 yt odd.

Theorem 3. The functions Γ1,2 and γ are well defined on Rep1,2 and are a complete
system of invariants.

Proof. An easy direct computation shows that Γ1,2 and γ are well defined on the
double cosets in S

∖
GL2(R)

/
D. Assume now that Γ1,2 ( x y

z t ) = λ. Since ( x y
z t ) ∼ ( z t

x y )
we can assume that xt ≡ 1 (2). If y is even then(

1 −y
t

−y
t

1

)(
x y
z t

)( t
xt−yz

0

0 t
t2−y2

)
=

(
1 0
λ 1

)
.

If y is odd then z is even and then(
1 − z

x
− z

x
1

)(
x y
z t

)( x
x2−z2 0

0 x
xt−yz

)
=

(
1 −λ
0 1

)
.

We have hence proved that

Γ−1
1,2(λ) =

{
[( 1 0

λ 1 )] , λ even

{[( 1 0
λ 1 )] , [( 1 −λ

0 1 )]} , λ odd.

And the proposition follows. �

As representatives for the double cosets in Rep1,2 one can take the matrices(
1 0
z 1

)
, z ∈ R;

(
1 y
0 1

)
, y ∈ R∗.
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6. Representations of type (2, 2).

Here the situation is more involved that in the two previous cases. We know that
Rep2,2 is equivalent to the double cosets

S
∖
GL2(R)

/
S.

As before, we introduce some invariants. We define functions Γ2,2, ε, ε̄ and δ on a
matrix ( x y

z t ) as follows

Γ2,2 =
x2 + t2 − y2 − z2

xt− yz
∈ R;

ε = ν2(y + t− x− z);

ε̄ = ν2(y + t + x + z);

δ = min
{
ν2(x

2 + z2 − y2 − t2), ν2(xz − yt)
}

.

It is relatively straightforward to show by a direct calculation that these functions
are well defined on Rep2,2. Actually, the only thing that needs some more careful
check is the invariance of δ under left multiplication by a matrix in S, but this is not
difficult. Then:

Theorem 4. The functions Γ2,2, ε, ε̄ and δ are a complete system of invariants for
Rep2,2.

The proof of this result is quite lengthy. We start with a criterion to decide if two
matrices are in the same coset.

Proposition 5.

(1) Any coset [( x y
z t )] has a representative of the form ( 1 u

0 v ). If we assume (no loss
of generality) that x is odd and z is even then we can take

u =
xy − zt

x2 − z2
, v =

xt− yz

x2 − z2
.

(2) Two different matrices M = ( 1 u
0 v ) and M ′ =

(
1 u′

0 v′

)
are in the same coset

if and only if Γ2,2(M) = Γ2,2(M
′) and either ν2(v − v′) 6= ν2(vu′ + uv′) or

ν2(u− u′) 6= ν2(uu′ + vv′− 1). In particular, if uu′ is odd then M and M ′ are
in the same coset if and only if Γ2,2(M) = Γ2,2(M

′).

Proof. Since we can permute rows and columns, there is no loss of generality in
assuming that x is odd and z is even. Then(

x2

x2−z2
−zx

x2−z2

−zx
x2−z2

x2

x2−z2

)(
x y
z t

)(
x−1 0
0 x−1

)
=

(
1 u
0 v

)
which shows (1). To prove (2) notice that M and M ′ are equivalent if and only if
there are matrices ( a b

b a ), ( c d
d c ) with a2 − b2 and c2 − d2 both odd and such that(

1 u
0 v

)(
c d
d c

)
=

(
a b
b a

)(
1 u′

0 v′

)
.
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This equation implies a = c + ud, b = vd and c and d must be solutions of the linear
system of equations

(u′ − u) c + (uu′ + vv′ − 1) d = 0
(v′ − v) c + (vu′ + uv′) d = 0

}
The vanishing of the determinant of this linear system is equivalent to both matrices
( 1 u

0 v ) and
(

1 u′

0 v′

)
having the same value of the Γ2,2 invariant. We also require that c

and d have opposite parity. This is possible if and only if ν2(v − v′) 6= ν2(vu′ + uv′)
or ν2(u − u′) 6= ν2(uu′ + vv′ − 1). Notice that the two inequalities are essentially
equivalent, unless v = v′ or u = u′. The proposition is proven. �

Proof of theorem 4. The theorem is proven by contradiction. We assume that we have
a counterexample which, by proposition 5, is not restrictive to suppose that it is given
by two matrices of the form ( 1 u

0 v ). More precisely, we assume that there are u, v, u′,
v′ such that the matrices ( 1 u

0 v ),
(

1 u′

0 v′

)
have the same invariants Γ2,2, ε, ε̄ and δ:

v′(1 + v2 − u2) = v(1 + v′2 − u′2)

ν2(u + v − 1) = ν2(u
′ + v′ − 1)

ν2(u + v + 1) = ν2(u
′ + v′ + 1)

min
{
ν2(u), ν2(u

2 + v2 − 1)
}

= min
{
ν2(u

′), ν2(u
′2 + v′2 − 1)

}
and we assume also that the criterion for non-equivalence given by proposition 5
holds:

ν2(u− u′) = ν2(uu′ + vv′ − 1)

ν2(v − v′) = ν2(uv′ + u′v) .

Then, we will investigate which properties should u, v, u′, v′ have till we conclude
that u = u′ and v = v′, which ends the proof.

u and u′ are even

Notice that u is odd if and only if Γ2,2 is odd, but if both u and u′ are odd then
Γ2,2 classifies the coset of the matrix (cf. proposition 5).

ν2(u) = ν2(u
′)

Assume this were not true. Then, let us write u = 2aλ, u′ = 2a′λ′ with 1 ≤ a < a′

and λλ′ odd (or u′ = 0). Then we can write

v = 2bµ− 2aλ± 1

v′ = 2bµ′ − 2a′λ′ ± 1

with µµ′ odd and b > 1. To see this, notice that either ε or ε̄ is > 1. If ε > 1 then we
take b = ε and the plus sign in both equations; If ε = 1 then we take b = ε̄ and the
minus sign in both equations.

Then:

u2 + v2 − 1 = 22a+1λ2 + 22bµ2 − 2a+b+1λµ± 2b+1µ∓ 2a+1λ

u′2 + v′2 − 1 = 22a′+1λ′2 + 22bµ′2 − 2a′+b+1λ′µ′ ± 2b+1µ′ ∓ 2a′+1λ′.
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If we check now the values of the invariant δ we see easily that the cases b ≥ a′ > a
and a′ > b ≥ a are impossible. Hence, we have 1 < b < a < a′ and we can write

v = 2bτ ± 1

v′ = 2bτ ′ ± 1

with ττ ′ odd and τ 6= τ ′ (notice that τ = τ ′ would imply u′ = ±u and a = a′). Then

b + ν2(τ − τ ′) = ν2(v − v′) = ν2(uv′ + u′v) = a

and we can write τ ′ = τ + 2a−bρ for some odd ρ. Let us consider now the equality
v′(1 + v2 − u2) = v(1 + v′2 − u′2) as a quadratic equation on τ . It yields

[2b−1ρ]τ 2 + [2a−1(λ2 + ρ2)− 22a′−a−1λ′2 ± ρ]τ

+[22a−b−1λ2ρ± 2a−b−1(λ2 + ρ2)∓ 22a′−a−b−1λ′2] = 0

which is absurd, since the quadratic term and the independent term are both even
while the linear term is odd.

Since the case u = u′ = 0 is trivial, we can write u = 2aλ, u′ = 2aλ′, u+v = 2bµ±1,
u′ + v′ = 2bµ′ ± 1 with b > 1 and λλ′µµ′ odd.

b ≤ a

If b > a then u− u′ = 2a(λ− λ′) while

uu′ + vv′− 1 = 22a+1[λλ′ + 22b−2a−1µµ′− 2b−a−1(λµ′ + µλ′)]± 2b(µ + µ′)∓ 2a(λ + λ′).

Since ν2(λ − λ′) = 1 if and only if ν2(λ + λ′) > 1, one sees easily that uu′ + vv′ − 1
cannot have the same ν2-valuation that u− u′, a contradiction.

b = a

Assume b < a and write, as we did before,

v = 2bτ ± 1

v′ = 2bτ ′ ± 1

with ττ ′ odd. The case in which τ = τ ′ leads easily to a contradiction in the following
way. If v = v′ then the existence of the invariant Γ2,2 implies u′ = ±u. But u = −u′

and b < a contradict ν2(u− u′) = ν2(uu′ + vv′ − 1).
Hence, we can write τ ′ = τ + 2cρ for some odd ρ. Like before, let us write the

equality v′(1 + v2 − u2) = v(1 + v′2 − u′2) as a quadratic equation on τ . It yields

[2b−1ρ]τ 2 + [22a−b−c−1(λ2 − λ′2) + 2b+c−1ρ2 ± ρ]τ

+[22a−b−1λ2ρ± 22a−2b−c−1(λ2 − λ′2)± 2c−1ρ2] = 0

Now,

b + c = ν2(v − v′) = ν2(uv′ + vu′) = ν2(2
a(λ + λ′)v + 2a+b+cλρ)

implies ν2(λ + λ′) = b + c− a (and, in particular, c > 1). Then we see that both the
quadratic and the independent term in the quadratic equation above are even, while
the linear term is odd, which is absurd.
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Hence, we have a = b and, in particular, a > 1 and we can write

v = 2dη ± 1

v′ = 2d′η′ ± 1

with νν ′ odd and 1 < a < d ≤ d′.

d = d′

The equation vΓ2,2 = 1 + v2 − u2 yields

22aλ2 = 22dη2 − v(Γ2,2 ∓ 2)

and, if we write Γ2,2 ∓ 2 = 22aγ with γ odd, we get

λ2 = 22(d−a)η2 − (2dη ± 1)γ

and this yields

(†) λ2 − λ′2 = 22(d−a)η2 − 22(d′−a)η′2 − 2dηγ + 2d′η′γ.

If we assume d < d′ we get

(‡) d = ν2(v − v′) = ν2(uv′ + u′v) = a + ν2(2
d′λη′ + 2dλ′η ± (λ + λ′)).

If this last term in brackets has ν2-valuation 1, then d = a + 1 and (†) implies
that ν2(λ

2 − λ′2) = 2, which is absurd. Hence, d − a > 1 and ν2(λ + λ′) > 1 and
ν2(λ

2 − λ′2) = ν2(λ + λ′) + 1.
Let us consider now the equations (†) and (‡), according to the relative values of a

and d.

• If d > 2a then (†) implies ν2(λ + λ′) = d − 1 and (‡) yields d = a + d − 1,
which is absurd.

• If d < 2a, then (†) implies that ν2(λ + λ′) = 2d − 2a − 1 < d and (‡) yields
d− a = 1 which we have already seen that is not possible.

• If d = 2a then (†) implies ν2(λ + λ′) ≥ 2a which contradicts (‡).

v = v′

Like in the previous case, we have the equality

(§) λ2 − λ′2 = (η − η′)[22(d−a)(η + η′)− 2dγ].

Now, if v 6= v′, we can write η′ = η + 2ek for some odd k and e ≥ 1. This yields

(¶) d + e = ν2(v − v′) = ν2(vu′ + uv′) = a + ν2((λ + λ′)(2dη ± 1) + 2d+eλk).

This implies immediately ν2(λ + λ′) > 1 and therefore ν2(λ − λ′) = 1. Also, (¶)
implies ν2(λ + λ′) < d + e and we have

d + e = a + ν2(λ + λ′).

But (§) implies

d + e− a + 1 = ν2(λ + λ′) + 1 = e + ν2(2
2(d−a)(η + η′)− 2dγ)

which is impossible.

u = u′
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Since v = v′, we have u = ±u′. If u′ = −u then we notice that

a + 1 = ν2(u + u) = ν2(−u2 + v2 − 1) = ν2(−22aλ2 + 22dη2 ± 2d+1η)

with d > a > 1, which is absurd.
This ends the proof of the theorem. �

The above result provides an effective classification of representations of D∞ of
type (2, 2). However, unlikely to what happens in Rep1,1 or Rep1,2, we see no obvious
way to select a complete list of coset representatives. To give a hint of the kind of
phenomena that occur, we include here a sample of results about matrices which have
simple coset representatives.

Proposition 6. If Γ2,2(M) is odd, then M ∼
(

1 1
0 Γ2,2(M)

)
.

Proof. Take M ∼ ( 1 u
0 v ). Then u is odd and we know that in this case the invariant

Γ2,2 suffices to classify M . �

The next results are only valid when the ground ring is the ring Z2 of the 2-adic
integers. Let us recall that a 2-adic integer x 6= 0 is a square in R if and only if there
exists r ≥ 0 such that x = 22ry with y ≡ 1 (8).

Proposition 7. Assume R = Z2. If δ(M) = 1 then M ∼ ( 1 2
0 v ) for some unique v.

Proof. Take M ∼ ( 1 u
0 v ). Then, one sees easily that the condition on δ(M) is equivalent

to ν2(u) = 1, so we write u = 2λ with λ odd. If we want to look for a matrix ( 1 2
0 v′ )

with the same value of the invariant Γ2,2 than the matrix M , we need to solve a
quadratic equation on v′:

vv′2 + (u2 − v2 − 1)v′ − 3v = 0.

This equation has a solution in Z2 if and only if the discriminant ∆ is a square. If
we write v2 = 8k + 1 we see that

∆ = 16(4k2 + λ4 − λ2 + 8k − 4λ2k + 1),

which is, indeed, a square in Z2, ∆ = (±4ω)2. Then, we have two possible values for
v′, given by

vv′ =
1 + v2 − u2

2
± 2ω.

To conclude that M ∼ ( 1 2
0 v′ ) we need to check that ν2(u − 2) 6= ν2(2u + vv′ − 1),

but it is easy to see that there is always a choice of the sign of ω which makes this
inequality hold.

To see the uniqueness of v′, notice that the invariant Γ2,2 applied to ( 1 2
0 v ) ∼ ( 1 2

0 v′ )
yields v′ = v or v′ = −3/v. But this second value of v′ gives ν2(v − v′) = ν2(2v

′ +
2v). �

Proposition 8. Assume R = Z2. If ν2(u) > ν2(v
2 − 1) then ( 1 u

0 v ) ∼ ( 1 0
0 v′ ) for some

unique v′.
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Proof. Like in the previous proposition, let us first look for a matrix ( 1 0
0 v′ ) with the

same value of Γ2,2 than the original matrix ( 1 u
0 v ). We need to solve the quadratic

equation

vv′2 + (u2 − v2 − 1)v′ + v = 0

i.e. we need to prove that the discriminant ∆ of this equation is a square in Z2. Let
us write u = 2aλ, v2 = 2bη + 1 with λη odd and b ≥ 3. Then,

∆ = 22b[24a−2bλ4 + η2 − 22a−b+1λ2η − 22a−2b+2λ2]

and we see that the condition 3 ≤ b < a implies that ∆ is a square, ∆ = (±2bω)2 and

vv′ =
1 + v2 − u2

2
± 2b−1ω = 2b−1(η ± ω)− 22aλ2 + 1.

Now, like in the preceding proposition, we can choose the sign of ω in a way that
ν2(u) 6= ν2(vv′ − 1).

The uniqueness part is trivial. �

These two last propositions may induce the reader to believe that there are always
coset representatives of the form ( 1 2r

0 v ). The following example shows that this is not
true.

Proposition 9.
(

1 12
0
√

17

)
6∼ ( 1 2r

0 v ) for any r and any v.

Proof. The invariant δ of the matrix
(

1 12
0
√

17

)
has value 2, while the δ invariant of the

matrix ( 1 2r

0 v ) is equal to 2 only if r = 2. Then, Γ2,2

(
1 12
0
√

17

)
= Γ2,2 ( 1 4

0 v ) if and only

if v satisfies the quadratic equation v2 − 126√
17

v − 15 = 0, which has no roots in Z2

because its discriminant is not a square. �

7. Representations over a field

The representations of D∞ over a field k of characteristic 6= 2 have been studied
by Dokovič in [4]. Although our aim in this paper has been to study the integral
representations of D∞, it seems worthwhile, in order to present a more complete view
of the representation theory of the dihedral group, to relate our results to those of [4].
We point out that the main result of [4] is slightly inaccurate in the two-dimensional
case, which is the case we are dealing here with.

The irreducible representations of D∞ in GL2(k), k a field of characteristic 6= 2,
are the following:

(I): For any α ∈ k∗, α 6= ±1, the representation ρα given by

ρα(r2r1) =

(
α 0
0 α−1

)
ρα(r1) =

(
0 1
1 0

)
with ρα ∼ ρα−1 .
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(II): For any β ∈ k such that β2−1 is either 0 or a non-square, the representation
τβ given by

τβ(r2r1) =

(
0 −1
1 2β

)
τβ(r1) =

(
0 1
1 0

)
This follows from [4] in a quite straightforward way. Notice, however, that some of

the representations which appear in the main theorem of [4] are redundant, because
they become equivalent when the dimension is two.

In our case, k is the field of fractions of R, i.e. k is either the rational field Q or the
field of p-adic numbers Qp. All irreducible representations are in Rep1,1. Hence, in
the set of irreducible representations of D∞ in GL2(k) we have the k-valued function
Γ = Γ1,1. This function classifies the representations:

Proposition 10. Γ is a one-to-one correspondence between the set of irreducible
representations of D∞ in GL2(k) and k.

Proof. The only thing that needs to be proved now is that each representation ρα, τβ

in the list above yields a different value of Γ.
First of all, a straightforward computation which we leave to the reader shows that

Γ(ρα) =
(α + 1)

4α

2

Γ(τβ) =
1 + β

2

Then, it is obvious that Γ(τβ) = Γ(τβ′) implies β = β′ and Γ(ρα) = Γ(ρα′) implies
α′ = α, α−1 and ρα ∼ ρα′ . On the other hand, if Γ(τβ) = Γ(ρα) then α 6= ±1 is a root
of the quadratic equation

X2 − (4Γ(τβ)− 2)X + 1 = 0

and this implies that β2 − 1 is a non-zero square and so τβ is not in the list. �

Finally, we would like to be able to distinguish which of these representations are
faithful and which are not. Clearly, this depends only on the representation over k.
We have the following partial result:

Proposition 11. Let ρ : D∞ → GL2(Zp) (p odd) be an irreducible representation
with Γ ≡ 0, 1 (p). Then ρ(D∞) has finite order if and only if p = 3 and Γ = 3/4, 1/4.

Proof. It is clear that ρ(D∞) has finite order if and only if the matrix ω = r1r2 is
nilpotent. ω is a two-by-two matrix of determinant one. If we assume that ω is
nilpotent then it has to be diagonalizable in Qp or in some quadratic extension of Qp.
If ζ, ζ−1 are the eigenvalues of ω then ζ is an m-th root of unity for some minimal
m. Let us discuss in which cases this can happen.

If m is coprime to p then Qp(ζ) is unramified over Qp. The hypothesis on Γ implies
that the mod p reduction of the characteristic polynomial of ω is (x±1)2 and so Qp(ζ)
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is totally ramified over Qp. Hence, Qp(ζ) = Qp and so ζ is an m-th root of unity in
Qp such that ζ ≡ ±1 (p). Hence, we have ζ = ±1, ω = ±I and the representation is
reducible.

Put m = prn with n coprime to p and r ≥ 1. Then ζn is a primitive pr-th root of
unity and we have

pr−1(p− 1) = [Qp(ζ
n) : Qp] ≤ [Qp(ζ) : Qp] ≤ 2.

Hence, p = 3 and r = 1. Moreover, as above, ζ3 = ±1. Since the characteristic
polynomial of ω is X2 − 2(2Γ− 1)X + 1, we obtain that Γ = 3/4, 1/4.

The converse is easy. �
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[4] D.Ž. Dokovič, Pairs of Involutions in the General Linear Group. J. Algebra 100 (1986), 214–223.
[5] V. G. Kac (ed.) Infinite-dimensional groups with Applications. Papers from the conference held

at the Mathematical Sciences Research Institute, Berkeley, Calif., May 10–15, 1984. Math. Sci.
Res. Inst. Publ., 4. Springer-Verlag, New York-Berlin, 1985.

[6] N. Kitchloo, Topology of Kac-Moody groups. Thesis, MIT, 1998.
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