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1. Introduction. The title of this paper is reminiscent of the title of one of the last papers
by George Cooke ([7]). In that paper, Cooke observes that if ΩX is a p-complete loop space
then there is an action of [S1

p̂, S
1
p̂] ∼= Ẑp on ΩX. In particular, there is an action of the p−1

roots of unity on ΩX and by taking the quotients of appropriate loop spaces by this action
he obtains spaces with “interesting” cohomology, i.e. spaces whose cohomology algebras
have quite few generators and relations and whose attaching maps represent interesting
elements in the stable homotopy of spheres. By applying this technique to S3〈3〉, the
3-connective covering of S3, and to the fibre of the map S3 → K(Z, 3) of degree p, Cooke
constructs spaces realizing the cohomology algebras (subscripts denote degrees)

(1) Fp[x2n]⊗ E(βx2n),

where n is any divisor of p(p − 1), β is the Bockstein homomorphism and E(yk) denotes
an exterior algebra on one generator yk of degree k. This method was generalized in [5] to
construct spaces whose mod p cohomology has the form P ⊗ E where P is a polynomial
algebra and E is an exterior algebra on the Bocksteins of the generators of P . Cooke ends
his paper by saying “I expect that the condition n|p(p− 1) is necessary as well” and this
is the Cooke conjecture that we mention in the title of this paper. The conjecture was
proved to hold true in some particular cases in [2] where cohomology algebras of the form
Fp[x] ⊗ E(y) where studied by completely different methods to those used in the present
paper.

Our purpose is to develop a study of spaces whose mod p cohomology has the form
(1). In this part I of our work we consider the case of p odd and we prove the Cooke
conjecture in full generality but we go further than that for we obtain a classification up to
p-completion of all homotopy types with mod p cohomology of the form (1) above. When
p = 2 both the results and the techniques involved in the proofs are significantly different
and deserve a separate discusion which we plan to work out in part II of this work ([4]).
In particular, the p = 2 version of the Cooke conjecture (which was certainly stated with
only the case of p odd in mind) turns out to be wrong and additional fascinating families
of spaces with “interesting cohomology” appear.
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We present in this introduction a rough overview of the main results of the paper. We
start with a classification of unstable algebras over the Steenrod algebra of the form (1).
We see that there are exactly two families of such algebras which we call Bi,r and Ar for
i ≥ 0 and r dividing p− 1. As graded algebras, we have (subscripts denote degrees)

Bi,r
∼= Fp[x2pir]⊗ E(y2pir+1)

and the Steenrod algebra action is determined by β(x) = y and P pi

(y) = (r − 1)xsy. Ar

is isomorphic to B0,r as graded algebras but the action of the Steenrod algebra is different
in B0,r and Ar for in Ar we have the relation P 1(y) = rxsy. The algebras realized by
Cooke in [7] are B0,r and B1,r while the algebras Ar seem to have remained unnoticed
although their study will be fundamental in our classification of spaces realizing Bi,r. In
this context, the conjecture of Cooke is stated as follows:

Theorem A. If H∗(X;Fp) ∼= Bi,r as algebras over the Steenrod algebra, then i ≤ 1.

It is a natural question to ask about the realizability of the algebras Ar. It turns
out that all algebras Ar are realizable as mod p cohomology of some appropriate spaces.
More in general, for any k ≥ 0 we introduce the notation A(k)

r to denote a cohomology
algebra which looks like Ar except for the fact that the relation β(x) = y is replaced by the
relation β(k+1)(x) = y where β(k+1) denotes the Bockstein homomorphism of order k+1. In
particular, A(0)

1 = A1. Of course, β(k+1) is not a Steenrod operation for k > 0 and so A(k)
r

is the same as A(k′)
r as algebras over the Steenrod algebra for any k, k′ > 0. Nevertheless,

it makes sense to say that the mod p cohomology of some space X is isomorphic to A(k)
r .

Theorem B. For k ≥ 0 and r|(p − 1) there is a p-complete space Xk(r) such that

H∗(Xk(r);Fp) ∼= A(k)
r .

The spaces in theorem B are constructed by first taking the quotient of (BS1)p̂ by some
appropriate action of the p-adic integers and then killing the one dimensional skeleton.

Having established which algebras Bi,r, Ar are realizable, we consider the problem of
classifying up to p-completion all homotopy types which realize these algebras. In the case
of the algebras Ar we obtain that the spaces of part (1) of theorem B form a complete list
of p-complete homotopy types realizing the algebras A(k)

r .

Theorem C. Let H∗(X;Fp) ∼= A(k)
r . Then X̂p ' Xk(r).

It is interesting to note that in proving this theorem we face the problem of comput-
ing the mod p cohomology of some component of map(BZ/p,X) in a case in which the
appropriate T functor does not vanish in degree 1.

Finally, we consider the problem of classifying up to p-completion all homotopy types
realizing Bi,r. Because of theorem A, we only need to deal with the cases of B0,r and
B1,r. We obtain the amazing result that for each of these algebras there are infinitely
many different p-complete spaces realizing it.
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Theorem D. Let r|(p−1) . There are spaces Yk,r for 0 ≤ k ≤ ∞ and Zk,r for 0 < k ≤ ∞
such that

H∗(Yk,r;Fp) ∼= B1,r

H∗(Zk,r;Fp) ∼= B0,r

All these spaces are p-complete and have different homotopy type.

Here Y∞,r and Z∞,r are the p-completions of the spaces constructed by Cooke ([7]). In
particular, Y∞,1 = S3〈3〉p̂ and theorem D shows that there is an infinite family of “fake”
S3〈3〉, i.e. spaces with the same mod p cohomology as S3〈3〉 but not homotopy equivalent
to S3〈3〉 even after p-completion. Among these spaces the true S3〈3〉 is distinguished by
being the only one which can carry an H-space structure.

Our next result shows that the spaces of theorem D form a complete list of p-complete
homotopy types realizing the algebras B0,r and B1,r.

Theorem E. (1) If H∗(X;Fp) ∼= B1,r then there exists 0 ≤ k ≤ ∞ such that X̂p ' Yk,r.

(2) If H∗(X;Fp) ∼= B0,r then there exists 0 < k ≤ ∞ such that X̂p ' Zk,r.

Finally we study suspensions of all the spaces constructed. It turns out that even after
an l-fold suspension all the “fake” spaces are not homotopy equivalent to the genuine ones;
i.e. the spaces which were constructed out of S3.

Theorem F. If k 6= ∞, for all r|(p − 1) and for all 0 ≤ l < ∞, the l-fold suspensions
ΣlYk,r and ΣlY∞,r are not homotopy equivalent.

The analogous statement is true for the spaces Zk,r.
The method used to prove most of the theorems stated above is based on the study

of the mapping spaces map(BZ/p,X), where X is a space whose cohomology is assumed
to be of the form Fp[x] ⊗ E(y). Here the techniques developed by Lannes ([17]) play a
fundamental role.

In order to show in a simplified way the main ideas in the proofs of theorems A to E
above, we present now a rough description of the homotopy classification of spaces with
the same cohomology as S3〈3〉. This will also illustrate where the fake S3〈3〉 come from.
Imagine we have a p-complete space X with the same mod p cohomology as S3〈3〉. Take
Y = map(BZ/p,X)f to be an appropriate component of the space of maps from BZ/p to
X and compute, using the T functor, the mod p cohomology of Y . It turns out that Y is
homotopy equivalent to X but the gain from X to Y is that Y exhibits a greater symmetry
than X for Y belongs to a principal fibration

BZ/p → Y → Y (1).

The cohomology of Y (1) has the form Fp[x2]⊗E(β(x2)) hence either H∗(Y (1);Fp) ∼= B0,1

or H∗(Y (1);Fp) ∼= A1 and it turns out that both cases are possible. Hence, we already have
two possibilities for X: the true S3〈3〉 obtained by taking Y (1) to be Cooke’s realization
of B0,1 and a fake one obtained by taking Y (1) equal to the space X0(1) of theorem B. If
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H∗(Y (1);Fp) ∼= B0,1 then we can apply the same technique again and obtain a principal
fibration

BZ/p → Y (1) → Y (2)

with again two possibilities for Y (2). At the end we obtain either an infinite sequence

X → Y → Y (1) → Y (2) → . . . → Y (j) → . . .

with all spaces having mod p cohomology of type B(k)
i,r or a finite sequence

X → Y → Y (1) → Y (2) → . . . → Y (j),

where the last space has mod p cohomology of type A(k)
1 , stopping the inductive process

because map(BZ/p, Y (j))f will not be homotopy equivalent to Y (j). The first case forces
X ' S3〈3〉p̂ and in the second one we obtain an infinite family of fake S3〈3〉. Moreover,

the uniqueness of realizations of the algebras A(k)
r yields the homotopy uniqueness of each

of the fake spaces.
The paper is organized as follows. Section 2 deals with the algebraic problem of classi-

fying unstable algebras over the Steenrod algebra of the form Fp[x]⊗E(y) with β(x) = y.
There we introduce the algebras Bi,r and Ar. In section 3 we compute the T functor
applied to these algebras, a computation that will be crucial for the rest of the paper.
In section 4 we prove the Cooke conjecture, i.e. theorem A (cf. theorem 4.3). Section 5
is devoted to the construction of spaces whose cohomology is of the form A(k)

r . Here we
prove theorem B (cf. theorem 5.5). In section 6 we obtain the homotopy classification of
the spaces of section 5, proving theorem C (cf. theorem 6.1). Section 7 deals with the
construction of spaces realizing Bi,r and in particular we obtain the family of fake S3〈3〉
and we prove theorem D (cf. propositions 7.1 and 7.7 and corollary 7.6). In section 8 we
show that there are no more p-complete spaces realizing the algebras Bi,r beside those
constructed in section 7, by proving theorem E (cf. theorem 8.2). In section 9 we study
suspensions of all the constructed spaces and prove theorem F (c.f. corollary 9.13 and
corollary 9.15) using the localization functor of [9]. A final section 10 contains some tables
which may help the reader through the rather intricated notation we use to denote the
spaces we are dealing with and their cohomology algebras.

The first and second author would like to thank the Sonderforschungsbereich 170 in
Göttingen and specially L. Smith for the kind hospitality which made possible the joint
work which has lead to the present paper. The third one would like to thank the Centre
de Recerca Matemàtica in Barcelona for bringing together the authors again. All of us are
grateful to Fred Cohen for many helpful discussions.

Warning. Throughout this paper p denotes an odd prime.

2. Some unstable algebras over the Steenrod algebra. Through this section we
say that A is a PE-algebra if A is a commutative graded Fp-algebra which is the tensor
product of a polynomial algebra on a generator of degree 2n and an exterior algebra on
a generator of degree m. We say that A has type (2n,m). We will usually call x one
polynomial generator and y one exterior generator.
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Our first example of an unstable algebra over the Steenrod algebra is a PE-algebra A
of type (2, 3). We define an unstable action of the mod p Steenrod algebra over A by the
Cartan formula and the identities

P 1x = xp ; P ix = 0, i > 1 ; βx = y,

P 1y = xp−1y ; P iy = 0, i > 1 ; βy = 0.

These formulas certainly define an unstable action of Ā over A, where Ā is the free as-
sociative algebra generated by P i, i > 0, and β. In order to see that this action factors
through the Steenrod algebra A we have to check that the Adem relations hold in A. This
could be done directly using the techniques in [24] but it follows also from the following
alternative description of A as a module over the Steenrod algebra.

Let H be the mod p cohomology of BZ/p and let P ⊂ H be the even dimensional
subalgebra. P is a polynomial algebra on one generator v in degree 2. Let us denote by
P+ the submodule of P formed by the elements of positive degree. Consider the diagram
in U (the category of unstable modules over the Steenrod algebra):

ΣH
π−→ ΣH

ΣP+

φ←− P

where π is the natural projection and φ is the homomorphism given by

φ(vn) = nσ(uvn−1)

where u is a one dimensional generator in H such that βu = v and σ denotes suspension.
One can easily check that φ is an A-homomorphism. Actually, φ is the composition

P
∆−→ P ⊗ P

k⊗1−−→ Σ2Fp ⊗ P ∼= Σ2P
j−→ ΣH

ΣP+
,

where ∆ is the diagonal, k is the projection and j is an inclusion sending σ2vn to σ(uvn).
Then if Ā is the pull back of the above diagram, Ā is an unstable module over the Steenrod
algebra and a straightforward computation shows that Ā ∼= A as Ā-modules. This shows
that the Adem relations hold true in A since they hold true in Ā.

If λ is a unit in Fp then the map x 7→ λx induces an algebra automorphism of A which
commutes with the Steenrod algebra action. Hence, for any r dividing p − 1 we have an
action of the cyclic group of order r on A and the algebra of invariants of this action is also
an unstable algebra over the Steenrod algebra. We call this algebra Ar. It is a PE-algebra
of type (2r, 2r + 1) and the action of the Steenrod algebra is determined by:

P 1X = rXs+1,

βX = Y,

P 1Y = rXsY,

where s = (p− 1)/r.
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Let i ≥ 0. Our second example of an unstable algebra over the Steenrod algebra is an
algebra B which is a PE-algebra of type (2pi, 2pi + 1). We define an unstable action of
the Steenrod algebra over B by the Cartan formula and the identities

P pi

x = xp , P kx = 0, k 6= 0, pi,

P ky = 0 for any k > 0,

βx = y , βy = 0.

As before, a direct calculation as in [24] would check that the Adem relations hold, but we
will instead use an alternative description of B as an unstable module over the Steenrod
algebra. Let H be as before and let P (i) be the subalgebra of H generated by vpi

. Let
J(2) be the reduced mod p cohomology of S1 ∪p e2. Consider the diagram in U

Σ2pi−1J(2)⊗ P (i) π−→ Σ2pi

P (i)
φ←− P (i)

where the map π is the natural projection and φ is given by the composition

P (i) ∆−→ P (i)⊗ P (i) −→ Σ2pi

Fp ⊗ P (i) ∼= Σ2pi

P (i),

or, equivalently, by the formula

φ(vpi

) = nσ2pi

(v(n−1)pi

).

Then if B̄ is the pull back of this diagram, B̄ is an unstable module over the Steenrod
algebra such that B̄ ∼= B as Ā-modules. As before, this shows that B is an unstable
algebra over the Steenrod algebra.

If λ is a unit in Fp then the map x 7→ λx induces an algebra automorphism of B which
commutes with the Steenrod algebra action. This produces, in the same way as before,
algebras Bi,r for any i ≥ 0 and any r dividing p− 1, with generators X and Y in degrees
2pir and 2pir + 1, respectively, such that

P pi

X = rXs+1, P pj

X = 0, j 6= i,

βX = Y,

P pi

Y = (r − 1)XsY, P pj

Y = 0, j 6= i.

Notice that Ar and B0,r are isomorphic as graded algebras, both being the tensor
product of a polynomial algebra on one generator x in degree 2 and an exterior algebra
on one generator y in degree 3. Moreover, the relation βx = y holds in both algebras.
However, Ar and B0,r are not isomorphic as algebras over the Steenrod algebra, as one
can easily check.

By construction, we see that if t divides r then Ar is a subalgebra of At and Bi,r is a
subalgebra of Bi,t. There are no further inclusions between these unstable algebras over
the Steenrod algebra.

The next theorem proves that there are no more examples of PE-algebras which are
unstable algebras over the Steenrod algebra and such that βx = y.
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Theorem 2.1. Let A be a PE-algebra which is an unstable algebra over the Steenrod
algebra and such that βx = y. Then A is isomorphic, as an algebra over the Steenrod
algebra, to one of the algebras Ar, Bi,r constructed above.

Proof. Notice that the ideal generated by y in A is closed under the action of the Steenrod
algebra. Hence A/〈y〉 ∼= Fp[x] should be an unstable algebra over the Steenrod algebra.
It is well known (cf. [25]) that this implies that if A is of type (2n, 2n + 1) then n = pir
for some i ≥ 0 and some r dividing p − 1. Put s = (p − 1)/r. Then we can choose the
generator x such that

P pi

x = rxs+1.

This well known fact admits a tedious elementary proof using the Adem relations and is
also a trivial consequence of the Adams-Wilkerson embedding theorem ([1]). If i > 0 we
can use the Adem relation

P 1βP pi−1 = −βP pi

+ P pi

β

to deduce
P pi

y = (r − 1)xsy.

By dimensional reasons and unstability, P pj

x = 0 = P pj

y for any j 6= i. Hence A is
isomorphic to Bi,r.

In the case i = 0 if we write P 1y = λxsy then the Adem relation

2P 1βP 1 = βP 1P 1 + P 1P 1β

gives the following degree 2 equation for λ:

λ2 + (1− 2r)λ + r(r − 1) = 0

whose roots are λ = r, r− 1. In the first case A is isomorphic to Ar and in the second one
it is isomorphic to Bi,r. ¤

Some of these PE-algebras appear as the mod p cohomology of some spaces. Let S3〈3〉
denote the 3-connective covering of S3, i. e. the fibre of the degree one map S3 −→ K(Z, 3).
Then one can easily deduce from the spectral sequence of the fibration

K(Z, 2) → S3〈3〉 → S3

and theorem 2.1 that
H∗(S3〈3〉;Fp) ∼= B1,1

as algebras over the Steenrod algebra. Moreover, since S3〈3〉 is a loop space, the p-
completion of S3〈3〉 carries an action of the cyclic group of order p− 1 and by taking the
homotopy quotient of S3〈3〉p̂ by the restriction of this action to the cyclic group of order
r, for any r dividing p− 1, we obtain a space Xr such that H∗(Xr;Fp) ∼= B1,r. (See [7] for
further details on this construction.)
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If Y is the fibre of the map S3 → K(Z, 3) of degree p then

H∗(Y ;Fp) ∼= B0,1

as algebras over the Steenrod algebra. Again, the p-completion of Y carries an action of
the cyclic group of order p− 1 and this produces p-complete spaces Yr for any r dividing
p− 1 such that H∗(Yr;Fp) ∼= B0,r as algebras over the Steenrod algebra. (See also [7] for
details.)

Finally, in section 5 we will prove that all PE-algebras Ar are realizable.
Even if we are only interested in the PE-algebras with β(x) = y it will be necessary

to consider PE-algebras where the Bockstein homomorphism acts trivially. They will
indeed play an important role in the forthcoming sections. We denote by A′

1 the PE-
algebra of type (2, 3) with an unstable action of the Steenrod algebra given by β = 0 and
P 1(y) = xp−1y. Let A′

r for r dividing p−1 be the algebra of invariants of A′
1 by the action

of the cyclic group of order r which sends x to λx and y to λy for λ an r-th root of unity.
A′

r is a PE-algebra of type (2r, 2r + 1) with an unstable action of the Steenrod algebra.
Let B′

i,1 be the same graded algebra Bi,1 but with the Steenrod algebra action given by
β = 0 and P t(y) = 0 for t ≥ 0. Let B′

i,r for r dividing p− 1 be the algebra of invariants of
B′

i,1 under the action of the cyclic group of order r which sends x to λx and y to λy for λ
an r-th root of unity.

We denote by C1 a PE-algebra of type (2, 1) with an unstable action of the Steenrod
algebra given by β(x) = xz where x denotes a 2 dimensional generator and z denotes a
one dimensional generator. Notice that A1 is isomorphic to a subalgebra of C1. The cyclic
group of order r for r dividing p− 1 acts on C1 leaving z and xr invariants. We denote by
Cr the algebra of invariants, which is a PE-algebra of type (2r, 1) with an unstable action
of the Steenrod algebra. We also need a Bockstein-free version of these algebras which we
denote by C′

r.
If any of the above algebras with trivial Bockstein appears as the mod p cohomology of

some space X it makes sense to ask about the order of the higher Bockstein which connects
the polynomial and the exterior part and we indicate this order as a superscript. In this
way, the notation

H∗(X;Fp) ∼= A(k)
r

means that H∗(X;Fp) ∼= A′
r as algebras over the Steenrod algebra and

β(i)(x) =
{

0, i ≤ k

y, i = k + 1.

where β(i) denotes the i-th order Bockstein, i.e. the i-th differential in the mod p Bockstein
spectral sequence of X. In the same way, we introduce the notations H∗(X;Fp) = B(k)

i,r

and H∗(X;Fp) = C(k)
r .

For further reference, we summarize the algebras that we have considered so far in table
10.1.
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3. Computing Lannes T functor. Let T denote the Lannes functor defined as left
adjoint to H⊗− in the category U of unstable modules over the Steenrod algebra (see [17]
for a full description of its properties.) Here H denotes the mod p cohomology of Z/p as
in the previous section. When R is an unstable algebra over the Steenrod algebra then so
is T (R) and T becomes a functor in the category K of unstable algebras over the Steenrod
algebra.

Given a K-map f : R → H, its adjoint restricts to a K-map T 0(R) → Fp, where T 0(R) is
the subalgebra of T (R) of all elements of degree zero. We define the connected component
of T (R) corresponding to f as:

Tf (R) = T (R)⊗T 0(R) Fp.

Furthermore, Tf may be thought as a functor defined on the category of R-U-modules and
with values in the category of Tf (R)-U-modules (cf. [13].) We can also consider Tf (M)
as an R-U -module induced by the natural K-map ε:R → Tf (R) and then ε:M → Tf (M)
becomes a natural transformation of R-U-modules.

The purpose of this section is to compute for various PE-algebras A constructed in the
previous section, namely, Ar for r|(p− 1) and Bi,r for i ≥ 0 and r|(p− 1), the particular
component of T (A) that corresponds to a map f : A → H that can be uniformly described
as the composition

A
h−→ Fp[x] k−→ H

where h: A → Fp[x] is the projection onto the polynomial part of A and k is the obvious
inclusion of Fp[x] in the even part of H. Our result is as follows.

Theorem 3.1. (1) Tf (A1) ∼= C1 and the natural map ε:A1 → Tf (A1) is the inclusion
of algebras given by ε(x) = x and ε(y) = xz.

(2) For all i ≥ 0 the natural map ε:Bi,1 −→ Tf (Bi,1) is an isomorphism.
(3) For any r|(p − 1) and all i ≥ 0, the inclusions Ar → A1 and Bi,r → Bi,1 induce

isomorphisms Tf (Ar) ∼= Tf (A1) ∼= C1 and Tf (Bi,r) ∼= Tf (Bi,1) ∼= Bi,1.

We will be using the following lemma that can be easily obtained:

Lemma 3.2. Let A and B be two unstable algebras over the Steenrod algebra and f : A →
B a K-map that induces an isomorphism HomK(B,H) ∼= HomK(A,H). Then, for a K-map
g:B → H and any B-U -module M

Tg◦f (M) ∼= Tg(M)

and the Tg◦f (A)-U-module structure of Tg◦f (M) is induced by Tg◦f (A) → Tg(B). There-
fore, Tg◦f (M) is an A-U-module through A → Tg◦f (A) → Tg(B) or equivalently through
A → B → Tg(B). ¤

Proof of 3.1.(1). Recall that A1 = Fp[x]⊗E[y], deg(x) = 2, β(x) = y, P 1(y) = yxp−1 and
f has been defined as the composition k ◦ h where h is the projection A1 −→ Fp[x] and k
identifies Fp[x] with the even part of H.
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A1 sits in an exact sequence of A1-U-modules

(1) 0 → yFp[x] → A1 → Fp[x] → 0

and Tf is exact so our first job will be the calculation of Tf (yFp[x]) and Tf (Fp[x]). Both
yFp[x] and Fp[x] can actually be considered as Fp[x]-U-modules, with the A1-U -module
structure induced by the projection h:A1 → Fp[x]. According to lemma 3.2 what we have
to do is to compute Tk(yFp[x]) and Tk(Fp[x]) as Fp[x]-U-modules. T (Fp[x]) is well known
(see [3]) and ε:Fp[x] → Tk(Fp[x]) turns out to be an isomorphism. For yFp[x] we obtain:

Lemma 3.3. Tk(yFp[x]) ∼= zFp[x] with deg(z) = 1; that is, a Fp[x]-U-module on one gen-
erator of degree one on which the Steenrod operations act trivially. Moreover, ε: yFp[x] →
Tk(Fp[x]) is an Fp[x]-U -module map given by ε(y) = zx.

Proof. yFp[x] might be identified to ΣxFp[x] as Fp[x]-U-module (Σ denotes the suspension).
Since Tk commutes with suspensions we must calculate Tk(xFp[x]) and for this we use the
following exact sequence of Fp[x]-U-modules:

0 → xFp[x] → Fp[x] → Fp → 0.

Tk(Fp) is clearly trivial and we obtain Tk(xFp[x]) ∼= Tk(Fp[x]) ∼= Fp[x]. It also follows that
ε is the inclusion xFp[x] → Fp[x].

Finally we apply Σ and write ΣFp[x] as zFp[x] in order to get to the conclusion of the
lemma. ¤

The above computation together with lemma 3.2 give us Tf (yFp[x]) and Tf (Fp[x]) as
Tf (A1)-U-modules and also as A1-U-modules. Then, the exact sequence (1) induces a
diagram of A1-U-modules:

0 −−−−→ yFp[x] −−−−→ A1 −−−−→ Fp[x] −−−−→ 0

ε

y ε

y ε

y∼=
0 −−−−→ zFp[x] −−−−→ Tf (A1) −−−−→ Fp[x] −−−−→ 0

where the bottom row is an exact sequence of Tf (A1)-U-modules. This diagram implies
that ε:A1 → Tf (A1) is a K-monomorphism and Tf (A1) ∼= Fp[x]⊗E[z] with ε determined
by ε(x) = x and ε(y) = xz. ¤
Proof of 3.1.(2). Now we deal with the cases Bi,1

∼= Fp[xi]⊗E[yi], deg xi = 2pi, β(xi) = yi

and P pi

(yi) = 0, so that Bi,1 sits in an exact sequence of Bi,1-U-modules:

(2) 0 → yFp[xi] −→ Bi,1 −→ Fp[xi] → 0

with yFp[xi] isomorphic as Fp[xi]-U-module to Σ2pi+1Fp[xi]. In these cases f = k ◦h with h

the projection Bi,1 −→ Fp[xi] and k:Fp[xi] → H defined by k(xi) = vpi

, v a two dimensional
generator of H.
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Just as in the proof of the first part it is enough to compute Tk(yFp[xi]) and Tk(Fp[xi])
and, in this case, both ε: yFp[xi] −→ Tk(yFp[xi]) and ε:Fp[xi] −→ Tk(Fp[xi]) are isomorphisms,
thus the sequence (2) gives rise to the diagram:

0 −−−−→ yFp[xi] −−−−→ Bi,1 −−−−→ Fp[xi] −−−−→ 0

ε

y∼= ε

y ε

y∼=
0 −−−−→ yFp[xi] −−−−→ Tf (Bi,1) −−−−→ Fp[xi] −−−−→ 0

and this implies the desired result. ¤
Proof of 3.1.(3). We will work out only the case of Ar for the case of Bi,r is essentially
the same. Recall that Ar is the subalgebra of invariants of A1 by the action of Z/r and T
commutes with taking invariants. In fact, we obtain:

(1) Tf (Ar) ∼= Tf

(
AZ/r

1

) ∼=
(∏

fλ

Tfλ
A1

)Z/r

where fλ runs through maps A1 → H that restrict as f to Ar; that is, fλ is the composition
A1 → Fp[x] kλ−→ H, with kλ(x) = λv, v a two dimensional generator of H and λ ∈ Fp, such
that fλ|Ar

= f , and this equality holds if and only if λr = 1, i.e. λ ∈ Z/r ⊂ Fp∗. Now it is
clear that an element of Z/r induces a permutation of the factors in

∏
λ∈Z/r Tfλ

(A1) and
then ( ∏

λ∈Z/r

Tfλ
(A1)

)Z/r ∼= Tf (A1). ¤

In a forthcoming section we will need a few variants of theorem 3.1.

Proposition 3.4. Let c : Bi,r → H, c : Ar → H denote the homomorphisms which are
zero in positive degrees. Then Tc(Bi,r) ∼= Bi,r and Tc(Ar) ∼= Ar.

Proof. The proof is completely analogous to the proof of 3.1 except for two differences: We
have Tc(Fp) = Fp and this implies Tc(A1) = A1 and Tc(Bi,1) = Bi,1 by the same argument
as in 3.1(1) and (2). On the other hand, the product in (1) has only one factor in the case
of the trivial homomorphism c. ¤

One can check that the proofs of 3.1 and 3.4 work also for the algebras A′
r and B′

i,r

and we have:

Proposition 3.5. Let c and f be as in 3.1 and 3.4 respectively. Then Tc(B′
i,r) ∼= B′

i,r,
Tc(A′

r) ∼= A′
r and Tf (A′

r) ∼= C′
1. ¤

4. Non-realizability of PE-algebras. In this section we prove the Cooke conjecture as
stated in the introduction. The proof will follow from a study of the transgression in the
Serre spectral sequence of some fibration. We start with a lemma describing an interesting
relation in the action of the Steenrod algebra on the mod p cohomology of B2Z/p. We use
the notation

P∆j = P pj

P pj−1· · ·P 1.
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Lemma 4.1. The following identities hold in H∗(B2Z/p;Fp):
(1) P tP∆rβι = 0 for 0 < t < pr+1.

(2) P pj

βP∆j−1βι = βP∆j βι 6= 0 for j > 0.

Proof. Recall that H∗(B2Z/p;Fp) is a free graded–commutative algebra on free generators
P Iι where I is an admissible sequence of excess ≤ 2:

H∗(B2Z/p;Fp) = Fp[ι, βP 1βι, . . . , βP∆j βι, . . . ]⊗ E(βι, P 1βι, . . . , P∆j βι, . . . ).

Hence βP∆j βι is an indecomposable in H∗(B2Z/p;Fp). We prove first (1). If r = 0 we
have P tP 1βι = λP t+1βι = 0 by unstability. We proceed then by induction:

P tP∆rβι = P tP pr

P∆r−1βι =
[t/p]∑
s=0

λsP
pr+t−sP sP∆r−1βι.

In the right hand expression the term for s = 0 vanishes by unstability and all other terms
are zero by the induction hypothesis. The lemma follows now from the Adem relation for
P pj

βP pj−1
in the following way

P pj

βP pj−1
P∆j−2βι =

pj−1∑
t=0

λtβP pj+pj−1−tP tP∆j−2βι

+
pj−1−1∑

t=0

µtP
pj+pj−1−tβP tP∆j−2βι.

(If j = 1, delete P∆j−2 in this formula.) By (1) and the unstability condition, the right
hand term reduces to λpj−1βP pj

P∆j−1βι and the proof ends by checking λpj−1 = 1. ¤
Proposition 4.2. Assume H∗(X;Fp) ∼= Bi+1,1, i ≥ 0, as algebras over the Steenrod
algebra. Assume also that there is a fibration

X −→ E
g−→ B2Z/p

such that x transgresses to P∆iβι plus decomposables, where ι ∈ H2(B2Z/p;Fp) is the
fundamental class. Then i = 0.

Proof. Consider the spectral sequence of the fibration X → E → B2Z/p. Since τ(x) =
P∆iβι + d this element has to be killed by g∗. Hence g∗(βP∆iβι + βd) = 0. If we assume
i > 0 we can apply the lemma and obtain

0 = g∗(P 1P pi

βP∆i−1βι+P 1βd) = g∗(P pi+1βP∆i−1βι+P 1βd) = g∗([βP∆i−1βι]p+P 1βd).

Notice that βP∆i−1βι is an even dimensional indecomposable in H∗(B2Z/p;Fp). Using 4.1
we have the equalities

P 1P∆j βι = 0, j ≥ 0,

P 1βP∆j βι =
{

[βP∆j−1βι]p, j > 0
0, j = 0
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and an elementary argument shows that P 1βd cannot contain the term [βP∆i−1βι]p.
Hence, there is some differential in the spectral sequence, coming from an element in
total degree 2pi+1 + 2p− 1 which kills [βP∆i−1βι]p + other terms. By inspecting the E2-
term of the spectral sequence in total degree 2pi+1 + 2p − 1 we see that only x ⊗ ιp−2βι
and y ⊗ ιp−1 may eventually kill this element.

We know by hypothesis that the first non vanishing differential maps x to P∆iβι + d.
Hence it does not map x ⊗ ιp−2βι to [βP∆i−1βι]p + other terms. Since βx = y, the next
differential maps y to βP∆iβι + β(d) and so it cannot kill [βP∆i−1βι]p + other terms. In
any case, [βP∆i−1βι]p + other terms survives, a contradiction that can only be avoided if
i = 0. ¤

Notice that the “elementary argument” mentioned in the above proof fails if p = 2.
This fact gives rise to a manifold of fascinating phenomena which will be studied in [4].

Theorem 4.3. If H∗(X;Fp) ∼= Bi,r as algebras over the Steenrod algebra, then i ≤ 1.

Proof. Since H1(X;Fp) = 0 we can assume, without loss of generality, that X is p-complete.
Let f : Bi,r → H∗(BZ/p;Fp) be the non trivial homomorphism considered in the last
section. Then by [17; 3.1.1] there is a map φ : BZ/p → X inducing f in mod p cohomology.
By theorem 3.1 we have

TfBi,r
∼= Bi,1,

where T denotes the T functor with respect to V = Z/p. Then, [17; 3.2.1] shows that

H∗(map(BZ/p,X)φ;Fp) ∼= Bi,1

where map(BZ/p,X)φ is the space of all maps BZ/p → X homotopic to φ. Observe now
that BZ/p is a connected abelian simplicial group and the action of BZ/p on itself by
right translations induces an action of BZ/p on the space map(BZ/p,X)φ. If Y is the
homotopy quotient of map(BZ/p,X)φ by this action, we have a fibration

(1) map(BZ/p,X)φ → Y → B2Z/p.

If we denote by i the induced map BZ/p → map(BZ/p,X)φ and by e : map(BZ/p, X)φ →
X the evaluation map at the base point of BZ/p (which is the unit of BZ/p as a simplicial
group) then one sees easily that e ◦ i = φ. In particular, i∗(x) = vpi

= P∆i−1βu where
x ∈ Bi,1 is the class in degree 2pi. Hence, the class x in the mod p cohomology of the
fibre of (1) transgresses to P∆i−1βι plus decomposables and proposition 4.2 shows that
i ≤ 1. ¤
Remark 4.4. This method can be applied to give a new short proof of the well known fact
that if H∗(X;Fp) ∼= Fp[x2pi ] then i = 0 for p odd and i = 0, 1 for p = 2. In this case there
exists also a fibration sequence

BZ/p −→ X −→ X
g−→ B2Z/p.

Then τ(x) = P∆iβι2 + d where d is a decomposable and the result follows from 0 =
g∗(βP∆iβι2 + βd).
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5. Spaces realizing Ar. Let us denote by π the additive group of the p-adic integers.
Let G be the automorphism group of π. G is isomorphic to the multiplicative group of the
invertible elements in the ring structure of π and this is the direct product of the cyclic
group of (p− 1)th-roots of unity by the group U1 = 1 + pπ. The group U1 is torsion free
and there is a monomorphism

φ : π → G

given by φ(x)(y) = exp(px)y where the product is taken in the ring structure of the p-adic
integers. Moreover, after identifying G with the invertibles of π, φ maps onto U1, the
logarithm providing an inverse.

We obtain therefore a precise description of all possible actions of π on π, namely, all
these actions are obtained by composing φ with multiplication by a p-adic number α. We
will denote by φα the one defined by α and by πφα the additive group of p-adic integers
endowed with the action defined by φα. Among them the ones of most interest for us
correspond to α = pk for k ≥ 0 and we will abbreviate φpk as φk.

Realizing Ar. We will construct a space realizing Ar as well as other related spaces. We
suggest to consider tables 10.2 and 10.3 in the appendix as a quick reference guide to the
spaces introduced in this section. For this aim we consider πφk , the p-adics endowed with
the action defined by φk for k ≥ 0. B2πφk inherits the action and we define spaces

Ek = Eφk
= B2πφk ×π EG

for all k ≥ 0. (π acts on G through φ.) Let us compute the mod p cohomology of Ek.
From the obvious fibration

B2πφk → Ek → EG/π ' Bπ

we get a spectral sequence

H∗(π; H∗(B2πφk ;Fp)) ⇒ H∗(Ek;Fp).

Notice that B2π ' BS1
p̂ and Bπ ' S1

p̂. Since π is q-divisible for any q 6= p, π can only
act trivially on H∗(B2πφk ;Fp) which is either trivial or one-dimensional in each degree.
Hence the spectral sequence yields immediately that for any k ≥ 0

H∗(Ek;Fp) ∼= E(z)⊗ Fp[x]

where z and x are classes in degrees 1 and 2, respectively. The Steenrod algebra should
act trivially on z and the Steenrod powers act on Fp[x] as they do in H∗(BS1;Fp). It only
remains to determine the action of the Bockstein homomorphism on the class x. This will
distinguish E0 from Ek for k ≥ 1. More in general, we will show that the action of the
higher Bocksteins on x implies that all these spaces are different.

Proposition 5.1. H∗(Ek;Fp) ∼= C(k)
1 for k ≥ 0.

Proof. To prove this, we will compute the cohomology of Ek with p-adic coefficients in low
dimensions by means of the Serre spectral sequence. We need the following results on the
homology of the p-adic integers.
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Lemma 5.2. (1) H1(π;Z) = π and for j ≥ 2, Hj(π;Z) is a Q-vector space.
(2) H1(π; π) ∼= π and for j ≥ 2, Hj(π; π) = 0 (trivial coefficients).
(3) The cohomology of π with twisted p-adics coefficients is

H0(π;πφα) = 0,

H1(π;πφα) ∼= Z/pν(α)+1,

Hj(π;πφα) = 0, j ≥ 2

where ν(α) denotes the biggest power of p dividing α.

Proof. We obtain H1(π;Z) ∼= π by the Hurewicz theorem. Since Hj(π;Z/q) = 0 for all
j ≥ 2 and all primes q the universal coefficient formula implies that Hom(Hj(π;Z),Z/q) ∼=
Ext(Hj(π;Z),Z/q) ∼= 0 for all j ≥ 2 and all primes q, hence statement (1) follows.

The statement (2) follows by the universal coefficient formula because Hom(π, π) ∼= π,
Hom(A, π) = 0 if A is p-divisible and Ext(A, π) = 0 if A is torsion free.

To prove (3) note first that zero is the only invariant element of πφα under the action of
π so H0(π; πφα) = 0. Next, we consider the well known description of the first cohomology
group through derivations:

H1(π; πφα) ∼= Der(π, πφα)/Ider(π, πφα).

A derivation π → πφα is determined by the image of 1 ∈ π. In fact, for a given derivation
d: π → πφα, if x ∈ π then d(x)+ exp(pαx)d(1) = d(x+1) = d(1+x) = d(1)+ exp(pα)d(x)
and this equation has a unique solution for d(x) once d(1) is fixed.

Moreover, the formula

da(x) = a
exp(pαx)− 1

pν(α)+1

defines a derivation π → πφα for any a ∈ π. This derivation is inner precisely when
a ≡ 0 (pν(α)+1) and therefore H1(π;πφα) ∼= Z/pν(α)+1.

It remains to compute Hj(π, πφα) for j ≥ 2. We will see that H∗(π; πφα) is isomorphic
to H∗(Z; πφα) with the action induced by restriction and then the result will follow because
Z is free.

The isomorphism that we claim is induced by the inclusion Z → π and it is proved in
degrees 0 and 1 by direct computation. It would be also clear if the coefficients were Z/pr

for any r > 1. Then the Lyndon-Hochschild-Serre spectral sequence for Z → π → π/Z
shows first that H̃∗(π/Z;Z/pr) = 0 and since π/Z can only act trivially on Z/pr, also that
H∗(π;πφα) ∼= H∗(Z; πφα). ¤

As a consequence of this lemma, in the spectral sequence of the fibration B2πφk →
Ek → Bπ with coefficients in Ẑp the only term that can contribute to H3(Ek; Ẑp) is
H1(π; H2(B2π; Ẑp)) ∼= Z/pk+1. This finishes the proof of proposition 5.1. ¤

Notice now that for any r dividing p− 1 there is an embedding of Z/r in G which gives
an action of Z/r on B2π and EG. Since G is isomorphic to Z/p − 1 × π we obtain an
induced free action of Z/r on Ek. Notice that since β(k+1)(x) = xz the action has to be
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trivial on z ∈ H1(Ek;Fp). Let Ek(r) be the quotient of Ek by this action. Since r is prime
to p, it is clear that

H∗(Ek(r);Fp) = H∗(Ek;Fp)Z/r = E(z)⊗ Fp[u]

where u corresponds to xr in H∗(Ek;Fp) and β(k+1)(u) = ruz. Hence,

Proposition 5.3. H∗(Ek(r);Fp) ∼= C(k)
r for k ≥ 0, r|(p− 1). ¤

Finally, let us consider the composition

Bπ
f−→ Ek −→ Ek(r)

where f is a section of the fibration B2π → Ek → Bπ. If E′
k(r) denotes the cofibre of this

composition then we have H∗(E′
k(r);Fp) ∼= Fp[u]⊗ E(w) with deg u = 2r, deg w = 2r + 1,

β(k+1)(u) = w and P 1(w) = rusw, where s = (p − 1)/r as is usual in this paper. In
particular

H∗(E′
k(r);Fp) ∼= A(k)

r .

Definition 5.4. For k ≥ 0, r|p− 1, we define Xk(r) as the p-completion of E′
k(r).

The next theorem establishes some properties of these spaces.

Theorem 5.5. For any r dividing p− 1 and k ≥ 0,

(1) Xk(r) is a simply connected p-complete space whose homotopy groups are finite
p-groups.

(2) H∗(Xk(r);Fp) ∼= A(k)
r .

Proof. Will be based in the following two propositions.

Proposition 5.6. Let R = Ẑp or Z and X a space with cohomology of finite type over R.

If H∗(X;Fp) = A(k)
r then in the R-cohomology Bockstein spectral sequence {Bl, dl} for X

(1) the first non-trivial differential is dk+1 and dk+1(u) = w,
(2) upn

survives to Bn+k+1 and dn+k+1([upn

]) = [upn−1w] and
(3) B∞ = 0.

Proof. This is a direct consequence of known results about the differential in the Bockstein
spectral sequence (cf. [16; pag. 102]). ¤

The next proposition might be of independent interest and we establish it for any prime
number, either two or odd.

Proposition 5.7. Let p be any prime and X a 1-connected, p-complete space, then:

(1) The following conditions are equivalent:
(i) Hj(X;Fp) is finite for all j.

(ii) πj(X) is a finitely generated Ẑp-module for all j.

(iii) Hj(X; Ẑp) is a finitely generated Ẑp-module for all j.
(2) The following conditions are equivalent:

(i) H̃j(X; Ẑp) is a finite p-group for all j.
(ii) πj(X) is a finite p-group for all j.
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Proof. Let F be the fibre of the rationalization X → X0. We can first obtain some general
facts about F . H∗(F ;Fp) ∼= H∗(X;Fp) and F → X is the p-completion of F . Also,
H∗(F ; Ẑp) ∼= H∗(X; Ẑp) and πj(F ) is a p-group for all j. Moreover, since F is the fibre
of a map between 1-connected spaces, the fundamental group of F is abelian and acts
trivially on the homology and homotopy of the universal cover of F (cf. [15]). Hence the
mod C Hurewicz theorem can be applied to F and we obtain that H̃j(F ;Z) is a p-group
(i.e. a group all of whose elements are p-power torsion) for any j.

Now, the proof of part (1) of the proposition will consist in the following sequence of
statements.
Claim 5.7.1: Hj(X;Fp) is finite for all j if and only if H̃j(F ;Z) is a finitely cogenerated
p-group for all j.

Let us write H̃j(F ;Z) as an extension of a divisible p-group Dj by a pure subgroup
Pj which is a direct sum of cyclic p-groups. Then one easily deduces that the mod p
homology of F is of finite type over Fp if and only if both Pj and Dj contain finitely many
summands for all j. Since a bounded pure subgroup is a direct summand this means
that the (reduced) integral homology groups of F are a direct sum of finitely many cyclic
p-groups and finitely many groups Z/p∞; that is, they are finitely cogenerated p-groups.
Claim 5.7.2: H̃j(F ;Z) is a finitely cogenerated p-group for all j if and only if πj(F ) is so.

Since π1(F ) is abelian π1(F ) ∼= H1(F ;Z) and then since the class of finitely cogenerated
abelian p-groups is an acyclic ring of abelian groups this claim follows by the mod C
Hurewicz theorem.
Claim 5.7.3: πj(F ) is a finitely cogenerated p-group for all j if and only if πj(X) is a
finitely generated Ẑp-module for all j.

From the homotopy exact sequence for the fibration F → X → X0 we obtain short
exact sequences

0 → πj+1(X)⊗Q/Z→ πj(F ) → Tor(πj(X),Q/Z) → 0

and then one of the implications. On the other hand, since X is the p-completion of the
nilpotent space F we also have short split exact sequences ([6; VI.5.1])

0 → Ext(Z/p∞, πj(F )) → πj(X) → Hom(Z/p∞, πj−1(F )) → 0,

hence the implication in the other direction is also true.
Claim 5.7.4: Hj(X;Fp) is finite for all j if and only if Hj(X; Ẑp) is a finitely generated
Ẑp-module for all j.

It suffices to show this equivalence for F , and this follows easily by the universal coeffi-
cients formula using claim 5.7.1.

This finishes the proof of part (1). Let us turn to the proof of part (2). With the same
argument as in Claim 5.7.4 we obtain that H̃j(X; Ẑp) is a finite p-group for all j if and
only if H̃j(F ;Z) is a finite p-group for all j. Again by the mod C Hurewicz theorem this is
equivalent to πj(F ) to be a finite p-group for all j and finally the same argument of Claim
5.7.3 shows that if the homotopy groups of either X or F are finite p-groups, then F → X
is actually a homotopy equivalence. ¤
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We can now finish the proof of Theorem 5.5. The space Xk(r) was defined as the p-
completion of E′

k(r). By construction we have π1(Ek(r)) ∼= Z/r × π and then by the van
Kampen theorem π1(E′

k(r)) ∼= Z/r. Hence ([6; p. 206]) E′
k(r) is Z/p-good and Xk(r) is

p-complete, simply connected and has the same mod p cohomology as E′
k(r). So we have

proved part (2) of the theorem.
By Proposition 5.7(1) Xk(r) is of finite type over Ẑp hence the Bockstein spectral

sequence applies and by Proposition 5.6 the cohomology groups H̃j(Xk(r); Ẑp) are actually
finite p-groups, hence by proposition 5.7(2) we obtain part (1) of the theorem. ¤
Remark 5.8. From Proposition 5.6 we can derive the integral cohomology of the spaces
Xk(r):

H̃i(Xk(r); Ẑp) ∼= H̃i(Xk(r);Z) ∼=
{
Z/pk+1+ν(j) i = 2rj + 1, j ≥ 1
0 otherwise.

Final remarks. Here is the reason for which we have been dealing with a certain collection
among all possible actions of π on π.

Proposition 5.9. Let πξ be the additive group of the p-adic integers together with a π
action defined by a non trivial homomorphism ξ:π → Aut(π) = G and define

Eξ = B2πξ ×π EG.

Then Eξ is homotopy equivalent to a space Ek = Eφk

Proof. From our discussion of the possible actions of π on π at the beginning of this section,
ξ is of the form φα for a p-adic integer α. That is:

ξ(x)(y) = epαxy.

Now, α might be written as α = pν(α)w where w ∈ 1 + pπ. Since w is invertible it
determines an automorphism

w:π → π.

Now, the identity B2π → B2π is w-equivariant if we consider the action given by ξ on the
source an by φν(α) on the target:

ξ(x)(y) = epαxy = epwpν(α)xy = φk(wx)(y).

In this way we get a map Eξ → Eν(α) which is in fact a homotopy equivalence because w
is invertible. ¤
Remark 5.10. Observe that until now all our constructions could be performed using BZ
instead of Bπ as base space of our fibrations, with actions of Z on π induced by restriction
from the actions of π on π that we used. Also, we could use BZ/p∞ instead of B2π.
However the above proposition would not be true in that case. We would need to complete
our spaces before proving such a result.
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6. Uniqueness of spaces realizing Ar. In section 5 we have constructed the spaces
Xk(r) whose mod p cohomologies realize A(k)

r for r dividing p − 1 and k ≥ 0 (theorem
5.5). In this section we show that up to p-adic completion these spaces are the only ones
which realize the algebras with higher Bocksteins A(k)

r .

Theorem 6.1. Let X be such that H∗(X;Fp) ∼= A(k)
r for some r|(p− 1) and k ≥ 0. Then

X̂p ' Xk(r).

Proof. Let X be a space satisfying the hypothesis of the theorem. Since H1(X;Fp) = 0 we
have that π1(X) is Z/p−perfect. Hence ([6; p. 206]) X̂p is a simply connected p-complete
space with the same mod p cohomology as X itself. By 5.6 and 5.7 the homotopy groups
of X̂p are finite p−groups.

Let f : BZ/p → X̂p be a map such that f∗ is non-trivial in degree 2r and trivial
in degree 2r + 1 and let Y denote the component of the mapping space map(BZ/p, X̂p)
containing the map f . There is an evaluation map e : Y → X̂p. The next step in the
proof of 6.1 will be to show that Y is homotopy equivalent to the space Ek of section 5.
According to the computation of the T functor in section 3, Tf (H∗(X;Fp)) ∼= E(z)⊗Fp[w]
with deg(z) = 1, deg(w) = 2 and

β(w) =
{

zw, k = 0
0, k > 0.

Notice that Tf (H∗(X;Fp)) is only an algebra over the Steenrod algebra and so higher Bock-
steins do not make any sense in Tf (H∗(X;Fp)) unless we show that it is the cohomology
of some space.

The computed value of the functor Tf is interpreted by [10] as follows. Let PnX̂p denote
the n-th stage of the Postnikov decomposition of X̂p. Then

{
map(BZ/p, PnX̂p)fn

}
is a

tower with
Y ' lim←−

n

map(BZ/p, PnX̂p)fn

and

lim−→
n

H∗(map(BZ/p, PnX̂p)fn ;Fp) ∼=
{

C′
1, k > 0,

C1, k = 0.

The natural homomorphism H∗(X;Fp) → lim−→n
H∗(map(BZ/p, PnX̂p)fn ;Fp) sends x to wr

and y to wrz.
Some information about the homotopy of the spaces map(BZ/p, PnX̂p)fn is provided

by results of Thom ([26], revisited in [21]). The principal fibration PnX̂p → Pn−1X̂p gives
rise to a principal fibration

map(BZ/p, PnX̂p)fn → map(BZ/p, Pn−1X̂p)fn−1

with fibre a union of components of map(BZ/p,K(πnX̂p, n)). But each of these compo-
nents has the homotopy type of a product of Eilenberg-MacLane spaces

K(Hn−j(BZ/p, πnX̂p), j), 1 ≤ j ≤ n.
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Since the homotopy groups of X̂p are finite p-groups and so are the homotopy groups of
map(BZ/p, Pn−1X̂p)fn−1 by induction, those of map(BZ/p, PnX̂p)fn

should also be finite
p-groups.

Let us write Yn = map(BZ/p, PnX̂p)fn
.

The class z in degree one in lim−→n
H∗(Yn;Fp) is represented by a class zn ∈ H∗(Yn;Fp)

for some n and also by its images in H∗(Yn+i;Fp). We fix such a sequence {zn}. This
sequence provides a map of towers:

{Yn} {z̄n}−−−→ {K(Z/pα(n), 1)}.
We will prove that we can choose the sequence α(n) to be unbounded. In fact, any of
these maps is a lifting of the classifying map Yn −→ K(Z/p, 1) of the class zn. Suppose
by induction that zn is classified by z̄n: Yn −→ K(Z/pα(n), 1), that is z̄∗n(ι) = zn if ι is the
fundamental class of H∗(K(Z/pα(n), 1);Fp). Observe that we can as well assume that α(n)
is the maximum possible such that this lifting exists. This is because all of the homotopy
groups of Yn are finite and then zn should be dual to a torsion homology class. Now we
look at the class zn+i, i ≥ 1. This is classified by Yn+i −→ Yn −→ K(Z/pα(n), 1) and the
obstructions for the existence of a lifting

Yn+i −→ K(Z/pα(n+i), 1)

with α(n + i) > α(n) are some higher Bocksteins. But no higher Bockstein can be non
trivial on zn for all big enough n because if this happens then wr is in the image of some
higher Bockstein, contradicting the fact that x ∈ H∗(X;Fp) has a non trivial Bockstein of
order k + 1. Hence, limn→∞ α(n) = ∞.

Consider now the inverse system of fibrations

. . . −−−−→ Fn −−−−→ Fn−1 −−−−→ . . .
y

y
. . . −−−−→ Yn −−−−→ Yn−1 −−−−→ . . .

y
y

. . . −−−−→ BZ/pα(n) −−−−→ BZ/pα(n−1) −−−−→ . . .

Notice that since the maps Yn −→ BZ/pα(n) are liftings of non-trivial maps Yn −→ BZ/p,
they induce epimorphisms between fundamental groups and so the spaces Fn are connected.

All homotopy groups involved in the above inverse system of fibrations are finite p-
groups, hence, in the limit, we get a fibration:

F −→ Y −→ Bπ

where F = lim←−n
Fn and π denotes as usual the additive group of the p-adic integers. Note

that in all these fibrations the base space is not simply connected. Nevertheless, at any
stage the Eilenberg-Moore spectral sequence of [12] starts with

E∗,∗
2

∼= Tor∗,∗
H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

)
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and converges strongly to the mod p cohomology of the fibre Fn because ([12]) the funda-
mental group of the base is a p-group and thus it acts nilpotently on the mod p cohomology
of the fibre. In the limit we have a spectral sequence

E∗,∗
2

∼= lim−→
n

Tor∗,∗
H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

)

converging to lim−→n
H∗(Fn;Fp).

Lemma 6.3. lim−→n
Tor∗,∗

H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

) ∼= Fp[w], deg(w) = 2 and so therefore

lim−→n
H∗(Fn;Fp) ∼= Fp[w].

Proof. Tor is covariant with respect to any of its three variables and lim−→ is an exact functor.
Hence one can easily derive a commutation formula for Tor and lim−→ which shows that

lim−→
n

Tor∗,∗
H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

) ∼= Tor∗,∗E(z)

(
E(z)⊗ Fp[w],Fp

) ∼= Fp[w].

Alternatively, one can directly compute the lim−→ as follows.
Let us denote

Kn = ker
{
H∗(Yn;Fp) → lim−→

n

H∗(Yn;Fp) ∼= E(z)⊗ Fp[w]
}
.

Kn is an ideal of H∗(Yn;Fp) and therefore a sub-H∗(BZ/pα(n);Fp)-module. The induced
H∗(BZ/pα(n);Fp)-module structure of E(z)⊗ Fp[w] factors:

H∗(BZ/pα(n);Fp) −−−−→ E(zn)
y

y
Kn −−−−→ H∗(Yn;Fp) −−−−→ E(z)⊗ Fp[w]

Observe that H∗(BZ/pα(n);Fp) ∼= E(zn) ⊗ Fp[an], deg(an) = 2. As a consequence we
have:

(1) Tor∗,∗
H∗(BZ/pα(n);Fp)

(
E(z)⊗ Fp[w],Fp

)

∼= Tor∗,∗E(zn)

(
E(zn)⊗ Fp[w],Fp

)⊗ Tor∗,∗Fp[an](Fp,Fp)
∼= Fp[w]⊗ TorFp[an](Fp,Fp)

There is an exact sequence:

(2) . . . → Torr,s
H∗(BZ/pα(n);Fp)

(
Kn,Fp

) → Torr,s
H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

) →
→ Torr,s

H∗(BZ/pα(n);Fp)

(
E(z)⊗ Fp[w],Fp

) → Torr−1,s
H∗(BZ/pα(n);Fp)

(
Kn,Fp

) → . . .
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which is natural with respect to maps Yn+i → Yn. Observe that no element of Kn survives
to the limit lim−→H∗(Yn;Fp). Since Kn is finite dimensional there is a large enough i such
that Kn → Kn+i is zero, hence so is

Tor∗,∗
H∗(BZ/pα(n);Fp)

(
Kn,Fp

) → Tor∗,∗
H∗(Z/pα(n+i);Fp)

(
Kn+i,Fp

)
.

Then (2) implies

lim−→
n

Torr,s
H∗(BZ/pα(n);Fp)

(
H∗(Yn;Fp),Fp

) ∼= lim−→
n

Tor∗,∗
H∗(BZ/pα(n);Fp)

(
E(z)⊗ Fp[w],Fp

)
.

For similar reasons (1) implies:

lim−→
n

Tor∗,∗
H∗(BZ/pα(n);Fp)

(
E(z)⊗ Fp[w],Fp

) ∼= Fp[w]. ¤

Lemma 6.4. Let {Zn} be a tower of fibrations of pointed connected p-complete spaces
with mod p cohomology of finite type. If lim−→n

H∗(Zn;Fp) is a polynomial algebra on one

generator w in degree 2 then lim←−n
Zn ' B2π.

Proof. An argument similar to one used above shows that there is a map of towers:

(1) {Zn} {gn}−−−→ {K(Z/pγ(n), 2)}

with γ(n) an unbounded sequence. Here, each gn detects a class in degree two of H∗(Zn;Fp)
that represents w in the limit, hence {gn} induces an isomorphism

lim−→
n

H∗(Zn;Fp) ∼= lim−→
n

H∗(K(Z/pγ(n), 2);Fp) ∼= Fp[w]

and dually
lim←−
n

H∗(Zn;Fp) ∼= lim←−
n

H∗(K(Z/pγ(n), 2);Fp)

because all relevant (co)homology groups are finite. By the same reason, this implies that
the induced map of towers:

{H∗(Zn;Fp)} → {H∗(K(Z/pγ(n), 2);Fp)}

is a pro-isomorphism.
Now, according to [6; III.6.6, pg. 88] the map of towers {RnZn} → {RnK(Z/pγ(n), 2)} is

a weak pro-homotopy equivalence, where {RnX} is the tower which defines Bousfield-Kan
p-completion. Hence,

lim←−
n

Zn = lim←−
n

R∞Zn = lim←−
n

RnZn ' lim←−
n

RnK(Z/pγ(n), 2) = B2π. ¤
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This lemma applies immediately to the tower {Fn} because the homotopy groups of
each Fn are finite p-groups and a space whose homotopy groups are finite p-groups is
necessarily p-complete, nilpotent and of finite mod p type. We have, therefore, obtained a
fibration

(2) B2π → Y → Bπ.

Since π can only act trivially on H∗(B2π;Fp), Y is p-complete (cf. [6; mod-Z/p fibre
lemma]). The Serre spectral sequence and the injectivity of H∗(X;Fp) → lim−→H∗(Yn;Fp)
show that the natural map

H∗(Y ;Fp) → lim−→
n

H∗(Yn;Fp) ∼= Tf (H∗(X;Fp))

is an isomorphism. By naturality of the Bockstein homomorphisms, we deduce that
H∗(Y ;Fp) = C(k)

1 . We want to deduce from here that the fibration (2) is fibre homo-
topy equivalent to the fibration

B2π → Ek → Bπ

of section 5. Fibrations with base space Bπ and fibre B2π are classified by the homotopy
set: [

Bπ,B Aut(B2π)
]

where Aut(B2π) is the topological monoid of the self homotopy equivalences of B2π.
According to [22] there is a fibration

B2π → B Aut(B2π) → B Aut(π)

having a section B Aut(π) → B Aut(B2π). Then

[
Bπ, B Aut(B2π)

] ∼=
[
Bπ, B Aut(π)

] ∼= Hom(π, Aut(π)).

Therefore, any fibration B2π → Z → Bπ is determined by an action of π on π. All these
actions were considered in section 5. From such classification we obtain an equivalence of
fibrations

B2π −−−−→ Y −−−−→ Bπ
∥∥∥ '

xg '
xw

B2π −−−−→ Ek −−−−→ Bπ

There is an action of Z/r on Ek considered in section 5 and also an action of Z/r on
Y defined in the following way. We have Y = map(BZ/p, X̂p)f and Z/r acts on BZ/p.
Since f∗ commutes with this action, we get an action on Y such that the evaluation map
e : Y → X̂p is equivariant. Naturality of T shows that on mod p cohomology this action
leaves z fixed and sends w to λw where λ is an r-th root of unity. In this form we obtain
a map l : Ek → X̂p
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Lemma 6.5. l is homotopic to an equivariant map.

Proof. First of all we notice that it is enough to prove that l is equivariant up to homotopy
for Wojtkowiak proved in [27] that when a finite group of order prime to p acts freely on a
space and the target space is p-complete, nilpotent and of finite type over Ẑp then a map
equivariant up to homotopy is homotopic to an equivariant map.

Ek is a two stage Postnikov system and there is an exact sequence of Didierjan ([8]) for
the group of homotopy classes of self homotopy equivalences of Ek:

1 → H2(π;πϕk) → E(Ek) → Aut(π)⊕Aut(π).

Since H2(π; πϕk) = 0, this shows that a homotopy self equivalence of Ek is determined up
to homotopy by its action on π1(Ek) and π2(Ek). The lemma is proved if we show that
Z/r acts on π1(Y ) and π2(Y ) as it does on π1(Ek) and π2(Ek).

The action of Z/r on π1(Y ) = π is determined by the action on H1(Y ;Fp) which can
only be trivial. Similarly, the action of Z/r on π2(Y ) = π is determined by the action on
H2(Y ; Ẑp) ∼= Ẑp and this action is determined by the action on H2(Y ;Fp). ¤

Hence we obtain a map

h : Ek(r) = Ek ×Z/r EZ/r → X̂p.

Let now k : Bπ → Ek(r) be the map considered in section 5. If kh is trivial we obtain a map
E′

k(r) → X̂p which induces isomorphism in mod p cohomology and the theorem is proved.
But X̂p is simply connected, its homotopy groups are finite p-groups and Hi(π; P ) = 0 for
i > 1 and any finitely generated Ẑp-module P with trivial action. Hence, by obstruction
theory, any map Bπ → X̂p is trivial. This ends the proof of theorem 6.1. ¤
7. Spaces realizing Bi,r. In section 2 we constructed for each algebra Bi,r a topological
realization. It turns out that these are not the only ones. In this section we will construct
several families of spaces, some of which will have cohomology isomorphic to Bi,r. We
suggest using tables 10.2 and 10.3 in the appendix as a quick reference guide to all these
spaces.

Let Xk = Xk(1) be the spaces introduced in section 5. Theorem 5.5 proves that

H∗(Xk;Fp) ∼= A(k)
1 .

Hence, the two dimensional class x in H∗(Xk;Fp) can be represented by a map

(1) Xk → B2Z/pk+1.

Let Yk be the fibre of this map. Yk is a p-complete space with finite homotopy groups.
From the construction of Xk we see that there is an action of the cyclic group of order r on
Xk, for any r|p−1. By [27] we can assume that the map (1) is equivariant with respect to
this action and the natural action on B2Z/pk+1. This yields an action of the cyclic group
of order r on Yk and we define Yk,r as the p-completion of the homotopy quotient of Yk by
this action:

Yk,r = (EZ/r ×Z/r Yk)p̂ .
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Proposition 7.1. H∗(Yk,r;Fp) ∼= B1,r as algebras over the Steenrod algebra.

Proof. We consider the sequence of fibrations

BZ/pk+1 → Yk,1 → Xk → B2Z/pk+1.

In the spectral sequence of the first three terms, the classes u and v in H∗(BZ/pk+1;Fp) are
transgressive and are mapped onto the classes x and y of H∗(Xk;Fp). By degree reasons
it follows that these are the only non vanishing differentials. Therefore, H∗(Yk,1;Fp) is a
PE-algebra of type (2p, 2p + 1).

We prove now H2p+1(Yk,1; Ẑp) ∼= Z/p.
We have seen that Yk,1, being a p-complete space, is (2p− 1)-connected. All homology

groups of Yk,1 are torsion groups, and therefore, H2p(Yk,1; Ẑp) = 0. The long exact se-
quence of cohomology groups associated to the fibration Yk,1 → Xk → B2Z/pk+1 contains

0 −→ H2p+1(B2Z/pk+1; Ẑp) −→ H2p+1(Xk; Ẑp)

−→ H2p+1(Yk,1; Ẑp) −→ H2p+2(B2Z/pk+1; Ẑp) −→ H2p+2(Xk; Ẑp) = 0.

The last group vanishes because of remark 5.8. The first two groups are isomorphic,
because both measure which high order Bockstein acts nontrivially on ι2, the generator
of H∗(B2Z/pk+1;Z/p), or on xp. In both cases this is β(k+2). Thus, we have to cal-
culate H2p+2(B2Z/pk+1; Ẑp). In dimension 2p + 1, the mod-p cohomology of B2Z/pk+1

is generated by ιp−1
2 β(k+1)(ι2) and P 1β(k+1)(ι2). All higher order Bocksteins vanish on

ιp−1
2 β(k+1)(ι2), which therefore comes from an integral class, and βP 1β(k+1)(ι2) 6= 0. Thus

H2p+2(B2Z/pk+1; Ẑp) ∼= Z/p and H2p+1(Yk,1; Ẑp) ∼= Z/p as claimed.
Hence, the two generators of H∗(Yk,1;Fp) are connected via the Bockstein. The only

algebra over the Steenrod algebra of this type is B1,1 (theorem 2.1).
For r|p − 1, the space Yk,r fits into the fibration Yk,1 → Yk,r → BZ/r. A spectral

sequence argument establishes the isomorphisms

H∗(Yk,r;Fp) ∼= H∗(Yk,r;Fp) ∼= H∗(Yk,1;Fp)Z/r ∼= BZ/r
1,1 = B1,r. ¤

For any map f : BA → Y , A an abelian group, the connected group BA acts on the
mapping space map(BA, Y )f . The Borel construction

Bor(Y, f) := EBA×BA map(BA, Y )f

sits in a sequence of fibrations

BA → map(BA, Y )f → Bor(Y, f) → B2A.
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Lemma 7.2. Let f : BA → Y be a map, A a compact abelian group. Then, eY :
map(BA, Y )f ' Y if and only if there exists a principal fibration BA

f−→ Y −→ Y and

eY : map(BA, Y )c ' Y where c denotes the constant map. Moreover, Y ' Bor(Y, f).

Proof. First let us assume that there exists a principal fibration BA
f−→ Y −→ Y . By

‘Thom–theory’ ([26], revisited in [21]) this principal fibration establishes a diagram of
principal fibrations

(*)

map(BA,BA)c −−−−→ map(BA, Y )f −−−−→ map(BA, Y )c

eBA

y eY

y e
Y

y
BA −−−−→ Y −−−−→ Y

The product h · g of two maps h : BA −→ BA and g : BA −→ Y is given by the action of
BA on Y . In general the fiber in the top row consists of all maps h : BA −→ BA such that
h · f ' f , in particular it contains the component of the constant map. The fundamental
group π1(Y ) acts on BA via maps homotopic to the identity. The fundamental group
π1(map(BA, Y )c) acts on the fiber via this action, which therefore also acts via maps
homotopic to the identity. Because the total space of the fibration is connected, this
action also must permute the components of the fiber, which is therefore connected and
consists only of the component of the constant map. Moreover, because A is a compact
abelian group the map eBA is an equivalence.

If eY also is an equivalence, then eY is also an equivalence, which proves one half of the
statement.

Now we assume that map(BA, Y )f ' Y . The space BA acts on map(BA, Y )f with
homotopy orbit Y := Bor(Y, f). This establishes the desired principal fibration

BA −−−−→ map(BA, Y )f ' Y −−−−→ Y .

Applying ‘Thom-theory’ again, yields the diagram (∗) of principal fibrations. This time the
first two vertical maps are equivalences and so is the third one. Moreover, the equivalence
of both rows in (∗) proves that Y ' Bor(Y, f). ¤

The following lemma may also be found in [20].

Lemma 7.3. Let K → G → H be an exact sequence of topological groups. If the
evaluation map map(BK, Y )c → Y is an equivalence, then

map(BH,Y ) →
∐

g|BK'c

map(BG, Y )g

is an equivalence, where c indicates a constant map.

Proof. H acts on B̃K := EG/K ' BK freely, and on Y trivially. The canonical map
Y → map(BK, Y )c is equivariant and an equivalence. Therefore

map(BH, Y ) ' Y hH ' (map(B̃K, Y )c)hH '
∐

g|BK'const

map(BG, Y )g.
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Here Y hH denotes the homotopy fixed point set. The last equivalence follows from [14]. ¤

Now we can state and prove the main result of this section. For j ≤ k + 1, let Yk(j)
denote the homotopy fibre of the composition

Xk −→ B2Z/pk+1 B2q−−→ B2Z/pk+1−j ,

where q : Z/pk+1 → Z/pk+1−j is the projection. These spaces fit into a sequence

Yk := Yk(0) → Yk(1) → · · · → Yk(k + 1) = Xk.

The realization BZ/p → Xk of the composition H∗(Xk;Fp) → Fp[x] → H∗(BZ/p;Fp) can
be lifted to a map BZ/pk+2 → Yk.

Table 10.4 in the appendix displays the above sequences. In table 10.5 one can read the
cohomology algebras of the spaces involved in table 10.4.

Proposition 7.4. (1)

H∗(Yk(j);Fp) ∼=





B1,1, j = 0
B0,1, j = 1
B′

0,1, 2 ≤ j ≤ k

A′
1, j = k + 1.

(2) The spaces fit into fibrations

BZ/pl gj,l−−−−→ Yk(j)
fj,j+l−−−−→ Yk(j + l) a2−−−−→ B2Z/pl,

where l ≤ k − j + 1. The last map classifies the two dimensional class x and is an
H2( ;Fp)-isomorphism. The first map is a realization of the composition

H∗(Yk(j);Fp) → Fp[x] → H∗(BZ/pl;Fp).

(3) For l ≤ k − j + 1, the evaluation e : map(BZ/pl, Yk(j))gj,l
→ Yk(j) is a homotopy

equivalence. Moreover, Yk(j + l) ' Bor(Yk(j), gj,l).
(4) For l = k − j + 2, there is a fibration

BZ/pl−1 → map(BZ/pl, Yk(j))gj,l
→ Ek → B2Z/pl−1.

(5) There exists a map B2π ' BS1
p̂ → Yk, which is a realization of the composition

H∗(Yk;Fp) → Fp[x] → H∗(BS1
p̂;Fp)

Proof. For j ≥ 1, a Serre spectral sequence argument for the fibrations

BZ/pk+1−j → Yk(j) → Xk → B2Z/pk+1−j
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shows that H∗(Yk(j);Fp) is a PE-algebra of type (2,3). The action of the Steenrod algebra
will be calculated later.

(2) follows from the commutativity of the diagram

BZ/pl −−−−→ BZ/pk+1−j −−−−→ BZ/pk+1−j−l −−−−→ B2Z/pl

∥∥∥
y

y
∥∥∥

BZ/pl −−−−→ Yk(j) −−−−→ Yk(j + l) −−−−→ B2Z/pl

y
y

y
y

∗ −−−−→ Xk Xk −−−−→ ∗
y

y
y

y
B2Z/pl −−−−→ B2Z/pk+1−j −−−−→ B2Z/pk+1−j−l −−−−→ B3Z/pl

The conditions on the maps can be easily obtained by looking at the differentials of the
associated Serre spectral sequences.

The classifying map Yk(j) → B2Z/pj of the fibration Yk(0) → Yk(j) is an H∗( ;Fp)-
isomorphism in low dimensions. This proves that β(x) = β(y) = 0 for j ≥ 2 and that
β(x) = y for j = 1, which determines one part of the Steenrod algebra action.

(3) follows from (2) and lemma 7.2. We only have to show that map(BZ/pl, Yk(j))c '
Yk(j) for all l and j. For l = 1 this is a consequence of theorem 3.4 and [17]. Now, lemma
7.3 and an induction over l proves the statement.

To prove (4), we use again lemma 7.3. In this case, it is l = k − j+2 and i = k − j+1,

map(BZ/pk−j+2, Yk(k + 1))fj,k+1gj,k−j+2 ' map(BZ/p, Yk(k + 1))gk+1,1 ,

because fj,k+1gj,k+2|BZ/pk−j+1 ' c, Yk(k + 1) ' Xk and map(BZ/p,Xk)gk+1,1 ' Ek (see
the proof of 6.1). We can apply the results of section 6 and get a principal fibration

map(BZ/pk−j+2, BZ/pk−j+1)q → map(BZ/pk−j+2, Yk(j))gk−j+2,j

→ map(BZ/p, Yk(k + 1))gk+1,1 ' Ek.

The first mapping space is equivalent to BZ/pk−j+1. This establishes the fibration of (4).
The composition

B2π ' BS1
p̂

pk+1

−−−−→ BS1
p̂ −−−−→ Ek ' map(BZ/p,Xk)gk+1,1 −−−−→ Xk

can be lifted to BS1
p̂ → Yk. Obviously, this map induces the desired map in mod p

cohomology of (5).
To complete the proof of (1), we finally have to calculate P 1(y). For j = k + 1, there is

nothing to show. P 1(y) 6= 0, for j ≤ k, contradicts the fact that map(BZ/p, Yk(j))gj,1 '
Yk(j), as theorem 3.1 shows. ¤
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To get a complete picture, we define X∞ := S3
p̂ and Y∞ := S3〈3〉p̂. Then,

BS1
p̂ → Y∞ → X∞ → B2S1

p̂ ' (B2Z/p∞)p̂

are fibrations. There exists a long sequence of maps

Y∞ → Y∞(1) → Y∞(2) → · · · ,

where Y∞(j) is the homotopy fibre of the map S3 pj

−→ B2S1
p̂ of degree pj . Moreover,

proposition 7.4 holds for Y∞. The proof is analogous.

Corollary 7.5. For every k ≤ ∞ and every 0 ≤ j ≤ k, the homotopy type of Yk(j)
determines the homotopy type of every space in the sequence associated to Yk.

Proof. Proposition 7.4 (2) and (3). ¤

Corollary 7.6. The spaces Yk,r are of different homotopy type.

Proof. For r = 1, this follows from proposition 7.4 (3) and (4). For r > 1, the map
Yk,1 = Yk → Yk,r induces an equivalence Yk ' map(BZ/p, Yk)g0,1 ' map(BZ/p, Yk,r)g,
where g : BZ/p

g0,1−−→ Yk −→ Yk,r. This follows from theorem 3.1 and [17]. ¤

Next we construct a list of spaces realizing the algebras B0,r, for r|p−1. Let s ∈ Z/r ⊂
(Z/p)∗ ∼= Aut(Z/p) be a generator. The diagram

Z/p× Z/p −−−−→ Z/p

s×s

y s

y
Z/p× Z/p −−−−→ Z/p

commutes, because s is given by a multiplication. The horizontal arrows are given by
addition. Passing to classifying spaces and mapping spaces and taking adjoints yields a
commutative diagram

BZ/p×map(BZ/p, Yk,r)g −−−−→ map(BZ/p, Yk,r)g

s×map(s,id)

y map(s,id)

y
BZ/p×map(BZ/p, Yk,r)g −−−−→ map(BZ/p, Yk,r)g.

Here, g denotes the composition BZ/p
g0,1−−→ Yk −→ Yk,r. Because H∗(Yk,r;Fp) is a PE-

algebra of type (2pr, 2pr + 1), the component of g is fixed by the Z/r-action. Thus, we
get a Z/r-action on the quotient Bor(Yk,r, g) ' Bor(Yk, g0,1) ' Yk(1), k ≥ 0. The first
equivalence follows from theorem 3.1 and [17] and the second equivalence is from lemma
7.2.

Now, we define Z ′k,r := EZ/r ×Z/r Yk(1) and Zk,r := (Z ′k,r)p̂ . We also put Zk = Zk,1.
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Proposition 7.7. For 0 < k ≤ ∞ and r|p − 1, all the spaces Zk,r are pairwise not
homotopy equivalent, and H∗(Zk,r;Fp) ∼= B0,r as algebras over the Steenrod algebra.

Proof. For r = 1, Zk,r ' Yk(1), and H∗(Yk(1);Fp) ∼= B0,1 by proposition 7.4 (1). For
r > 1, the calculation of H∗(Zk,r;Fp), is analogous to the calculation of H∗(Yk,r;Fp) in the
proof of proposition 7.1. Let f : BZ/p → Zk,1 → Zk,r be the obvious composition. By
theorem 3.1 and [17],

map(BZ/p, Zk,r)f ' Zk,1 ' Yk(1).

Now, the statement follows from corollary 7.5. ¤
8. Classification of spaces realizing Bi,r. In this section we classify up to p-completion
the possible homotopy types of spaces realizing Bi,r. By theorem 4.3 we only have to
consider the cases i = 0, 1. Let Yk,r and Zk,r be the spaces constructed in section 7 with

H∗(Yk,r;Fp) ∼= B1,r

H∗(Zk,r;Fp) ∼= B0,r

We will show that these spaces form a complete list of p-complete homotopy types realizing
B1,r and B0,r, respectively.

The next proposition is an immediate consequence of well know properties of the Bock-
stein spectral sequence (see section 5).

Proposition 8.1. Let X be a space with p-adic cohomology of finite type over Ẑp. If

H∗(X;Fp) = Bi,r then in the Ẑp-cohomology Bockstein spectral sequence {Bl, dl} for X
we have B∞ = 0. ¤
Theorem 8.2. (1) If H∗(X;Fp) ∼= B1,r then there exists 0 ≤ k ≤ ∞ such that X̂p ' Yk,r.

(2) If H∗(X;Fp) ∼= B0,r then there exists 0 < k ≤ ∞ such that X̂p ' Zk,r.

Proof. (cf. tables 10.4 and 10.5.) Let Y be the p-completion of a space X realizing B1,r.
Then Y is 1-connected, p-complete and realizes also B1,r. By 5.7 the p-adic cohomology of
Y is of finite type over Ẑp and by 8.1 and 5.7 all homotopy groups of Y are finite p-groups.

Consider first the case of B1,1. We will construct a sequence of maps

Y := Y (0) → Y (1) → Y (2) → · · · ,

such that H∗(Y (j);Fp) ∼= Fp[aj ]⊗E(bj) isomorphic to either A(j−1)
1 or B(j−1)

0,1 , j ≥ 1, and

such that there exists a fibration sequence BZ/pj −→ Y (0) −→ Y (j)
aj−→ B2Z/pj , where the

last map is algebraically given as in Proposition 7.4 (2).
Let us assume that we already constructed Y (j), j ≥ 1, with H∗(Y (j);Fp) ∼= Fp[aj ] ⊗

E(bj) isomorphic to either A(j−1)
1 or B(j−1)

0,1 . Let gj,1 : BZ/p → Y (j) be the realization
of the composition H∗(Y (j);Fp) → Fp[aj ] → H∗(BZ/p;Fp). Then the computation of the
T functor on the algebras A and B in 3.1 and 3.5 and the results of [17] imply that a
necessary and sufficient condition for

map(BZ/p, Y (j))fj ' Y (j)
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is P 1(bj) = 0, i.e. H∗(Y (j);Fp) = B(j−1)
0,1 . Hence, for P 1(bj) = 0, there exists a principal

fibration (lemma 7.2)

BZ/p → Y (j) → Bor(Y (j), fj) =: Y (j + 1) → B2Z/p,

which fits into the commutative diagram

∗ −−−−→ Y (0) Y (0) −−−−→ ∗
y

y
y

y

BZ/p
fj−−−−→ Y (j) −−−−→ Y (j + 1) −−−−→ B2Z/p

∥∥∥ aj

y aj+1

y
∥∥∥

BZ/p
ajfj−−−−→ B2Z/pj −−−−→ B2Z/pj+1 −−−−→ B2Z/p .

A short calculation shows that Bor(B2Z/pj , ajfj) ' B2Z/pj+1. This establishes the map
aj+1. The differentials in the Serre spectral sequence of the fibration given by the right
three terms in the middle row are given by the equations d2(aj) = β(ι) and d2(bj) =
0. The equations follow from a comparison with the spectral sequence of the fibration
in the bottom row. Now a straightforward calculation shows that H∗(Y (j + 1);Fp) ∼=
Fp[aj+1]⊗E(bj+1) is a PE–algebra of type (2, 3) with the relation βj+1(aj+1) = bj+1; i.e.
H∗(Y (j+1);Fp) is isomorphic to either A(j)

1 or B(j)
0,1. The relation on the Bockstein follows

from the fact H2(Y (j + 1);Z) ∼= π2(Y (j + 1)) ∼= π2(B2Z/pj+1) ∼= Z/pj+1. This finishes
the induction step.

The construction of Y (1) does not fit into this picture, but it is done in the obvious way
by starting with a map BZ/p → Y (0) which also is algebraically given as in proposition
7.4.

We can continue as long as P 1(bj) = 0. Let us first assume that we can construct only a
finite sequence of spaces and let Y (k + 1) denote the last space. Then H∗(Y (k + 1);Fp) ∼=
Fp[x] ⊗ E(y) is a PE-algebra of type (2, 3) such that β(k+1)(x) = y and P 1(y) 6= 0.
Since P 2(y) = 0 by unstability, the only possibility for P 1(y) is P 1(y) = xp−1y and so
H∗(Y (k + 1);Fp) ∼= A(k)

1 . This implies that Y (k + 1) ' Xk (theorem 6.1) and Y = Y (0) '
Yk = Yk,1 (corollary 7.5).

If the sequence is infinite, we define Y (∞) := hocolim Y (j). In the Milnor sequence

1 −→ lim←−
1H∗+1(Y (j);Fp) −→ H∗(Y (∞);Fp) −→ lim←−H∗(Y (j);Fp) −→ 1 ,

the first term vanishes because all the groups are finite, and

lim←−H∗(Y (j);Fp) ∼= H∗(S3;Fp).

Hence Y (∞)p̂ ' S3
p̂. Let F be the homotopy fibre of Y (0) → Y (∞). Since the direct

limit of a directed system of fibrations is again a fibration, the fibration F → Y (0) → Y (∞)
is the direct limit of the fibrations

BZ/pj → Y (0) → Y (j).
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Hence, F ' lim−→j
BZ/pj = BZp∞ and by taking the p-completion we obtain a fibration

BS1
p̂ −→ Y (0) −→ S3

p̂

classified by a map S3
p̂ −→ B Aut(BS1

p̂) into the classifying space of the monoid of self
homotopy equivalences of BS1

p̂ ([23]), which lifts to a map

S3
p̂ −→ BS Aut(BS1

p̂) ' B2S1
p̂ ' K(π, 3) .

where S Aut denotes the self homotopy equivalences which are homotopic to the identity.
This map is classified by degree and the p adic units are the only possible ones that produce
the right cohomology of Y (0) and therefore Y = Y (0) ' Y∞.

Now let Y ′ be the p-completion of a space realizing B1,r. Let f : BZ/p −→ Y ′ be a
realization of the composition B1,r −→ B1,1 −→ H∗(BZ/p;Fp). By the computation of the
T functor in theorem 3.1 and the results of [17], map(BZ/p, Y ′)f is a realization of B1,1.
Thus, there exists an equivalence h : map(BZ/p, Y ′)f ' Yk for some 0 ≤ k ≤ ∞. The space
map(BZ/p, Y ′)f inherits a Z/r-action from the Z/r-action on BZ/p. The component of
f is fixed under this action because H∗(Y ′;Fp) ∼= B1,r. h induces an equivariant map in
H∗( ;Fp) because the canonical map BZ/p → map(BZ/p, Y ′)f is equivariant. By lemma
8.3 below, we can replace h by an equivariant equivalence. Taking homotopy orbits gives
equivalences

Y ′ ' (EZ/r ×Z/r map(BZ/p, Y ′)f )p̂ ' (EZ/r ×Z/r Yk)p̂ ' Yk,r.

This finishes the proof of part (1).
To prove (2), let Z be the p-completion of a space X realizing the algebra B0,1. The

homotopy fibre of the classifying map x : Z −→ B2Z/p of the 2-dimensional class x is a
realization of B1,1 and hence, equivalent to some Yk, k ≥ 1. By corollary 7.5 it follows
that Z ' Zk.

If the p-complete space Z ′ realizes the algebra B0,r, we can proceed as in the case of
B1,r. We have an equivalence map(BZ/p, Z ′)f ' Zk for some k and for a suitable map
f : BZ/p −→ Z ′. Now all the above arguments go through with minor changes. This shows
that Z ′ ' Zk,r and finishes the proof. ¤
Lemma 8.3. (1) Let Y be a space equipped with a Z/r action, and let h : Y → Yk

be an equivalence, such that H∗(h;Fp) is equivariant. Then, there exists an equivalence
h′ : Y → Yk, which is equivariant.

(2) Let Z be a space equipped with a Z/r action, and let h : Z → Zk be an equivalence,
such that H∗(h;Fp) is equivariant. Then, there exists an equivalence h′ : Z → Zk,
which is equivariant.

Proof. We only prove (1), the proof of (2) is analogous. There exists a map g : BZ/pk −→ Y
and an equivalence f : Y ' hofib(a : Bor(Y, g) → B2Z/pk), where hofib denotes the
homotopy fibre. Analogously to the construction of the spaces Yk,r, the Z/r action on Y
passes to Bor(Y, f) and the map a is equivariant up to homotopy. Z/r acts on Z/pk via the
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inclusion Z/r ⊂ Z/p−1 ⊂ Ẑp
∗. By [27] (see lemma 6.5), we can replace a by an equivariant

map. This induces a Z/r-action on the homotopy fibre. The homotopy equivalence f is
equivariant up to homotopy. This construction can be applied to Yk as well.

The Borel construction yields an equivalence Bor(Y, g) ' Bor(Yk, g0,k) which is also
equivariant in mod-p cohomology. Both spaces are equivalent to Xk. As in lemma 6.5
we can replace this equivalence by an equivariant equivalence. Taking homotopy fibers
produces an equivalence Y → Yk, which is equivariant up to homotopy. Again, the Wo-
jtkowiak argument establishes an equivalence Y → Yk which is equivariant. ¤

9. Homotopy properties of the constructed spaces.
In [9], for any map f : A → B between spaces, Dror Farjoun constructed a localisation

functor
Lf : Spaces → Spaces .

Here, Spaces means the category of topological spaces, of CW–complexes, or the simplicial
category. In this section we will, among other things, compute the value of this functor
when applied to some of the spaces constructed in the previous sections, in the particular
case in which f is the map BZ/p → ∗. The functor Lf is coaugmented, homotopically
idempotent, and takes values among the f–local spaces. A space Y is called f–local, if the
map

f∗:map(B, Y ) → map(A, Y )

is a homotopy equivalence. Moreover, the coaugmentation l : X → LfX into the locali-
sation LfX is homotopically universal, i.e. for any map X → Z into a f–local space Z,
there exists a map LfX → Z, unique up to homotopy, such that

X X

l

y
y

LfX −−→ Z

commutes up to homotopy. Actually, l induces a homotopy equivalence

l∗:map(LfX,Z) '−→ map(X, Z)

for any f -local space Z. Such functors satisfy several properties by general nonsense
arguments; e.g we have

Lemma 9.1. Let g : X → Y be a map between spaces, then the following statements are
equivalent:

(1) g induces a homotopy equivalence LfX ' LfY .
(2) For any f -local space Z, g∗: [Y,Z] −→ [X, Z] is a bijection.
(3) For any f -local space Z, g∗:map(Y, Z) −→ map(X,Z) is a homotopy equivalence. ¤
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Lemma 9.2. (1) For any small category C and for any functor F : C → Spaces,

Lf (hocolimC F ) ' Lf (hocolimC(Lf ◦ F )) .

(2) The homotopy inverse limit over any small category of f -local spaces is f -local.

Proof. For an f -local space Z, the map map(hocolimC Lf ◦ F,Z) −→ map(hocolimC F, Z)
can be factored as

map(hocolimC Lf ◦ F,Z) ' holimC map(Lf ◦ F, Z) '
' holimC map(F,Z) ' map(hocolimC F, Z).

Then, (1) is a consequence of 9.1. The proof of statement (2) is similar. ¤
We will also use some facts about Lf that we quote from [11]:

Lemma 9.3. Assume that F −→ E −→ B is a fibration.

(1) If LfF ' ∗ then LfE ' LfB.
(2) For f :W → ∗, if B is f -local, then Lf preserves the fibration. ¤

For a space W , we denote the localisation with respect to the map W → ∗ by LW . Then,
a space X is W -local if and only if map(W,X) ' X or equivalently, for X connected, if
and only if map∗(W,X) ' ∗. In this section we are interested in the localisation with
respect to BZ/p.

Some elementary calculations of LBZ/p are provided by the next two results.

Lemma 9.4. Let π denote a discrete group,

(1) K(π, 1) is BZ/p-local if and only if π is p-torsion free.
(2) K(π, n) is BZ/p-local for all n ≥ 1 if and only if π is a uniquely p-divisible abelian.
(3) If π is a p-group then LBZ/p(K(π, n)) ' ∗ if n > 1 or π is finite.

Proof. In general a direct computation of homotopy groups shows that the connected
component containing the constant map of map(BZ/p,K(π, 1)) is homotopy equivalent to
K(π, 1). Now the set of components of map(BZ/p,K(π, 1)) is Rep(Z/p, π), hence there is
a unique component if and only if π is p-torsion free. This proves (1).

From a computation of homotopy groups it follows that K(π, n), n ≥ 2 is BZ/p-local if
and only if Hr(Z/p; π) = 0 for 1 ≤ r ≤ n, that is, if and only if π is uniquely p divisible.
This is (2).

Finally we prove (3). Clearly LBZ/p(BZ/p) ' ∗, then we use induction on the order of
π and n in order to get the result for any finite p-group. A general p-group is direct limit
of its finite subgroups, hence the result follows by 9.2(1). ¤
Remark 9.5. The following explicit calculations will be useful later.

(1) For any n ≥ 2, LBZ/pK(Z, n) ' K(Z[ 1p ], n), and

(2) For any n ≥ 2, LBZ/pK(Ẑp, n) ' K(Q̂p, n).

This is computed using the exact sequences 0 → Z → Z[ 1p ] → Z/p∞ → 0 and 0 → Ẑp →
Q̂p → Z/p∞ → 0 and then applying 9.3 and 9.4.

Examples of BZ/p-local spaces are provided by the Sullivan conjecture:
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Lemma 9.6.
(1) Any finite CW-complex is BZ/p-local. (This is the Sullivan conjecture: [19].)
(2) Let X be a connected nilpotent space with H∗(X;Fp) of finite type, then X is

BZ/p-local if and only if H∗(X;Fp) is locally finite as module over the Steenrod
algebra. ([18]) ¤

The next lemma lists several properties of BZ/p-local spaces.

Lemma 9.7.
(1) If Z is BZ/p-local, then Z is BZ/pk-local for every 1 ≤ k ≤ ∞. If, in addition, Z

is p-complete, then Z is also BS1-local.

(2) Let Z be a connected space and Z̃ → Z the universal covering. If Z is BZ/p–

local, then Z̃ is also BZ/p–local. Reciprocally, if π1(Z) is p-torsion free and Z̃ is
BZ/p-local, then Z is also BZ/p-local.

The proof is based on the following lemma of Zabrodsky [28] (see also [19]).

Lemma 9.8. Let G be a toplogical group and G → E → B a principal fibration. If, for
a space X, map(G,X)const ' X, then

map(B, X) ' map(E,X)f |G'const .

The mapping space map(E, X)f |G'const consists of the components of all maps f : E →
X, whose restriction f |G is homotopic to the constant map.

Proof of lemma 9.7. (1). The principal fibration BZ/p → BZ/pk+1 → BZ/pk, the Zabrod-
sky lemma and an induction prove (1) for k < ∞. Moreover, for a BZ/p–local space Z, the
canonical map map(BZ/pk+1, Z) → map(BZ/pk, Z) is a homotopy equivalence. There-
fore,

map(BZ/p∞, Z) ' lim←−
k

map(BZ/pk, Z) ' lim←−
k

Z ' Z ,

and Z is BZ/p∞–local. If Z is also p–complete map(BS1, Z) ' map(BZ/p∞, Z) ' Z,
which shows that Z is BS1–local and finishes the proof of (1).

(2). Assume that Z is connected and BZ/p-local. Let Z → K := K(π1(Z), 1) be the
classifying map of the universal covering Z̃ → Z. Applying the functor map(BZ/p, )
establishes a commutative diagram of fibrations

map(BZ/p, Z̃) −−→ map(BZ/p, Z) −−→ map(BZ/p, K)const

eeZy eZ

y eK

y
Z̃ −−→ Z −−→ K .

The vertical arrows are given by the evaluation. In the upper middle term we do not
have to consider particular components, because Z is BZ/p local; i.e. there is only the
component of the constant map and eZ is a homotopy equivalence. Since eK is also a
homotopy equivalence, this is also true for e eZ . That is to say that Z̃ is BZ/p-local.
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Finally, if π1(Z) is p-torsion free, Bπ1(Z) is BZ/p-local by 9.4(1) and then, according
to 9.3(2) Z is BZ/p-local if and only if Z̃ is BZ/p-local. This finishes the proof of the
second statement. ¤

Now we are prepared to start with the calculation of the localisations of the spaces we
constructed in the previous sections.

The next result is actually a particular case of a more general result of Neisendorfer.

Lemma 9.9. S3, LBZ/pS
3〈3〉 and LBZ/p(S3〈3〉p̂) are homotopy equivalent after comple-

tion.

Proof. By lemma 9.6, S3 and S3
p̂ are BZ/p-local. So, by lemma 9.3 LBZ/p preserves the

fibration BS1 → S3〈3〉 → S3 as well as its p-completion, hence, by lemma 9.5 we obtain
fibrations:

K(Z[
1
p
], 2) → LBZ/pS

3〈3〉 → S3

and
K(Q̂p, 2) → LBZ/p(S3〈3〉p̂) → S3

p̂

and the p-completion of those gives the result. ¤

Recall that in section 5 the space Ek was defined as the total space of certain fibration

BS1
p̂ → Ek → S1

p̂

that has a section s: S1
p̂ → Ek. Then E′

k is the homotopy cofibre of this section. Finally,
Xk was defined as the p completion of E′

k. For the localization of that spaces we obtain:

Lemma 9.10. (1) (LBZ/pEk)p̂ ' S1
p̂.

(2) (LBZ/pE
′
k)p̂ ' ∗.

(3) LBZ/pXk ' ∗.

Proof. Since S1
p̂ is BZ/p-local, LBZ/p preserves the above fibration and we obtain a fi-

bration
K(Q̂p, 2) → LBZ/pEk → S1

p̂ .

The p-completion of this fibration proves (1).
This fibration has also a section s: S1

p̂ → LBZ/pEk. Let C be the homotopy cofibre of
this section. Then C is simply connected and mod p acyclic, hence BZ/p-local by lemma
9.6. Now, since a homotopy cofibre is a special sort of homotopy colimit, by 9.2 we obtain

LBZ/pE
′
k ' LBZ/pC ' C

and therefore (LBZ/pE
′
k)p̂ ' ∗. This is statement (2).

According to the next lemma, (3) follows from (2) because Xk is 1-connected and
Hi(Xk; Ẑp) is finite for all i > 0 (see 5.5 and 5.8.) ¤
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Lemma 9.11. Let X be a space for which X̂p is 1-connected. If Hi(X̂p; Ẑp) is finite for

all i > 0 and (LBZ/pX)p̂ ' ∗, then LBZ/p(X̂p) ' ∗.

Proof. We want to show that for any BZ/p-local space Z, any map X̂p → Z factors
through a point. that is [X̂p, Z] = ∗ for any connected BZ/p-local space Z.

If Z is BZ/p-local, the universal covering Z̃, is also BZ/p-local and since X̂p is 1-
connected

[X̂p, Z] ∼= [X̂p, Z̃]
/
π1(Z)

hence it is enough to show that [X̂p, Z] = ∗ for all Z which is 1-connected and BZ/p-local.
If Z is 1-connected and BZ/p-local, so is Ẑp. Since Hi(X̂p; Ẑp) if finite for all i > 0 and

X̂p is 1-connected, 5.7 implies that the homotopy groups of X̂p are finite p-groups. Then,
the arithmetic fracture lemma shows that [X̂p, Ẑp] ∼= [X̂p, Z] and

[X̂p, Z] ∼= [X̂p, Ẑp] ∼= [LBZ/pX, Ẑp] ∼= [(LBZ/pX)p̂, Ẑp] ∼= [∗, Ẑp] = ∗ ¤

The spaces Yk(j) for k ≥ 1 and 0 ≤ j ≤ k + 1, were constructed out of Xk in section 7
in such a way that they fit in sequences of fibrations with fibre BZ/p:

Yk(0) → Yk(1) → . . . → Yk(k + 1) = Xk.

Here Yk = Yk(0) is the kth fake S3〈3〉 and Y∞ = S3〈3〉p̂ also fits in one such sequence
Y∞ → Y∞(1) → Y∞(2) → . . . with Y∞(∞) = hocolimj Y∞(j) and Y∞(∞)p̂ ' S3

p̂.

Theorem 9.12. For all 0 ≤ j ≤ k + 1 ≤ ∞,

LBZ/pYk(j) ' LBZ/pYk(0) = LBZ/pYk '
{

Y∞(∞) for k = ∞
∗ for k < ∞

Remark. Compare with 9.9 for k = ∞.

Proof. The principal fibrations BZ/p → Yk(j) → Yk(j + 1) and lemma 9.2 establish
equivalences LBZ/pYk(j) ' LBZ/pYk(j + 1).

Therefore, if k < ∞ we have LBZ/pYk(j) ' LBZ/pXk ' ∗ by 9.10.
For k = ∞ we have first that Y∞(∞) is 1-connected and its mod p cohomology is

finite hence it is BZ/p-local by 9.6(2). Then the result follows from 9.1 because for any
BZ/p-local space Z the map Y∞(j) → hocolimj Y∞(j) = Y∞(∞) induces

map(Y∞(∞), Z) '−→ holimj map(Y∞(j), Z) '−→
'−→ holimj map(LBZ/pY∞(j), Z) '−→ map(LBZ/pY∞(j), Z) . ¤
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Corollary 9.13. If k 6= ∞, the l-fold suspensions of Y∞(j) and of Yk(j) are not homotopy
equivalent for all l.

Proof. By theorem 9.12, ΣlLBZ/pY∞(j) ' ΣlY∞(∞) and this is 1-connected with finite
mod p cohomology hence BZ/p-local. The suspensions are homotopy colimits. By lemma
9.2 we have

LBZ/pΣlYk(j) ' LBZ/pΣlLBZ/pYk(j) ' LBZ/pΣlY∞(∞) ' ΣlY∞(∞) .

But for k < ∞, the same argument proves (LBZ/pΣlYk(j)) ' ∗. ¤
Similiar arguments as in the proof of theorem 9.5 show that LBZ/p(Y∞(j)×Z/r EZ/r) '

Y∞(∞) ×Z/r EZ/r, where Z/r acts canonically on Y∞(∞). This space is mod–p acyclic
and using lemma 9.11 we deduce that LBZ/pY∞,r ' ∗. For k < ∞, one also can prove that
LBZ/pYk,r ' ∗. Thus, the above application of the localisation functor does not see any
difference between the suspensions of the different realisations of Bi,r. But there is a way
to distinguish between these spaces.

Let g : BZ/p → Yk,r be the map of section 7, and let h : Yk×BZ/p → Yk,r be the adjoint
of the equivalence Yk ' map(BZ/p, Yk,r)g. Z/(p − 1) acts on Yk. For every a ∈ Z/p∗ we
have a map

ΣlYk ×BZ/p
a×id−−−→ ΣlYk ×BZ/p −−→ Σl(Yk ×BZ/p) Σlh−−→ ΣlYk,r .

which has as adjoint a map

fa : ΣlYk −−→ map(BZ/p, ΣlYk,r) .

If a and b differ by a r-th power, the two associated maps fa and fb are homotopic,
because Yk,r is the homotopy orbit of the Z/r–action on Yk. There is also an obvious map
ΣlYk,r → map(BZ/p, ΣlYk,r), which is the standard section of the evaluation.

Let s = (p − 1)/r. Then, Z/s ⊂ Z/p∗ consists of the congruence classes modulo r-th
powers. All these maps together fit into a map

f : ΣlYk,r ∨
∨

a∈Z/s

ΣlYk → map(BZ/p,ΣlYk,r) .

Theorem 9.14. The map

f : ΣlYk,r ∨
∨

a∈Z/s

ΣlYk → map(BZ/p, ΣlYk,r)

is a homotopy equivalence.

Proof. We have to calculate the mapping space using the T–functor The T–functor is exact
and commutes with suspensions. Hence,

T (H∗(ΣlYk,r;Fp)) ∼= T (H̃∗(ΣlYk,r;Fp)⊕ T (Z/p)
∼= ΣlT (H∗(ΣlYk,r;Fp))⊕ Z/p

∼= (
⊕

a∈Z/s

ΣlH∗(Yk;Fp))⊕ ΣlH∗(Yk,r;Fp)⊕ Z/p

∼= H∗((
∨

a∈Z/s

ΣlYk) ∨ ΣlYk,r;Fp) .
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All the isomorphism are obvious, but the second last. This one follows from theorem 3.1,
the identity TconstH

∗(Yk,r;Z/p) ∼= H∗(Yk,r;Z/p), the fact that every map H∗(Yk,r;Fp) →
H∗(BZ/p;Fp) factors over H∗(Yk,;Z/p) and that every two factorizations differ by an r-th
power. By construction, this series of isomorphisms is just the map induced by f , which
shows that f is a mod–p equivalence [17]. The integral homology of (

∨
a∈Z/s ΣlYk)∨ΣlYk,r

consists of finite p-torsion in each dimension. Moreover, the space is 3-conected. The mod C
Hurewicz theorem for the class of finite p-groups shows that π∗((

∨
a∈Z/s ΣlYk) ∨ ΣlYk,r)

consists of finite p-torsion in each dimension. Hence, by [6] (
∨

a∈Z/s ΣlYk) ∨ ΣlYk,r is
p-complete. Because Yk,r is p–complete, f is an equivalence ([17]). ¤

Corollary 9.15. If k 6= ∞, the l–fold suspensions ΣlY∞,r and ΣlYk,r are not homotopy
equivalent for all l.

Proof. Applying localisation to the mapping space gives

LBZ/p(map(BZ/p, ΣlYk,r)) ' LBZ/p(ΣlYk,r ∨
∨

a∈Z/s

ΣlYk)

' LBZ/p(LBZ/p(ΣlYk,r) ∨
∨

a∈Z/s

LBZ/p(ΣlYk))

' LBZ/p(ΣlLBZ/p(Yk,r) ∨
∨

a∈Z/s

ΣlLBZ/p(Yk)) .

The last two equivalences follow from lemma 9.1 and lemma 9.2. By proposition 9.13
and the following remarks, for k = ∞ and k < ∞, these spaces cannot be homotopy
equivalent. ¤

Remark 9.16. Using the same methods and ideas, one can also distinguish between the
l–fold suspensions of Zk,r, k < ∞, and Z∞,r.

Finally, we discuss the question of which of these spaces are H–spaces. The spaces
Y∞ = S3〈3〉p̂ and Z∞ = Y∞(1) are loop spaces, in particuliar H-spaces. This follows
easily from the construction. But these are the only ones among the spaces Yk,r and Zk,r

which are H-spaces, as the following proposition shows.

Proposition 9.17. For k < ∞ or r > 1, the spaces Yk,r and Zk,r cannot carry an H-space
structure.

Proof. If the algebras B0,r and B1,r have the structure of a Hopf algebra, they are prim-
itively generated. For r > 1, the Steenrod power P pi

, i = 0, 1, maps the primitive 2pir-
dimensional class on a nonprimitive class. Hence, B0,r and B1,r are Hopf algebras only
for r = 1.
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Now, we assume that Yk(j), 0 ≤ j ≤ k, is an H-space. We consider the diagram

(3)

BZ/p×BZ/p
µ−−−−→ BZ/p

gj,1×gj,1

y gj,1

y
Yk(j)× Yk(j)

µ−−−−→ Yk(j)
y fj,j+1

y
Yk(j + 1)× Yk(j + 1) Yk(j + 1)

where µ denotes the multiplication. The upper square commutes in mod-p cohomology,
because in H∗(Yk(j);Fp) the 2-dimensional class for j ≥ 1 and the 2p-dimensional class
for j = 0 are primitive. Thus, the upper square commutes up to homotopy. The obvious
composition fj,j+1µ(gj,1 × gj,1) : BZ/p × BZ/p → Yk(j + 1) is homotpic to the constant
map and, by theorem 3.1 and taking the adjoint,

map(BZ/p×BZ/p, Yk(j + 1))c ' map(BZ/p, map(BZ/p, Yk(j + 1))c)c

' map(BZ/p, Yk(j + 1))c

' Yk(j + 1).

Both vertical columns in (3) are principal fibrations. We can apply lemma 9.3, which
establishes a map

µ : Yk(j + 1)× Yk(j + 1) → Yk(j + 1)

making the lower square commutative up to homotopy. As easily shown, µ is an H-space
structure on Yk(j + 1).

If Yk = Yk(0) is an H-space, the above induction procedure shows that Yk(k + 1) = Xk

carries also an H-space structure. But this is a contradiction, because the Steenrod power
P 1 maps the ‘primitive’ 3-dimensional class of H∗(Xk;Fp) onto a nonprimitive class. ¤

10. Appendix. Through this paper we have introduced several families of algebras
over the Steenrod algebra Ar, Bi,r, Cr, etc. as well as several families of spaces Ek(r),
Xk(r), Yk,r, etc. We think that the reader would find helpful to have the definitions of
these algebras and spaces and the relationships between them displayed in a set of tables.
In this appendix we include the following tables: Table 10.1 contains the definitions of
the algebras over the Steenrod algebra introduced in section 2. Table 10.2 contains the
definitions and the mod p cohomology of the spaces introduced in sections 5 and 7. In
table 10.3 we list some fibrations between these spaces. Tables 10.4 and 10.5 display the
spaces used in the proof of theorem 8.2 and their cohomology algebras.
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Ar = A(0)
r = Fp[x]⊗ E(y) deg(x) = 2r β(x) = y

deg(y) = 2r + 1 P 1(y) = rxsy

Bi,r = B(0)
i,r = Fp[x]⊗ E(y) deg(x) = 2pir β(x) = y

deg(y) = 2pir + 1 P pi

(y) = (r − 1)xsy

Cr = C(0)
r = Fp[x]⊗ E(z) deg(x) = 2r β(x) = xz

deg(z) = 1
A′

r same as Ar but with β(x) = β(y) = 0
B′

i,r same as Bi,r but with β(x) = β(y) = 0

C′
r same as Cr but with β(x) = β(z) = 0

A(k)
r

equal to A′
r as algebras over the Steenrod algebra but with β(j)(x) = 0

for j ≤ k and β(k+1)(x) = y

B(k)
i,r

equal to B′
i,r as algebras over the Steenrod algebra but with β(j)(x) = 0

for j ≤ k and β(k+1)(x) = y

C(k)
r

equal to C′
r as algebras over the Steenrod algebra but with β(j)(x) = 0

for j ≤ k and β(k+1)(x) = xz

Table 10.1
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Ek = EG×π B2πφk , k ≥ 0 H∗(Ek;Fp) ∼= C(k)
1 , (5.1)

E Ek(r) = Ek

/
Z/r, k ≥ 0, r|p− 1 H∗(Ek(r);Fp) ∼= C(k)

r , (5.3)

E′
k(r) = Cofibre (Bπ → Ek(r)), k ≥ 0, r|p− 1 H∗(E′

k(r);Fp) ∼= A(k)
r

Xk(r) = (E′
k(r))p̂, k ≥ 0, r|p− 1

X Xk = Xk(1), k ≥ 0 H∗(Xk(r);Fp) ∼= A(k)
r , (5.5)

X∞ ∼= (S3)p̂

Yk = Fibre (Xk → B2Z/pk+1), k ≥ 0
Y∞ = (S3〈3〉)p̂ H∗(Yk,r;Fp) ∼= B1,r, (7.1)
Yk,r = (EZ/r ×Z/r Yk))p̂, 0 ≤ k ≤ ∞, r|p− 1

Y
Yk(j) = Fibre (Xk → B2Z/pk+1−j)

k ≥ 0, 0 ≤ j ≤ k + 1 H∗(Yk(j);Fp) ∼=





B1,1, j = 0
B0,1, j = 1
B′

0,1, 2 ≤ j ≤ k

A′
1, j = k + 1

Y∞(j) = Fibre (S3 pj

−→ (B2S1)p̂), j ≥ 0 (7.4)
Yk(0) = Yk,1 = Yk

Yk(k + 1) = Xk

Z
Zk,r = (EZ/r ×Z/r Yk(1))p̂, 0 < k ≤ ∞, r|p− 1 H∗(Zk,r;Fp) ∼= B0,r, (7.7)

Zk = Zk,1 = Yk(1), 0 < k ≤ ∞
Table 10.2

B2π → Ek → Bπ

Ek → Ek(r) → BZ/r

Yk → Xk → B2Z/pk+1

Yk → Zk → B2Z/p

Zk → Xk → B2Z/pk

Yk(j) → Yk(j + l) → B2Z/pl, l ≤ k − j + 1
Yk(j) → Xk → B2Z/pk+1−j , j ≥ 1

Y∞ → X∞ → (B2S1)p̂

Table 10.3
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S3〈3〉p̂ = Y∞→ Y∞(1) = Z∞→ Y∞(2) → Y∞(3) → · · · · · · → S3
p̂

·
·
·
·

Yk → Yk(1) = Zk → Yk(2) → Yk(3) → · · · → Yk(k + 1) = Xk

·
·
·

Y3 → Y3(1) = Z3 → Y3(2) → Y3(3) → Y3(4) = X3

Y2 → Y2(1) = Z2 → Y2(2) → Y2(3) = X2

Y1 → Y1(1) = Z1 → Y1(2) = X1

Y0 → Y0(1) = X0

Table 10.4

B1,1 B0,1 B(1)
0,1 B(2)

0,1 · · · · · · · · ····
B1,1 B0,1 B(1)

0,1 B(2)
0,1 · · · A(k)

1···
B1,1 B0,1 B(1)

0,1 B(2)
0,1 A(3)

1

B1,1 B0,1 B(1)
0,1 A(2)

1

B1,1 B0,1 A(1)
1

B1,1 A1

Table 10.5
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[3] J. Aguadé, Computing Lannes T functor, Israel J. Math. 65 (1989), 303–310.
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