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1. Introduction. In [1] it was proved that for each prime p there are infinitely many fake
3-connected coverings of S3. By “fake” we mean spaces with the same mod p cohomology
than S3〈3〉 (as algebras over the Steenrod algebra) but different p-completed homotopy
type. After that work was completed one could wonder if the existence of such fake spaces
was a general phenomenon and, in particular, if one could use the same methods to produce
fake three connected coverings of other Lie groups beside S3. In this paper we prove that
the results of [1] cannot be extrapolated since, indeed, there is homotopy uniqueness up
to p-completion for 3-connected coverings of several compact connected Lie groups and
p-compact groups.

If p is a regular prime for the compact connected Lie group G then S3 is a direct factor
of G at the prime p and one can trivially construct infinitely many fake G〈3〉 out of the
fake S3〈3〉 constructed in [1]. If p is quasi-regular for G in the sense of [10] then G splits
at p as a product of odd dimensional spheres and spaces Bn(p) that are sphere bundles
over spheres. Hence, in this more general situation fake G〈3〉 would arise if there are fake
B3(p)〈3〉. The main result of this paper shows that there are no such fakes.

Theorem 1. Let B(p) denote the S3-bundle over S2p+1 classified by a generator of the
p-component of π2pS

3. Let X be such that H∗(X;Fp) ∼= H∗(B(p)〈3〉;Fp) as algebras over

the Steenrod algebra. Then X̂p ' B(p)〈3〉p̂.
Corollary 2. Up to p-completion, there is only one space with the same mod p cohomology
(as algebras over the Steenrod algebra) than G〈3〉 if G is i) SU(3) for p = 2; ii) Sp(2) for
p = 3 or iii) G2 for p = 5.

The proof of the main result is obtained by an analysis similar to the one done in [1] for
the case of S3. Starting with a space X with the same mod p cohomology than B(p)〈3〉
we construct an infinite tower

X → X1 → X2 → X3 → · · ·

such that Xi+1 is obtained from Xi essentially by dividing by an action of the group BZ/p.
At the far right end of the tower we get a space which up to p-completion coincides with
B(p) and so we get a map X → B(p) which induces isomorphism in mod p cohomology
between X and B(p)〈3〉. At each stage we need to compute the cohomology of Xi+1

The authors are partially supported by DGICYT grant PB91-0467.

Typeset by AMS-TEX

1
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out from the cohomology of Xi. Like in the case of S3〈3〉 discussed in [1] there is an
indeterminacy in the computation of H∗(Xi+1;Fp) but, in contrast to what happens in
that case, only one of the two algebras which are algebraically compatible with the Serre
spectral sequence can be the cohomology algebra of a space. Hence, the key point in the
proof and also the point that explains the opposite behavior of S3 and B(p) is the proof
of the non-realizability of a certain algebra over the Steenrod algebra as the cohomology
of a space. This proof is obtained by showing that, for this particular algebra, the Lannes
T functor ([9]) is not compatible with higher Bocksteins.

During the present paper, mod p coefficients are assumed unless otherwise stated. Most
of the proofs are written for the case of p odd but they can be translated to the case of
p = 2 by using the standard identifications Sq1 = β and Sq2i = P i. In a few cases in
which there is enough difference between the odd prime case and the case of p = 2, we
provide separate arguments. We denote by U and K the categories of unstable modules
and unstable algebras over the Steenrod algebra, respectively. When describing graded
algebras, we tend to use subscripts to denote the degree of an element. In some cases,
however, in order to simplify the notation, we may omit these subscripts.

The second author would like to thank Fred Cohen for his hospitality and helpful com-
ments during the preparation of this paper.

2. Uniqueness of B(p). The homotopy uniqueness of B(p) up to p-completion is a
necessary step in the proof of theorem 1. We have the following result:

Proposition 3. If H∗(X) ∼= H∗(B(p)) as algebras over the Steenrod algebra then Xp̂ '
B(p)p̂.

Proof. Recall that H∗(B(p)) = E(x3, y2p+1) with P 1x3 = y2p+1. Since H1(X;Fp) = 0
the fundamental group of X is p-perfect and so ([4], VII.3) X is p-good, X̂p is simply
connected and H∗(X̂p) ∼= H∗(B(p)). Hence, we can assume, without loss of generality,
that X is p-complete and simply connected. By proposition 5.7 in [1] we know that the
homotopy groups of X are finitely generated over Ẑp and also that H∗(X; Ẑp) is of finite
type over Ẑp. Now we can apply theorem 3.1 in [3] to conclude that X ' Wp̂ where W is
a CW-complex of finite type. Clearly, W can be chosen to be a three-cell complex

W = S3 ∪φ1 e2p+1 ∪φ2 e2p+4.

Since the 3-dimensional class is linked to the (2p + 1)-dimensional class through a P 1, the
map φ1 is congruent modulo p to the generator of π2p(S3)(p) and the same is true in B(p).
Hence, one has the diagram:

S2p+3

y
S3 ∪φ1 e2p+1 i−−−−→ B(p)(p)

j

y
W
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According to [13], the homotopy group π2p+3B(p)(p) vanishes. Hence, we have a map
W → B(p)(p) inducing isomorphism in homology with coefficients in Ẑp (observe that
H∗(X) is generated as an algebra by x3 and y2p+1). This implies X ' B(p)p̂. ¤
Remark. The above result will be used in the proof of theorem 1 and, actually, proposition
3 is a consequence of theorem 1. To see this, let L denote the localization functor with
respect to the map BZ/p → ∗ as defined in [5]. Then a result of Neisendorfer ([11], also
cf. lemma 9.9 in [1]) implies that L(B(p)〈3〉p̂) and B(p) are homotopy equivalent after
p-completion. Hence, if X is a space with the same mod p cohomology than B(p) then, by
theorem 1 we have B(p)〈3〉p̂ ' X〈3〉p̂. Applying now the functor L we get Xp̂ ' B(p)p̂.

3. The algebras K and L and the T functor. Let us denote by L the unstable algebra
over the Steenrod algebra L = H∗(B(p)〈3〉). The structure of L is well known ([13]):

L ∼= Fp[x2p2 ]⊗ E(y2p+1, z2p2+1)

(subscripts denote degrees) and the Steenrod algebra action is given by the formulas β(x) =
P p(y) = z. The action of the Steenrod algebra on L can be easily deduced from these
formulas and the Adem relation. One obtains

P 1(x) = P p(x) = β(y) = P 1(y) = β(z) = P 1(z) = P p(z) = P p2
(z) = 0.

The vanishing of all these Steenrod operations follows from dimensional reasons, except
for the last two equalities which can be proved using the Adem relations

Sq4Sq4 = Sq7Sq1 + Sq6Sq2

Sq8Sq1 = Sq4Sq5 + Sq9 + Sq7Sq2

P pi

β = P 1βP pi−1 + βP pi

, i > 0.

Let us define now K to be the graded algebra

K = Fp[x2]⊗ E(y3, z2p+1).

We want to study actions of the Steenrod algebra on K which turn K into an unstable al-
gebra over the Steenrod algebra. In particular, we are interested in actions of the Steenrod
algebra on K subject to the conditions β(y) = 0 and P 1(y) = z. The following proposition
gives a complete classification of such actions.

Proposition 4. Assume K is an unstable algebra over the Steenrod algebra with β(y) = 0
and P 1(y) = z. Then the action of the Steenrod algebra on K is determined by β(x) and
P p(z). Moreover, P p(z) is either zero or xp(p−1)z.

Proof. It is obvious that the action of the Steenrod algebra on K is determined by unsta-
bility and the values of

β(x), β(y), β(z), P 1(y), P 1(z), P p(z).
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Since 2P 2 = P 1P 1 one obtains P 1(z) = 0 (use Sq2Sq2 = Sq3Sq1 if p = 2). The Adem
relation 2P 1βP 1 = βP 1P 1 + P 1P 1β gives β(z) = 0 (use Sq1Sq2 = Sq3 if p = 2).

By dimensional reasons we have P p(z) = λxp(p−1)z + µxp2−1y. The relation P 1P p =
P p+1 shows that µ = 0. If p = 2 there is nothing more to prove. If p is odd and
P p(z) = λxp(p−1)z then the Adem relation

P pP p = 2P 2p + P 2p−1P 1

shows that λ = 0, 1. ¤
We introduce now the following family of unstable algebras over the Steenrod algebra.

We define K(r)
λ , r > 0, λ = 0, 1 as

K(r)
λ = Fp[x2]⊗ E(y3, z2p+1),

with the action of the Steenrod algebra given by P 1(y) = z, β(y) = β(z) = P 1(z) = 0 and
P p(z) = λxp(p−1)z. We also assume that β(r)(x) = y where β(r) denotes the r-th order
higher Bockstein. Since β(r) for r > 1 is not in the Steenrod algebra, it is clear that K(r)

λ

and K(s)
λ for r, s > 1 are the same object of K. However, it makes sense to ask if K(r)

λ is
the cohomology of some space and the notation K(r)

λ will be a convenient one. We will also
use the notation K′

λ to indicate the generic unstable algebra over the Steenrod algebra
represented by any K(r)

λ with r > 1.

Remark. One could make the notation K(r)
λ more formal by considering these algebras as

objects in a suitable category of unstable algebras over the Steenrod algebra “with higher
Bocksteins”. An object in this category B would be a spectral sequence (Er, dr) of graded
algebras over Fp such that E1 ∈ K, d1 = β, di are derivations and such that the usual
formula for the higher Bockstein of xp holds: If x ∈ E2n

r and β(r)(x) = y then

β(r+1){xp} =
{ {xp−1y} if p > 2 or p = 2, r > 1;
{xy + Sq2ny} if p = 2 and r = 1.

In particular, the cohomology algebra of a space toghether with the Bockstein spectral
sequence is an object in this category.

Let us denote by B(p)〈3; pr〉 the homotopy fibre of the map B(p) → K(Z, 3) of degree
pr. There is a fibration

B(p)〈3〉 −→ B(p)〈3; pr〉 −→ B2Z/pr.

It is an easy exercise to show that H∗(B(p)〈3; pr〉) ∼= K(r)
0 . This shows that K(r)

0 is a
genuine algebra over the Steenrod algebra. A key point in the proof of theorem 1 is to
show that K(r)

1 is not the cohomology of any space (proposition 8). Although it is not
strictly necessary for the proof of theorem 1 it seems appropiate to show that K(r)

1 is an
unstable algebra over the Steenrod algebra, i. e. the Adem relations hold in K(r)

1 . This can
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be proven in a straightforward way using the method of [12] suitably modified to include
the case in which β acts non trivially. First one notices that K(r)

1 is an unstable Ā-algebra,
where Ā is the free associative algebra generated by β and P i, i > 0. Then one observes
that Ā is a Hopf algebra and the diagonal ψ̄ is such that if r ∈ Ā is an Adem relation then

ψ̄(r) ∈ Ā ⊗ V + V ⊗ Ā

where V ⊂ Ā is the vector space spanned by the Adem relations and the elements βr
where r is an Adem relation “of the first kind” (i. e. the ones without β). This shows
that for an unstable Ā-algebra A to be an unstable A-algebra it is enough to check the
Adem relations on a set of algebra generators of A. Moreover, by unstability, only finitely
many Adem relations can be non trivial on a given element and so, in general, to decide
if a finitely generated algebra is an unstable algebra over the Steenrod algebra one just
needs to check a finite number of Adem relations. In the case of the algebra K(r)

1 this
checking is short and straightforward, the only significant Adem relation in this case beeing
P pP p = 2P 2p + P 2p−1P 1. Details are left to the reader.

There are homomorphisms of unstable algebras over the Steenrod algebra

f : L → H∗(BZ/p)

f : K(r)
λ → H∗(BZ/p)

which vanish on y and z and such that f(x) is non trivial.
Let T denote the Lannes functor defined as left adjoint to H∗(BZ/p) ⊗ − in the cate-

gory U of unstable modules over the Steenrod algebra (see [9] for a full description of its
properties.) When R is an unstable algebra over the Steenrod algebra then so is T (R) and
T becomes a functor in the category K of unstable algebras over the Steenrod algebra.

Let us write H = H∗(BZ/p). Given a K-map f : R → H, its adjoint restricts to a
K-map T 0(R) → Fp, where T 0(R) is the subalgebra of T (R) of all elements of degree zero.
We define the connected component of T (R) corresponding to f as:

Tf (R) = T (R)⊗T 0(R) Fp.

Furthermore, Tf may be thought as a functor defined on the category U(R) of R-U -modules
and with values in the category of Tf (R)-U-modules (cf. [8].) We can also consider Tf (M)
as an R-U -module induced by the natural K-map ε : R → Tf (R) and then ε : M → Tf (M)
becomes a natural transformation of R-U-modules. We recall from [8] that Tf is exact and
commutes with suspensions, tensor products and direct limits.

We need to compute the value of Tf on the algebras L and K(r)
λ , where f denotes the

homomorphisms that we have just described. The results are summarized in the following
proposition:

Proposition 5. (1) ε : K → Tf (K) is an isomorphism for K = K(1)
0 , K′

0, L.

(2) Tf (K(1)
1 ) ∼= Fp[x2] ⊗ E(y3, w1) with β(x2) = y3 and P 1(y3) = xp

2w1. x2 ∈ K(1)
1 is

sent to x2 ∈ Tf (K(1)
1 ) by ε. A similar result (with β(x2) = 0) holds for K′

1.
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Proof. Consider first the case of K(1)
0 . We work in the category U(K(1)

0 ). There is an exact
sequence in this category

0 → zK(1)
0 → K(1)

0 → B → 0

where B ∼= Fp[x2]⊗E(y3) is the algebra denoted by B0,1 in [1]. The exactness of Tf yields
a commutative diagram of K(1)

0 -U-modules with exact rows:

0 −−−−→ zK(1)
0 −−−−→ K(1)

0 −−−−→ B −−−−→ 0

ε1

y ε2

y ε3

y
0 −−−−→ Tf (zK(1)

0 ) −−−−→ Tf (K(1)
0 ) −−−−→ Tf (B) −−−−→ 0

Theorem 3.1 in [1] gives B ∼= Th(B) where h : B → H is the obvious map. By lemma 3.2
in [1] we also have B ∼= Tf (B) because f = h ◦ g with g : K(1)

0 → B and the hypothesis of
lemma 3.2 in [1] is trivially satisfied. Hence, ε3 is an isomorphism.

On the other side, since the Steenrod algebra acts trivially on z ∈ K(1)
0 there is an

isomorphism zK(1)
0
∼= Σ2p+1B. Since Tf commutes with suspensions, ε1 is an isomorphism

and so is ε2. The case of K′
0 is analogous.

Let now M denote the algebra M = Fp[x2p2 ] ⊗ E(y2p+1) with the Steenrod algebra
acting trivially on y2p+1. There is an exact sequence in U(L):

0 −→ zL −→ L −→ M −→ 0.

Notice that zL ∼= Σ2p2+1M . Since Tf commutes with suspensions, to show that ε : L →
TfL is an isomorphism it suffices to prove that ε : M → TfM is an isomorphism. We can
work now in the category U(Fp[x2p2 ]) and observe that TfM ∼= TgM where g is the non
trivial map g : Fp[x2p2 ] → H∗(BZ/p) ([1], 3.2). We consider the exact sequence

0 −→ yM −→ M −→ Fp[x22 ] −→ 0

and notice that yM ∼= Σ2p+1Fp[x2p2 ] and TgFp[x2p2 ] ∼= Fp[x2p2 ]. This concludes the analysis
for the algebra L.

For K(1)
1 we start in the same way as with K(1)

0 by considering the diagram of K(1)
1 -U-

modules

(1)

0 −−−−→ zK(1)
1 −−−−→ K(1)

1 −−−−→ B −−−−→ 0

ε1

y ε2

y ε3

y
0 −−−−→ Tf (zK(1)

1 ) −−−−→ Tf (K(1)
1 ) −−−−→ Tf (B) −−−−→ 0

ε3 is an isomorphism and we can observe that zK(1)
1

∼= ΣxpB. To compute Tf (xpB) we
consider the exact sequence

0 −→ xpB −→ B −→ B/xpB −→ 0

Multiplication by xp annihilates the right hand module. Hence, by proposition 2.3 in [8],
Tf (B/xpB) = 0 and so Tf (xpB) ∼= B and the map xpB → Tf (xpB) ∼= B is the natural
inclusion. If we input now this fact into diagram (1) we easily get the structure of TfK

(1)
1 .

The case of K′
1 is analogous. ¤



FAKE THREE CONNECTED COVERINGS OF LIE GROUPS 7

4. Spectral sequence computations. In this section we compute the mod p cohomology
of a space which is obtained from a space X by dividing by an action of the abelian group
BZ/p, in the cases in which the cohomology of X is of the form either L or K(r)

λ . We use
the notation

P∆j = P pj · · ·P pP 1, j ≥ 0,

Sq∆j = Sq2j · · ·Sq2Sq1, j ≥ 0.

Proposition 6. Let BZ/p
i−→ X

k−→ Y be a principal fibration with H∗(X) ∼= K(r)
0 and

i∗(x2) 6= 0. Then H∗(Y ) ∼= K(r+1)
λ for some λ ∈ {0, 1} and k∗(x2) = 0, k∗(y3) = y3 and

k∗(z2p+1) = z2p+1.

Proof. Let us consider the Serre spectral sequence of the fibration X → Y → B2Z/p.
Recall that

H∗(B2Z/p) =
{ Fp[ι, βP 1βι, . . . , βP∆j βι, . . . ]⊗ E(βι, P 1βι, . . . , P∆j βι, . . . ), p > 2

F2[ι, Sq1ι, . . . , Sq∆j ι, . . . ], p = 2.

Observe that x2 ∈ H∗(X) has to be transgressive to βι modulo units. Then, since the
transgression commutes with the Steenrod operations, there are differentials

d(xpj

) =
{

P∆j−1βι, j ≥ 1, p > 2
Sq∆j−1ι, j ≥ 1, p = 2

In the case of p odd, Kudo’s transgression theorem implies that there are differentials

d(xpj(p−1)P∆j−1βι) = βP∆j βι.

The spectral sequence with coefficients in Z(p) shows that y3 has to survive. Using this,
one can compute all differentials in the spectral sequence and conclude that

E∞ = Fp[ι2]⊗ E(y3, z2p+1).

The spectral sequence with coefficients in Z(p) yields also that β(r+1) has to be non trivial
on the two dimensional class of Y . From here one concludes

H∗(Y ) ∼= Fp[x2]⊗ E(y3, z2p+1)

and the class z2p+1 can be chosen such that P 1(y3) = z2p+1. In the case of p = 2 one
needs to prove that y3 and z2p+1 are indeed exterior generators. This follows easily by the
Bockstein spectral sequence. The conclusion follows from proposition 4. ¤

The next spectral sequence that we have to study needs a more involved analysis.
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Proposition 7. Let BZ/p
i−→ X

k−→ Y be a principal fibration with H∗(X) ∼= L and

i∗(x2p2) 6= 0. Then H∗(Y ) ∼= K(1)
λ for some λ ∈ {0, 1} and k∗ is trivial.

Proof. Let us consider the Serre spectral sequence of X −→ Y
l−→ B2Z/p. Obviously,

y2p+1 ∈ H∗(Y ) has to be transgressive and our first goal is to compute the transgression
of y2p+1. By dimensional reasons,

τ(y2p+1) =
{

δβP 1βι + µιp+1, p > 2
δ(Sq1ι)2 + µι3, p = 2

If we notice now that β(y2p+1) = 0 and that the Steenrod operations commute with the
transgression, we easily get µ = 0. We want to prove that δ 6= 0. Assume that δ = 0
and so y2p+1 survives to E∞. In this case, the first differential which may be non trivial
appears in total degree 2p2. Hence, we know H∗(Y ) up to dimension 2p2 − 1 and it turns
out to be generated by

x2 = l∗(ι), βx2, P 1βx2, βP 1βx2, ȳ.

We input now this information on H∗(Y ) into the Serre spectral sequence of the fibration
BZ/p → X → Y . Obviously, u ∈ H1(BZ/p) has to be transgressive to x2 ∈ H2(Y )
(up to units). Then, v ∈ H2(BZ/p) transgresses to βx2, vp transgresses to P 1βx2, vp2

transgresses to P pP 1βx2 and, in the case of p odd, Kudo’s formula determines differentials
on vp−1βx2 and vp(p−1)P 1βx2. In this form, one is able to fully determine the differentials
in this spectral sequence up to total degree 2p2 − 1. Notice that vp2 ∈ H∗(BZ/p) is in
the image of H∗(X), hence it has to survive and so we get that P pP 1βx2 ∈ H∗(Y ) has to
be decomposable in terms of x2, βx2, P 1βx2, βP 1βx2 and ȳ. Hence, the same is true for
βP pP 1βx2 ∈ H∗(Y ).

Let us return now to the Serre spectral sequence of X → Y → B2Z/p. Since, as we have
just proved, βP pP 1βx2 has to be decomposable in H∗(Y ), there should be a differential
in this spectral sequence starting at total degree 2p2 + 1. hence, z2p2+1 has to support a
non-trivial differential. This is a contradiction since z2p+1 = P py2p+1 and y2p+1 is asumed
to be transgressive to zero. This contradiction proves that y2p+1 ∈ H∗(X) cannot survive
and, indeed, up to units we have

τ(y2p+1) =
{

βP 1βι, p > 2
(Sq1ι)2, p = 2

with zero indeterminacy. From here we get that z2p2+1 ∈ H∗(X) is also transgressive and

τ(z2p2+1) =
{

βP pP 1βι, p > 2
(Sq2Sq1ι)2, p = 2

modulo the indeterminacy. Let us study now the differentials of the spectral sequence of
X → Y → B2Z/p when applied to x2p2 ∈ H∗(X). Notice that this element cannot survive
because z does not. If p 6= 2, the y2p+1-row has disappeared when the first non trivial
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differential on x2p2 appears because τ(y2p+1) is not a zero divisor in H∗(B2Z/p) and so
x2p2 is transgressive. By naturality and up to units we have

(1) τ(x2p2) = P pP 1βι + d

If p = 2 the analysis needs to be slightly different but one also concludes that x2p2 is
transgressive and formula (1) holds.

Now, the knowledge about the transgressions of x2p2 , y2p+1 and z2p2+1 as well as the
commutativity of the transgression with the Steenrod operations and Kudo’s transgression
formula, allow us to fully determine the differentials in the spectral sequence of the fibration
X → Y → B2Z/p. The conclusion is that

H∗(B2Z/p) → H∗(Y )

is an epimorphism and H∗(Y ) is generated by the images of ι, βι and P 1βι. In the case
of p = 2, (Sq1ι)2 and (Sq2Sq1ι)2 are the transgressions of y5 and z9, respectively. Hence,
we have, in any case

H∗(Y ) ∼= Fp[x2]⊗ E(β(x2), P 1β(x2))

and so, by proposition 4, H∗(Y ) ∼= K(1)
λ for some λ ∈ {0, 1}. ¤

5. Non-realizability of K(r)
1 . In this section we will prove that K(r)

1 cannot be the mod
p cohomology of any space. Roughly speaking, this non-realizability result will follow from
the fact that the homomorphism K(r)

1 → TfK
(r)
1 is not compatible with the Bockstein

spectral sequence.

Proposition 8. There is no space X such that H∗(X) ∼= K(r)
1 for any r > 0.

Proof. Let X be a space such that H∗(X) ∼= K(r)
1 . By the same argument as in proposition

3 we can assume, without loss of generality, that X is p-complete and simply connected.
Let f : K(r)

1 → H∗(BZ/p) be the non trivial homomorphism considered before. Then by
[9; 3.1.1] there is a map φ : BZ/p → X inducing f in mod p cohomology. By proposition
5 we have TfK

(r)
1
∼= Fp[x2]⊗ E(y3, w1).

Let {PsX}s>0 denote the Postnikov tower of X. Then, the main theorem in [6] implies
that

TfK
(r)
1
∼= lim−→H∗(map(BZ/p, PsX)φs).

For a given s, consider the map induced in cohomology by the evaluation map

e∗ : H∗(PsX) → H∗(map(BZ/p, PsX)φs).

In the limit when s → ∞ this is the homomorphism K(r)
1 → Fp[x2] ⊗ E(y3, w1) given

by x 7→ x, y 7→ y, z 7→ xpw. It is clear that in any argument which involves only
finitely many cohomology classes and finitely many primary and secondary operations, by
taking s large enough we can substitute H∗(PsX) by K(r)

1 and H∗(map(BZ/p, PsX)φ) by
Fp[x2]⊗ E(y3, w1).
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Let us analyze now the Bockstein spectral sequence of H∗(X) ∼= K(r)
1 up to degree

2p+3. We have β(r)(x) = y and so Er+1 only contains xp, xp−1y and z up to that degree.
If p is odd or p = 2 and r > 1 it is well known that β(r+1)(xp) = xp−1y. If p = 2 and r = 1
then β(2)(x2) = xy + z. In any case, z is a permanent cycle.

In the Bockstein spectral sequence of map(BZ/p, PsX)φ for s big enough we have by
naturality βi(w) = 0 for i < N and N arbitrarily large and also β(r)(x) = y. Hence,

β(r+1)(xpw) = xp−1yw 6= 0

and this is a contradiction since z maps to xpw by the evaluation map. ¤
Remark. Let B bet the category of unstable algebras over the Steenrod algebra “with
higher Bocksteins” discussed in section 3 and recall that the cohomology algebra of a
space is an object in this category. There is a forgetful functor from B to K. Then the
above proof shows that the T functor cannot be lifted to B.

Remark. The above proof is a further example of the usefulness of the T functor to deal
with the classical problem of realizability of unstable algebras over the Steenrod algebra as
cohomology rings. Other examples that we would like to mention here are the celebrated
theorem by Dwyer-Miller-Wilkerson on the non-realizability of inseparable subalgebras of
H∗(BTn) for p odd ([7]) and also the proof of the Cooke conjecture ([1], [2]) on the
non-realizability of algebras of the form Fp[x]⊗ E(β(x)).

6. Proof of theorem 1. Like in proposition 3, we can assume, without loss of generality,
that X is p-complete and simply connected. Let f : L → H∗(BZ/p) be the non trivial
homomorphism considered before. Then by [9; 3.1.1] there is a map φ : BZ/p → X
inducing f in mod p cohomology. By proposition 5 we have TfL ∼= L. Then, [9; 3.2.1]
shows that

H∗(map(BZ/p,X)φ) ∼= L

where map(BZ/p,X)φ is the space of all maps BZ/p → X homotopic to φ. Hence, up to
p-completion, map(BZ/p,X)φ is homotopy equivalent to X. Observe now that BZ/p is a
connected abelian simplicial group and the action of BZ/p on itself by right translations
induces an action of BZ/p on the space map(BZ/p,X)φ. If X1 is the homotopy quotient
of map(BZ/p, X)φ by this action, we have a fibration

BZ/p
φ−→ X −→ X1.

By proposition 7 we have H∗(X1) ∼= K(1)
λ for some λ ∈ {0, 1}. But proposition 8 shows

that K(1)
1 cannot be the cohomology of any space. Hence, H∗(X1) ∼= K(1)

0 . Consider now
the homomorphism f : K(1)

0 → H∗(BZ/p). If we substitute X1 by its p-completion we
can find a map φ : BZ/p → X1 inducing f in cohomology. Let us consider the mapping
space map(BZ/p,X1)φ. According to [9; 3.2.1] the cohomology of this mapping space is
isomorphic to TfK

(1)
0
∼= K(1)

0 (proposition 5). Hence, the evaluation map gives a homotopy
equivalence between the p-completion of this mapping space and X1. In the same way as
before, this allows us to construct a fibration

BZ/p
φ−→ X1 −→ X2
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and proposition 6 plus the non realizability of K(r)
1 (proposition 8) gives H∗(X2) ∼= K(2)

0 .
It is clear that this process can be repeated again and again producing a sequence of spaces
and maps

X → X1 → X2 → X3 → · · ·
with H∗(Xr) ∼= K(r)

0 , r > 0. Let X∞ be the homotopy colimit of this sequence of spaces.
The cohomology of X∞ can be calculated by the classical short exact sequence

1 −→ lim←−
1H∗+1(Xj) −→ H∗(X∞) −→ lim←−H∗(Xj) −→ 1 .

The first term vanishes because all the groups are finite, and

lim←−H∗(Xj) ∼= H∗(B(p)).

Hence, by proposition 3 (X∞)p̂ ' B(p)p̂. Let F be the homotopy fibre of the map X1 →
X∞. An elementary spectral sequence argument shows that H∗(F ) ∼= H∗(BS1). Hence,
F ' (BS1)p̂ = K(Ẑp, 2) and the fibration is principal because B(p)p̂ is simply connected.
Then X1 is the homotopy fibre of a map B(p)p̂ → K(Ẑp, 3). The cohomology of X1 forces
this map to be of degree pα where α is a unit in Ẑp. Hence, X1 ' B(p)〈3; p〉p̂. Now X

is the fibre of the map B(p)〈3; p〉p̂ → B2Z/p classified by the two dimensional class x2.
Hence, X ' B(p)〈3〉p̂ and the proof is complete. ¤

It is obvious from the above proof that the same arguments show the homotopy unique-
ness of the spaces B(p)〈3; pr〉:
Theorem 9. Let X be such that H∗(X) ∼= K(r)

0 . Then X̂p ' B(p)〈3; pr〉p̂. ¤
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