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THE TORSION INDEX OF A p-COMPACT GROUP

JAUME AGUADÉ

(Communicated by Brooke Shipley)

Abstract. We extend the theory of torsion indices of compact connected Lie
groups to p-compact groups and compute these indices in all cases.

1. Introduction and statement of results

The torsion index of a compact connected Lie group was defined by Grothendieck
in 1958 ([10]) and has been investigated by several authors ([14], [6], [15], etc.).
Recently, the computation of the torsion indices of all simply connected compact
Lie groups has been completed (see [16]). Since we are going to work at a single
prime p, instead of the torsion index of a Lie group G, we want to consider its p-
primary part tp(G). We summarize the properties of tp(G) which are relevant to the
present work in the following proposition (Zp denotes the ring of p-adic integers).

Theorem 1.1. Let p be a prime and let G be a compact connected Lie group with
a maximal torus T and corresponding Weyl group W . The positive integer tp(G)
has the following properties:

(TI1) If A is a finite abelian p-subgroup of G, then A has a subgroup of index
dividing tp(G) which is contained in a conjugate of T .

(TI2) tp(G) kills the kernel and the cokernel of the homomorphism

H∗(BG;Zp) → H∗(BT ;Zp)
W .

(TI3) H∗(G/T ;Zp) is torsion free and concentrated in even degrees ≤ N =
dim(G) − rank(G), with HN (G/T ;Zp) ∼= Zp. Then, tp(G) is the order
of the cokernel of HN (BT ;Zp) → HN (G/T ;Zp).

(TI4) If p is not a torsion prime for G, then tp(G) = 1.

Notice that the property (TI3) can be taken as a definition of the (p-primary)
torsion index tp(G). The other properties are well known and can be found in
[15], which provides proofs or references for all of them. Actually, the properties
above are usually stated using H∗(−;Z) and t(G) =

∏
p tp(G) instead of H∗(−;Zp)

and tp(G), but it is easy to see that both formulations are indeed equivalent. For
property (TI2) one should notice that H∗(BT ;Zp)

W = H∗(BT ;Z)W ⊗ Zp. This
follows from exactness of −⊗Zp and the fact that the elements invariant under W
can be viewed as the kernel of the homomorphism

⊕
g∈W (1− g).
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The purpose of this paper is to extend the theorem above to connected p-compact
groups ([8]) and to compute the torsion indices in all cases. We prove:

Theorem 1.2. Let p be a prime and let X be a connected p-compact group with
maximal torus T and corresponding Weyl group W . There is an integer tp(X) such
that:

(1) The properties (TI1), (TI2), (TI3), (TI4) in Theorem 1.1 hold after replac-
ing G with X.

(2) If X is exotic, then tp(X) = 1 for p odd and t2(X) = 2.

Here we use the work exotic with the same meaning as in [1]: A p-compact group
X is exotic if the associated pseudoreflection representation of the Weyl group of X
over the p-adic field is irreducible and does not come from a reflection group over
Z.

Section 2 deals with the (easier) odd prime case, and we show that if we define
tp(X) = 1 for any exotic X, then properties (TI1), (TI2), (TI3), (TI4) hold true.
The hardest part consists of computing the torsion index of the only exotic 2-
compact group, which we (following [12]) denote G3 (other authors denote it as
DI(4)). We need a comprehensive review of the cohomology ofG3 and BG3 (section
3) and some computations on the cohomology of the exotic homogeneous space
G3/ Spin(7) (section 4) before we can prove that t2(G3) = 2. Finally, we prove
Theorem 1.2 in section 6.

2. The odd prime case

The classification theorem for p-compact groups ([2]) tells us that any connected
p-compact groupX splits uniquely as a productX ∼= G∧

p×X1, where G is a compact
connected Lie group and X1 is a product of exotic p-compact groups. Notice that
the splitting is as p-compact groups and not just as spaces. This splitting implies
that it is enough to prove Theorem 1.2 for each exotic p-compact group, since it is
already known to be true for the (p-completions of) compact connected Lie groups.
Let us discuss this in some more detail. If Theorem 1.2 holds for the p-compact
groups X1 and X2, let X = X1 ×X2 and let us define tp(X) = tp(X1) tp(X2). We
need to check that properties (TI1) to (TI4) hold for X if they hold for X1 and X2.
(TI4) is trivial and (TI3) is straightforward. To prove (TI2) let us observe that
the kernel of γ : H∗(BX;Zp) → H∗(BT ;Zp)

W is equal to the torsion elements in
H∗(BX;Zp). If X is of Lie type, this is well known (cf. [9]). If X is exotic and
p = 2 (i.e. X = G3), then this is assertion 4 in [12]; and if p is odd, this is proven
in [1]. Then, it is clear that tp(X1) tp(X2) kills the kernel of γ. It is obvious that
tp(X1) tp(X2) kills the cokernel of γ as well. Finally, (TI1) follows easily since we
can use the theory of kernels of homomorphisms between p-compact groups which
is developed in [8], section 7.

Let us assume now that p is odd and let X be an exotic p-compact group. These
objects are very well understood. In particular, they satisfy the following properties
(see [1]). Let T and W denote a maximal torus of X and the corresponding Weyl
group, respectively. Then:

(1) X is simply connected and center free and H∗(X;Zp) is torsion free.
(2) The natural map BT → BX induces an isomorphism

H∗(BX;Zp) ∼= H∗(BT ;Zp)
W .
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In particular, H∗(BX;Zp) is concentrated in even degrees.
(3) H∗(X/T ;Zp) is a free Zp-module concentrated in even degrees. Moreover

(see [13], th. 7.5.1) H∗(X/T ;Zp) ⊗ Q is a Poincaré duality algebra with
fundamental class in degree dim(X)− rank(X). Actually, as a W -module,
H∗(X/T ;Zp)⊗Q coincides with the regular representation of W .

We also need another property of p-compact groups (which holds also for p = 2)
that follows from the work in [5].

(4) If X is any p-compact group such that H∗(BX;Fp) is concentrated in even
degrees, then any finite abelian p-subgroup ofX is conjugated to a subgroup
of the maximal torus ofX. In particular, this holds for any product of exotic
p-compact groups for p odd.

Theorem 1.2 for p odd follows immediately from all these properties of p-compact
groups. �

3. The 2-compact group G3 and its maximal torus

In this section we recollect several properties of G3 that we need in the forth-
coming sections. We state these properties without proof because either they can
be found in the papers [7], [12], [4], [11] or they follow from straightforward com-
putations that are left to the reader.

As is well known, G3 is an exotic connected 2-compact group of rank three
whose Weyl group W is the reflection group number 24 in the Shephard-Todd list
of finite complex reflection groups. Its existence was established by Dwyer and
Wilkerson in [7]. We remind the reader that some authors call this 2-compact
group DI(4), but we follow the notation used in [12]. As an abstract group, W is
isomorphic to Z/2Z × GL3(F2) and for a maximal torus T of G3, there is a basis
{ε1, ε2, ε3} of H2(BT ;Z2) such that the action of W on H∗(BT ;Z2) is given by the
pseudoreflections

s1 =

⎛

⎝
−1 −ᾱ 1
0 1 0
0 0 1

⎞

⎠ , s2 =

⎛

⎝
1 0 0
−α −1 1
0 0 1

⎞

⎠ , s3 =

⎛

⎝
1 0 0
0 1 0
1 1 −1

⎞

⎠ ,

where α, ᾱ ∈ Z2 are the roots of x2 − x+2 chosen in such a way that α is odd and
ᾱ is even.

G3 has Spin(7) as a 2-compact subgroup of maximal rank. This means that
there is a map φ : B Spin(7)∧2 → BG3 whose homotopical fibre is F2-finite. It is
natural to denote this fibre by G3/ Spin(7). The restriction of φ to a maximal torus
of Spin(7) is a maximal torus of G3.

There is a subgroup V ⊂ Spin(7) (explicitly described in [7]) which is an ele-
mentary abelian 2-group of rank four and such that the homomorphisms

H∗(BG3;F2)
φ∗

−→ H∗(B Spin(7);F2)
k∗
−→ H∗(BV ;F2) ∼= F2[V

∗]

are monomorphisms (k∗ is induced by the inclusion V ⊂ Spin(7)). Moreover, the
image of (φk)∗ coincides with the rank four Dickson algebra which is the algebra
of invariants of H∗(BV ;F2) under the action of the full linear group GL(V ∗),
and the image of k∗ coincides with the algebra of invariants H∗(BV ;F2)

H where
H ⊂ GL(V ∗) can be described, in some appropriate basis of V ∗, as the set of
matrices with first row equal to (1, 0, 0, 0). These algebras of invariants are well
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known (also as algebras over the Steenrod algebra) and we have isomorphisms
(subscripts denote degrees)

H∗(BG3;F2) ∼= F2[c8, c12, c14, c15],

H∗(B Spin(7);F2) ∼= F2[d4, d6, d7, d8],

where the generators ci and di can be explicitly described. In particular, we can
see that φ∗ is given by φ∗(c8) = d24 + d8, φ

∗(c12) = d26 + d4d8, φ
∗(c14) = d27 + d6d8,

φ∗(c15) = d7d8. Sq
1 vanishes on d4, d7, d8, while Sq1(d6) = d7.

As was said before, a maximal torus T of Spin(7) is also a maximal torus of G3.
We have maps

BT∧
2

i−→ B Spin(7)∧2
φ−→ BG3

and we can view the Weyl group W1 of Spin(7) as a subgroup of W , namely W1 =
〈s1, s2, s1s3s2s1s2s3s1〉. It is known that the homomorphism

i∗ : H∗(B Spin(7);Z2) → H∗(BT ;Z2)
W1

is surjective and its kernel coincides with the ideal of torsion elements. The integral
invariants of W1 are computed in [4]. They turn out to form a polynomial algebra
on generators of degrees 4, 8, 12:

H∗(BT ;Z2)
W1 ∼= Z2[u4, u8, u12].

Choosing an appropriate basis {x1, x2, A} of H2(BT ;Z2), these generators are

u4 = (1/2)(x2
1 + x2

2 + x2
3),

u8 = (1/16)(x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3),

u12 = x2
1x

2
2x

2
3,

where we have used the notation x3 = 2A − x1 − x2, and one can check that in
spite of the denominators, these polynomials belong to Z2[x1, x2, A].

The generators u4, u8 and u12 have a rather simple form as polynomials on
x1, x2, A, but this basis of H2(BT ;Z2) does not coincide with the basis {ε1, ε2, ε3}
that we have used to describe the action of W on H∗(BT ;Z2). The matrix that
expresses {ε1, ε2, ε3} in terms of {x1, x2, A} is

⎛

⎝
0 −ᾱ/2 −(1 + α)/2
1 0 −(1 + α)/2
0 ᾱ α

⎞

⎠ ∈ GL3(Z2).

Using this matrix we can express the generators u4, u8, u12 as polynomials in ε1, ε2,
ε3 and so we have an explicit description of the homomorphism

Z2[u4, u8, u12] = H∗(B Spin(7);Z2)/Torsion → H∗(BT ;Z2) = Z2[ε1, ε2, ε3].

Finally, we want to use this to describe the homomorphism

F2[d4, d6, d7, d8] = H∗(B Spin(7);F2)
i∗−→ H∗(BT ;F2) = F2[ε1, ε2, ε3].

In the Bockstein spectral sequence for B Spin(7) we have E2 = E∞ = F2[d̄4, d̄8, d̄26],
and the surjection

j : H∗(B Spin(7);Z2)/Torsion → E∞
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is given by j(u4) = d̄4, j(u8) = d̄8, j(u12) = d̄26. From this it is straightforward to
perform the computations that yield

i∗(d4) = ε21 + ε1ε2 + ε22,

i∗(d6) = Sq2i∗(d4) = ε21ε2 + ε1ε
2
2,

i∗(d7) = 0,

i∗(d8) = ε1ε2ε3(ε1 + ε2 + ε3) + ε23(ε1 + ε2 + ε3)
2.

4. The exotic homogeneous space G3/ Spin(7)

In this section we want to investigate the cohomology of the exotic homoge-
neous space G3/ Spin(7). The computations presented here are probably known to
experts, but it may be worthwhile to work them out here in some detail.

Let us consider the fibration G3/ Spin(7)
ρ−→ B Spin(7)∧2 → BG3 and let V ⊂

Spin(7) denote the elementary abelian 2-group of rank 4 considered in the preceding
section. To simplify the notation, let us write S = H∗(BV ;F2). Then, we have
H∗(B Spin(7);F2) = SH and H∗(BG3;F2) = SG for G = GL4(F2).

The computation of H∗(G3/ Spin(7);F2) is best worked out with the Eilenberg-
Moore spectral sequence

TorH∗(BG3;F2)(H
∗(B Spin(7);F2),F2) ⇒ H∗(G3/ Spin(7);F2).

Here the key observation is that H∗(B Spin(7);F2) = SH is a free module over
H∗(BG3;F2) = SG because of the following classic argument. S is an integral
extension of SG; hence SH is also an integral extension of SG and, since SH is a
finitely generated algebra, we obtain that SH is a finitely generated SG-module.
But both SH and SG are polynomial algebras, and we can apply [3], Chap. V, 5.5,
or [13], 6.7.1, to conclude that SH is SG-free.

Hence the Eilenberg-Moore spectral sequence collapses to an isomorphism

H∗(G3/ Spin(7);F2) ∼= F2[d̄4, d̄6, d̄7]
/
(d̄6

2
+ d̄4

3
, d̄7

2
+ d̄4

2
d̄6, d̄4

2
d̄7),

where d̄4, d̄6, d̄7 are the images of d4, d6, d7 ∈ H∗(B Spin(7);F2), respectively. It is
rather easy to completely work out the algebra structure of H∗(G3/ Spin(7);F2).
We obtain the following:

(1) The Poincaré series of H∗(G3/ Spin(7);F2) is

1 + t4 + t6 + t7 + t8 + t10 + t11 + t12 + t13 + t14 + t16 + t17 + t18 + t20 + t24

and the Euler characteristic is 7 = [W : H].
(2) An additive basis for H∗(G3/ Spin(7);F2) is given by

{
d̄4

i
, i = 0, . . . , 6, d̄6, d̄7, d̄4d̄6, d̄4d̄7, d̄6d̄7, d̄4

2
d̄6, d̄4d̄6d̄7, d̄4

3
d̄6

}
.

(3) H∗(G3/ Spin(7);F2) is a Poincaré duality algebra with top class d̄4
6
(see

[13], 6.5).
(4) The Bockstein spectral sequence of H∗(G3/ Spin(7);F2) collapses after the

second term; i.e. H∗(G3/ Spin(7);Z2) has only torsion of order 2. We have

H∗(G3/ Spin(7);Z2)
/
Torsion ∼= Z2[ā]/ā

7

and

H∗(G3/ Spin(7);Z2) ∼= Z2[ā, c̄]
/
(ā7, c̄3, ā2c̄, 2c̄).
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In particular, the top class in H∗(G3/ Spin(7);Z2) is d̄4
6
in dimension 24,

and it is in the image of

φ∗ : H∗(B Spin(7);Z2) → H∗(G3/ Spin(7);Z2).

5. The torsion index of G3

To compute the torsion index of the 2-compact group G3 we need a lemma on
Poincaré duality in fibrations. I’m grateful to Aniceto Murillo for some helpful
conversations on this subject. For this lemma we use the following notation. Let
O denote the ring of integers or the ring of p-adic integers. Cohomology is taken
with coefficients in O, and we assume that all spaces are of finite type over O. We
say that η ∈ Hn(X) is an orientation class if Hi(X) = 0 for i > n, Hn(X) ∼= O,
and η is a generator of Hn(X).

Lemma 5.1. Let F
j−→ E

π−→ B be a fibration of 1-connected spaces and assume
that ηF ∈ Hm(F ) and ηB ∈ Hn(B) are orientation classes. Assume α ∈ Hm(E)
is such that j∗(α) = ληF for some λ �= 0. Then there is an orientation class ηE

for E such that α · π∗(ηB) = ληE.

Proof. This follows easily from the cohomology spectral sequence of the fibration

F
j−→ E

π−→ B. First of all, it is clear that Hi(E) = 0 for i > n + m while
Hn+m(E) = En,m

∞ = En,m
2

∼= O. Recall that the cohomology spectral sequence
is multiplicative in the sense that (up to some signs which would not play any
role here) the product in E2 induced by the products in H∗(B) and H∗(F ) yields a
product in each Er, 2 ≤ r ≤ ∞, in such a way that the product in E∞ is compatible
with the product in H∗(E).

At the E2 level we have that ηE := ηF · ηB is a generator of En,m
2 = En,m

∞ =
Hn+m(E). The hypothesis j∗(α) = ληF , λ �= 0 implies that α has filtration zero in
Hm(E) and its image in E0,m

∞ is ληF . Then, ληE = (ληF ) · [ηB] holds in E∞ where
[ηB ] denotes the image of ηB in En,0

∞ . Since Ei,m+n−i
∞ = 0 for i �= n, we deduce

ληE = α · π∗(ηB), as desired. �
Now we can proceed to the computation of the torsion index of G3 or, to be more

precise, to the computation of the order of the cokernel of k∗ : H42(BT ;Z2) →
H42(G3/T ;Z2). We consider the diagram

(Spin(7)/T )∧2
j−−−−→ G3/T

π−−−−→ G3/ Spin(7)

k

⏐
⏐
� φ

⏐
⏐
�

(BT )∧2
i−−−−→ (B Spin(7))∧2

Spin(7)/T is a compact orientable differentiable manifold of dimension 18, and
we can choose an orientation class η ∈ H18(Spin(7)/T ;Z2). The torsion indices of
the Lie groups Spin(n) have been computed by Totaro for all values of n ([15]), and
it turns out that the torsion index of Spin(7) is equal to 2. This means that there
is ω ∈ H∗(BT ;Z) such that f∗(ω) = 2η for the natural map f : Spin(7)/T → BT .

The computations in the preceding section show that there is an orientation class
ρ ∈ H24(G3/ Spin(7);Z2) which is in the image of φ∗. Let ρ = φ∗(γ). We can now
apply the lemma above to the fibration Spin(7)/T → G3/T → G3/ Spin(7) with
α = k∗(ω) and deduce that there is an orientation class θ ∈ H42(G3/T ;Z2) such
that k∗(ω · i∗(γ)) = 2 θ. This implies that the torsion index of G3 divides 2.
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Next, we prove that the torsion index of G3 cannot be equal to 1. It is enough
to prove that the homomorphism H42(BT ;F2) → H42(G3/T ;F2) is equal to zero.
Let us consider the F2-spectral sequence of the fibration G3 → G3/T → BT∧

2 . We
have that

H∗(G3;F2) ∼= F2[x7]/x
4
7 ⊗ E(x11, x13),

Sq4(x7) = x11, Sq2(x11) = x13, Sq
1(y13) = x2

7.

Hence, the generators x7, x11, x13, x
2
7 are transgressive to c8, c12, c14, 0, respectively.

Here we denote by c8, c12, c14 the images in H∗(BT ;F2) of the generators c8, c12, c14
∈ H∗(BG3;F2). Recall that in section 3 we have computed these elements as
explicit polynomials in some basis {ε1, ε2, ε3} of H2(BT ;F2).

In the E2-term of the spectral sequence of G3 → G3/T → BT∧
2 , let us consider

the row containing x2
7. All elements in this row are permanent cycles, and the only

boundaries are the elements of the form x2
7q with q in the ideal of F2[ε1, ε2, ε3] gen-

erated by c8, c12, c14. If we compute the quotient algebra F2[ε1, ε2, ε3]/(c8, c12, c14)
(using any choice of computer algebra software), we see that it is a graded algebra
with Poincaré series equal to

1 + 3t2 + 6t4 + 10t6 + 14t8 + 18t10 + 21t12 + 22t14

+ 21t16 + 18t18 + 14t20 + 10t22 + 6t24 + 3t26 + t28,

and so in particular there is an element q ∈ H28(BT ;F2) which does not belong
to the ideal (c8, c12, c14). Hence, the element x2

7q in the E2-term of the spectral
sequence survives to a nontrivial element in H42(G3/T ;F2) which cannot be in the
image of H∗(BT ;F2). This finishes the proof of

Theorem 5.2. The cokernel of H42(BT ;Z2) → H42(G3/T ;Z2) has order two.

6. Proof of Theorem 1.2

In section 2 we saw that it is enough to prove Theorem 1.2 for each exotic
p-compact group, and we also saw that Theorem 1.2 is true for all odd primes.
Since it is known ([2]) that the only exotic 2-compact group is G3, the only thing
that remains to be proved is that G3 satisfies the properties (TI1) to (TI4) with
t2(G3) = 2.

(TI4) is void, and (TI3) is just Theorem 5.2 plus some facts about G3/T which
were proven in [2]. In [12] it is proven that the torsion elements in H∗(BG3;Z2) are
of order two and the homomorphism H∗(BG3;Z2) → H∗(BT ;Z2)

W is surjective.
This implies immediately that (TI2) holds. Let A be a nontrivial finite abelian
2-subgroup of G3 and let E be a subgroup of A of order 2. Then, A factors through
the centralizer of E in G3 which is Spin(7). Since Spin(7) has 2-torsion index equal
to 2, we deduce that A has a subgroup of index at most 2 which is included in a
maximal torus of G3. So, we have (TI1), and the proof is complete. �

References

1. K.K.S. Andersen, J. Grodal, J.M. Møller, A. Viruel, The classification of p-compact groups
for p odd, Ann. of Math. (2) 167 (2008), 95–210. MR2373153 (2009a:55012)

2. K.K.S. Andersen, J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc. 22
(2009), no. 2, 387–436. MR2476779
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