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A characterization of Farrell sets for the space of harmonic or holomorphic
functions whose boundary values are in BMO (VMO) is obtained. The main step
of the proof is the construction of certain VMO functions which are related to the
sharpness of the John�Nirenberg inequality. � 2000 Academic Press

1. INTRODUCTION

Let A be a space of functions in the upper half space Rd+1
+ =[(x, y):

x # Rd, y>0] or in the unit disk D of the complex plane. Let C denote the
set of continuous functions which belong to A. Suppose that there is given
a topology { in A such that C is dense in A. A relatively compact subset
F/Rn+1

+ (or F/D) is called a Farrell set (for (A, {)) if for any f # A

bounded on F there exists a sequence of continuous functions [ pn] in C

tending to f (in the topology {) and pointwise-boundedly on F, that is,
pn � f pointwise on F and

&pn&F � & f &F ,

where & f &F denotes the supremum of f over F.
This concept was introduced by Rubel, who also raised the question of

describing such sets [R]. Actually, Farrell sets have been geometrically
described for several spaces of functions, for instance, (a) for the space of
all holomorphic functions in the unit disk D endowed with the topology of
uniform convergence on compact subsets of D [R�S], (b) for the space
H� of bounded analytic functions in the unit disk with the topology of
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pointwise bounded convergence [S], (c) for the usual Hardy spaces H p(D),
0<p<�, with the weak and the norm topology [R�S, P, P�S, B�P�S�T],
(d) for the space of bounded harmonic functions in the upper half space
with the weak-V topology [P�T, B�T]. In cases (b), (c), and (d), Farrell
sets are those relatively compact sets F/B such that almost any point
in F� & �B is in the nontangential closure of F. Here B denotes either D
or Rn+1

+ .
Given a point x # Rd and :>0, let

1(x, :)=[( y, t) # Rd+1
+ : | y&x|�:t]

be the cone with vertex at x and aperture :. Given a set F in the upper half
space Rd+1

+ , the point x # Rd is in the nontangential closure of F, if there
exists :>0 such that x is in the closure of F & 1(x, :). The nontangential
closure of F is denoted by Fnt .

In this paper we study Farrell sets for the space of functions of bounded
mean oscillation, obtaining a similar geometric description.

In the Euclidean space Rd, let Q denote any cube with sides parallel to
the axis and write |Q| for its Lebesgue measure. A locally integrable func-
tion f on Rd has bounded mean oscillation, f # BMO(Rd ), if

& f &
*

=sup
Q

1
|Q| |Q

| f &fQ |<�,

where

fQ=
1

|Q| |Q
f =�|

Q
f

is the mean of f over Q. Every bounded function is in BMO but BMO
contains unbounded functions. For instance, log |x| is in BMO(Rd ). One
denotes by VMO(Rd ), the space of functions of vanishing mean oscillation,
the closure in BMO of the continuous functions with compact support.
Equivalently, VMO consists of those f # BMO such that the averages
|Q|&1 �Q | f &fQ | tend to zero uniformly as the side length of Q tends
either to zero or to infinity. Again, VMO contains unbounded functions
(e.g., |log |x| |1�2).

The celebrated duality theorem of Fefferman [F�S] states that BMO(Rd)
is the dual space of the Hardy space, H1(Rd ), of functions g in L1 whose Riesz
transforms

Rj g(x)= lim
= � 0 |[ | y|>=]

yj

| y| d+1 g(x& y) dy, j=1, ..., d,
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are in L1. We set &g&H1=&g&1+�d
j=1 &Rj g&1 . Actually, given f # BMO(Rd ),

the corresponding functional 4f is defined on the dense subspace of H1 of
continuous compactly supported functions g with mean 0 by

4f (g)=|
Rn

f (x) g(x) dx

and extends continuously to H1.
Given a function f in BMO(Rd ), we denote by f (z) the value of its

harmonic extension at the point z # Rd+1
+ , that is,

f (z)=( f V Pt)(x)=|
R d

f ( y) Pt (x& y) dy,

where z=(x, t), t>0, and

Pt ( y)=c(d )
t

(&y&2+t2) (d+1)�2 , y # Rd,

is the Poisson kernel. The space of harmonic extensions of functions in
BMO(Rd ) is denoted by BMO(Rd+1

+ ). If f # BMO(Rd), the functions ft (x)
=( f V Pt)(x), x # Rd, t>0, converge pointwise and weak-V to f as t � 0. So
the continuous functions in BMO(Rd ) are weak-V dense in BMO(Rd ).

Theorem 1. Let F be a relatively compact set in the upper half space
Rd+1

+ . Then the following conditions are equivalent:

(a) F is a Farrell set for BMO(Rd+1
+ ) equipped with the weak-V topology.

(b) F is a Farrell set for VMO(Rd+1
+ ) equipped with the norm topology.

(c) Almost every point of F� & Rd is the nontangential limit of points of F,
that is, |F� & Rd "Fnt |=0.

The space BMOA (VMOA) consists of the holomorphic functions in the
unit disk that are Poisson extensions of functions of BMO(�D) (VMO(�D)).
The problem of finding a geometrical description of Farrell sets for BMOA
(VMOA) was proposed in [R�S].

Theorem 2. Let F be a relatively closed set of the unit disk. Then the
following conditions are equivalent:

(a) F is a Farrell set for BMOA endowed with the weak-V topology.

(b) F is a Farrell set for VMOA endowed with the norm topology.

(c) Almost every point of F� & �D is a nontangential limit of points
of F, that is, |F� & �D"Fnt |=0.
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Using duality methods, Pe� rez-Gonza� lez, Stray, and Trujillo-Gonza� lez
have recently proved Theorem 2, except for the implication from (b) to (c).
In both Theorems 1 and 2, when the geometric condition (c) is satisfied,
our methods are constructive. The main technical step is the construction
of VMO functions with certain regularity properties, as stated in Theorems
4 and 5 below.

On the other hand, the necessity of condition (c) in Theorems 1 and 2
is closely related to the following fact. A set F/R2

+ is dominating (for H�)
if for any bounded analytic function f, one has

sup[ | f (z)|: z # F ]=sup[ | f (z)|: z # R2
+].

Such sets are also described by the condition |R"Fnt |=0 (see [B�S�Z]).
An analogous result for Hardy spaces H p, 0<p<�, has been obtained by
Thomas [T].

We will say that a set F/Rd+1
+ is dominating for BMO (for VMO) in

its closure if for any u # BMO (u # VMO) such that supF |u|<�, one has
u # L�(F� ).

Theorem 3. Let F be a relatively compact set in Rd+1
+ . The following

properties are equivalent:

(a) F is dominating in its closure for BMO(Rd+1
+ ).

(b) F is dominating in its closure for VMO(Rd+1
+ ).

(c) |F� & Rd"Fnt |=0.

Certainly a similar result holds for the spaces BMOA, VMOA, as well
as for the Hardy spaces H p.

Recall that functions in BMO satisfy the John�Nirenberg inequality; that
is, there exist two positive constants C1 , C2>0 such that whenever
f # BMO then for every *>0 and every cube Q, one has

|[x # Q : | f (x)& fQ |>*]|�C1 exp(&C2 *�& f &
*

) |Q|.

So, roughly speaking, the set of points of a given cube where a function in
BMO differs from its mean has small Lebesgue measure. The next lemma
tells that this is best possible. That is, given A/Q such that |A|�|Q|== is
sufficiently small, there exists f # BMO, & f &

*
=1 such that | f (x)& fQ |�

C log =&1 for any x # A. This was shown by Garnett and Jones in [G�J,
p. 379]. We need the following strengthened version.

Main Lemma. Let A be a measurable set of Rd and let Q be a cube of Rd.
Assume |A & Q|<= |Q|, 0<=<1. Then there is a function . # VMO such
that
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(i) . is supported on 3
2 Q and |supp .|<C= |Q|.

(ii) &.&
*

�C.

(iii) 0�.�log =&1.

(iv) If x # A & Q then .(x)=log =&1.

(v) ��Q .�C.

Here C=C(d ) is a constant depending only on the dimension.

If one requires the function . to be in BMO instead of VMO, then this
is Lemma 2.2 of [G�J]. Certainly, minor modifications of the proof in
[G�J] should give our Main Lemma. However, in Section 3, for the reader's
convenience, we will present a slightly different and shorter proof. Construc-
tions of similar type can be found in [J, U].

Our two next results are the main steps in the proof of Theorems 1,
2, and 3. In both proofs the Main Lemma plays a central role and the
construction is quite explicit.

Theorem 4. Let A/Rd be a measurable set and let x0 # A� such that

lim
$ � 0

|Q(x0 , $) & A|
|Q(x0 , $)|

=0,

where Q(x0 , $) denotes the cube centered at x0 of side length $. Then there
exists a nonnegative function g # VMO(Rd ) such that

(a) &g&
*

�C=C(d ).

(b) lim$ � 0
1

|Q(x0 , $)| �Q(x0 , $) g( y) dy=0.

(c) limy � x0 , y # A g( y)=�.

Theorem 5. Let A/Rd and let x0 # A� be as in Theorem 4. Then there
exists a nonnegative function f # VMO(Rd ) such that f ( y)�1 for all y # A,
& f &

*
�C=C(d ) and

lim
$ � 0

1
|Q(x0 , $)| |Q(x0 , $)

f ( y) dy=�.

2. PRELIMINARY FACTS

In this section we collect some results which will be used throughout the
paper. First, we state a criterion for weak-V convergence in BMO.
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Lemma 2.1. Let [ fk] be a sequence of functions in BMO(Rd ) and
f # BMO(Rd). Assume that fk � f in the weak-V topology and for some
z0 # Rd+1

+ , fk (z0) � f (z0). Then supk & fk&
*

<� and fk (z) � f (z), for all
z # Rd+1

+ . Moreover, fk tends to f uniformly on compact sets of Rd+1
+ .

Proof. The conclusion supk & fk&
*

<� is clear. We only will pay attention
to the pointwise convergence. For fixed t>0, the Poisson kernel Pt does
not belong to H1. It is well known that bounded functions with mean 0
that decay sufficiently rapidly at infinity belong to H1 [G�R, p. 327]. Thus
for any x # Rd, the function Pt (x& y)&Cd/B(0, 1)( y), where Cd=|B(0, 1)|&1,
is in H1. Then for each z # Rd+1

+ we have

fk (z)&Cd |
B(0, 1)

fk ( y) dy � f (z)&Cd |
B(0, 1)

f ( y) dy.

In particular, taking z=z0 , we get

|
B(0, 1)

fk ( y) dy � |
B(0, 1)

f ( y) dy.

Therefore,

fk (z) � fz(z)

for any z # Rd+1
+ . K

Given a cube Q in Rd we denote by zQ the point (xQ , l (Q)) in the
upper-half space, where xQ is the center of Q and l (Q) is its side length.
Also, PzQ

( y)=P(xQ& y, l (Q)) denotes the Poisson kernel.
Our next auxiliary result says that when one computes the harmonic

extension of a BMO function, contributions from ``far away'' are negligible.

Lemma 2.2. Given =>0, there exists N=N(=, d )>0 such that for any
cube Q/Rd and any f # BMO(Rd ), & f &

*
�1, satisfying

| f (x)|�1&=

for all x # NQ, one has

| f (zQ)|�1.

Proof. Observe that for any cube P in Rd, one has

| f2P& fP |�C & f &
*

.
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Hence, estimating the Poisson kernel in dyadic blocks, one gets

|
R d"NQ

| f ( y)| PzQ
( y) dy�C :

k�1

| f |2kNQ

2kN

�
C
N

:
k�1

2&k (k & f &
*

+| f | NQ)

�
C
N

.

Hence

} f (zQ)&|
NQ

PzQ
( y) f ( y) dy }�C

N

and the result follows. K

Given a natural number n, let D(n) denote the set of dyadic cubes Q of
edge length 2&n ; that is, Q is the cartesian product of intervals [l2&n,
(l+1) 2&n] where l is an integer. Related to each D(n) we consider a
partition of unity. We associate to each dyadic cube Q # D(n) a measurable
function 9Q supported in 5

4 Q such that 0�9Q�1, 9Q(x)=1 for all
x # 3

4Q and

:
Q # D(n)

9Q(x)#1

for all x # Rd. For instance, we could take 9Q=/Q for all Q # D(n);
however, in the proof of Theorem 1, we will require the continuity of the
functions 9Q .

The following result is probably well known but, since we have not
found it in the literature, a proof is provided.

Proposition 2.3. Let f be a function in L1
loc(R

d). Let .( f, n) be the
function defined by

.( f, n)= :
Q # D(n)

aQ9Q where aQ=
� f9Q

� 9Q
.

(a) If f # L p(Rd ), 1�p<�, then .( f, n) � f in L p(Rd ) as n � �.

(b) If f # BMO(Rd ) then .( f, n) � f in the weak-V topology as n � �.
That is, for any h # H1(Rd )

(.( f, n), h) � ( f, h) as n � �.

(c) If f # VMO(Rd ) then &.( f, n)& f &
*

� 0 as n � �.
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Remark. In both parts (b) and (c) one easily gets that for any '>0 the
harmonic extension of .( f, n) tends to the harmonic extension of f uniformly
in [(x, y) # Rd+1 : y>'].

Proof. (a) Observe that by Jensen's inequality,

| }:Q aQ9Q(x) }
p

dx�| \:
Q

|aQ | p 9Q(x)+ dx

�:
Q
| | f (x)| p 9Q(x) dx

=| | f (x)| p dx,

that is, &.( f, n)&p�& f &p .
Now the conclusion follows because it holds trivially for continuous

function with compact support. Given =>0 there is a continuous function
g with compact support such that & f& g&p<=. Therefore,

& f&.( f, n)& p�& f& g& p+&g&.(g, n)& p+&.(g, n)&.( f, n)& p

�2& f& g& p+&g&.(g, n)& p<3=

if n is large enough, because g is continuous and has compact support.

(b) Let f be a function in BMO and write

M( f, $)= sup
l (Q)�$

1
|Q| |

Q
| f &fQ |.

Let Q and Q$ be adjacent dyadic cubes of generation n. Consider a cube
P containing 5

4 Q and 5
4 Q$ such that l (P)�3 } 2&n. Observe that

|aQ&aQ$ |�|aQ& fP |+| fP&aQ$ |�3
|P|
|Q|

1
|P| |P

| f ( y)& fP | dy,

that is,

|aQ&aQ$ |�3d+1M( f, 3 } 2&n). (2.1)

To simplify notation write .n=.( f, n). We now show

& f&.n &
*

�5d M( f, 3 } 2&n). (2.2)
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We first consider cubes P with l (P)�2&n. Then P only intersects adjacent
dyadic cubes of D(n) (at most 2d ) and therefore from (2.1) it follows that
for any x # P, one has

|.n(x)&(.n)P |�max[ |aQ&aQ$ | : Q, Q$ adjacent dyadic cubes of D(n)]

�3d+1M( f, 3 } 2&n).

Then, in this case

1
|P| |P

|( f &.n)&( f &.n)P |�M( f, 2&n)+3d+1M( f, 3 } 2&n).

When the cube P has l (P)>2&n we get

|
P

| f (x)&.n(x)| dx�|
P

:
Q

| f (x)&aQ | 9Q(x) dx

�:
Q

|
P \

1
� 9Q

| | f (x)& f ( y)| 9Q( y) dy+ 9Q(x) dx

�2M( f, 2 } 2&n) :
(5�4)Q & P{< } 54 Q }

2

|Q| &1

�2d+1 \5
4+

2d

|P| M( f, 2 } 2&n),

where we have used the simple fact that for any cube R one has

|
R
|

R
| f (x)& f ( y)| dx dy�|R| |

R
| f &fR |.

Finally

1
|P| |P

|( f &.n)&( f &.n)P |�
2

|P| |P
| f &.n |�2d+2 \5

4+
2d

M( f, 2 } 2&n)

and (2.2) is proved.
Therefore, &.( f, n)&

*
�5d & f &

*
for all n. Thus we only need to check

that (.( f, n), h) � ( f, h) when h is bounded, has compact support and
� h=0 (because this class of functions is dense in H1). But now, as in
part (a), .( f, n)h � fh in L1 and

(.( f, n), h) =| .( f, n)h � | fh=( f, h) as n � �.
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(c) When f # VMO, M( f, $) � 0 as $ � 0 and (2.2) shows that .n

tends to f in norm. K

If f is a complex-valued function and \>0, denote by T\ f its truncation
at height \, that is T\ f (x)= f (x) if | f (x)|�\ and T\ f (x)=\ f (x)�| f (x)|
if | f (x)|�\. Since T\ f =8 b f, where 8 satisfies

|8(z)&8(w)|�|z&w|, z, w # C,

it is clear that

&T\ f &
*

�& f &
*

.

Lemma 2.4. Let f be a function in BMO(Rd ). Then

(a) T\ f converges to f in the weak-V topology, as \ tends to �.

(b) If f # VMO(Rd ), T\ f tends to f in the norm topology, as \ tends
to �.

Proof. Part (a) follows easily because &T\ f &
*

�& f &
*

and because for
any cube Q one has T\( f/Q) � f/Q in L1 as \ � �. To get part (b) one
uses the following fact. If f # VMO, given =>0 there are $>0 (small) and
R>1 (large) such that

1
|Q| |Q

| f &fQ |<=

if either l (Q)<$ or l (Q)>R or the distance from the center of Q to the
origin is bigger than R. K

Sundberg established:

Theorem 2.5 [Su, p. 754]. Let f be a function in BMO(Rd ). For fixed
C>0, (T\ f )(z) tends to f (z) uniformly on the set [z # Rd+1

+ : | f (z)|�C].

3. PROOFS OF THEOREMS 4 AND 5

This section is devoted to proving Theorems 4 and 5 and to presenting
a proof of the Main Lemma. In order to establish these results we will need
to construct unbounded functions in BMO (or VMO) of small norm. The
next two lemmas provide an easy way to do this.

We say that a Lipschitz function a is adapted to the cube Q if a is
supported in 3

2 Q and |grad a|�bl (Q)&1 for some constant b.

30 NICOLAU AND OROBITG



Lemma 3.1 [G�J, Lemma 2.1]. Let [Qj] be a sequence of cubes in Rd

satisfying the packing condition

:
Qj/Q

|Qj |�C1 |Q| for all cubes Q.

Let aj be adapted to Qj . Then � j aj # BMO and &� aj&*
�CbC1 where C

is a universal constant.

Lemma 3.2. With the same conditions as in the above lemma, assume
moreover |grad aj |�b(l (Qj)) l (Qj)

&1 where b is a bounded positive function
with limt � 0 b(t)=limt � � b(t)=0. Then � j aj # VMO.

An easy proof of Lemma 3.1 is given in [G�J, p. 379] and Lemma 3.2
follows from a slight modification of it.

Proof of Main Lemma. It should be observed that (v) follows from (i)
and (ii). Without loss of generality we assume that A & Q=� j Qj is a
countable union of dyadic subcubes of Q, that have pairwise disjoint
interiors.

Finite Case. We begin by considering the case when A & Q is a finite
union of dyadic cubes, that is, A & Q=�N

j=1 Q j . Let us proceed with a
standard stopping time argument. Consider the family [L] of dyadic
subcubes of Q. Let [L1

j ] denote the finite collection of maximal dyadic
cubes satisfying

2= |L|<|L & A|.

They are called first generation stopping time cubes and have pairwise
disjoint interiors. Since L1

j is maximal we have 2= |L1
j |<|L1

j & A|�
2=2d |L1

j |. On each L1
j , repeat the procedure, this time with the condition

|L & A|>2(2=2d ) |L|. In this way a collection of second generation stopping
time cubes [L2

j ] is obtained. Continuing the process M(d, =) times (to be
made precise later), we will get a finite number of finite families of dyadic
cubes [Lk

j ], k=1, ..., M(d, =), such that

(a) Each family [Lk
j ] is maximal according to the rule |L & A|>

2=(2 } 2d )k&1 |L|.

(b) For every k, one has Q & A/� j(k)
j=1 Lk

j , j(k)�N.

(c) If k1>k2 then either Lk1
j and Lk2

i have disjoint interiors or
Lk1

j /Lk2
i .
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(d) For any Lk
j one has 2=(2 } 2d)k&1 |Lk

j |<|Lk
j & A|�=(2 } 2d )k |Lk

j |.
Thus

:
L i

k/L j
k&1

|Lk
i |�

|Lk&1
j |

2
.

To determine the bound M(d, =), we decide that the process will terminate
whenever we get a cube Lk

i of the collection of cubes Qj of Q & A. In this
case, one has

2=(2 } 2d )k&1 |Lk|<|Lk |=|Lk & A|�=(2 } 2d )k |Lk |,

that is,

2=(2 } 2d )k&1<1�=(2 } 2d )k.

Therefore we take M=M(d, =) equal to the maximum of 1 and the integer
part of ((d+1) log 2)&1 log =&1.

Let ak
j be a Lipschitz function adapted to the cube Lk

j so that 0�ak
j �1

and ak
j #1 on Lk

j . Then the continuous function �M
k=1 � j ak

j is supported
on 3

2 Q, takes values between 0 and M, is equal to M on Q & A, and by
Lemma 3.1 has BMO-norm bounded by a universal constant. We can apply
Lemma 3.1 because property (d) implies the necessary packing condition.

Finally, define

.=
log =&1

M
:
k

:
j

ak
j

so that .(x)=log =&1 if x # Q & A. Since M�C(d ) log =&1, one has
&.&

*
�C, where C is a constant depending on d but independent of =, Q,

and A. So we have proved the lemma when Q & A is a finite union of cubes.

General Case. Let A & Q=��
j=1 Qj . We choose an increasing sequence

of integers O=N0<N1<N2< } } } <Nk< } } } with the condition

:
Nk

j=Nk&1+1

|Qj |<=k 2
|Q|, k=1, 2, ...

Set

Fk= .
Nk

j=Nk&1+1

Q j .
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Now, on each Fk we proceed as in the previous finite case and we get a
continuous function .k supported in 3

2 Q and &.k&
*

�C. Moreover,
0�.k�k2 log =&1, .(x)=k2 log =&1 if x # Fk and

�|
Q

.k�C.

Write

.~ = :
�

k=1

k&2.k .

Note that the nonnegative function .~ is supported in 3
2 Q, and if x # A & Q

then .~ (x)�log =&1 ; moreover, ��Q .~ �C and &.~ &
*

��k k&2 &.k &
*

�C.
The last task is to check that .~ belongs to VMO. Fix =>0 and choose N
so that �k>N k&2<=(2C)&1. Therefore

�|
Q

|.~ &.~ Q |� :
N

k=1

�|
Q

k&2 |.k&(.k)Q |+ :
k>N

k&2 &.k &
*

< :
N

k=1

�| |.k&(.k)Q |+
=
2

<=

if |Q| is either sufficiently small or sufficiently large, because the last sum
involves a finite number of VMO functions.

Finally, we take

.(x)=min(.~ (x), log =&1). K

We start by proving Theorem 4. Theorem 5 will follow from a modifica-
tion of that proof.

Proof of Theorem 4 and Theorem 5. One may assume x0=0. Consider
the Whitney type decomposition of Rd "[0]. That is, Rd "[0] may be
written as a ``disjoint'' union of dyadic cubes

Rd"[0]= .
�

i=&�

.
k(d )

j=1

Qi, j ,

where k(d )=4d&2d=2d (2d&1) and Qi, j is a dyadic cube of Rd, with
l (Qi, j)=2i and contained in Q(2i+2)"Q(2i+1). From now on, Q($) will
denote the cube of side length $ centered at the origin.
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Ck

= 2&k

v0

For each integer k�1, we denote by Ck the ``annuli'' of size 2&k ; that
is,

Ck= .
k(d )

j=1

Qk, j .

Since the set A has null density at 0 we have

|Qk, j & A|<=k |Qk, j |

where [=k] is a nonincreasing sequence tending to zero. Next we apply the
Main Lemma to each Qk, j and we get the corresponding function .k, j .
Write

.k= :
k(d )

j=1

.k, j .

If we defined g=��
k=1 .k , we would get the properties in Theorem 4, but

maybe g is not in VMO. Since we want g to be in VMO, we will multiply
the functions .k by suitable constants and then we will add them.

The above sequence [=k] can tend to zero very slowly. Let ['k] be a
strictly decreasing sequence (to be determined later) of positive real numbers
tending to zero very quickly. For m�1 let Im=('m+1 , 'm] and define the
nonnegative functions

90= :
=k # ('1 , �)

.k ,

9m= :
=k # Im

.k .

We note that if x # A & (�=k # Im
Ck) one has 9m(x)�|log 'm | because

since =k # Im , .k (x)=|log =k |�|log 'm |. Notice also that 9m have BMO
norm uniformly bounded, &9m&

*
�C max &.k, j&*

�C, because the
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functions [.k, j], involved in the definition of 9m , have almost disjoint
supports [B�V, Lemma 1.7.3]. Clearly, 9m # VMO, and ��Q($) 9m�C.

Consider a sequence of positive real numbers [:j] such that

(i) ��
j=1 :j<+�.

(ii) lim j � � :j log '&1
j =+�.

(iii) The sequence dj+1=: j+1 log '&1
j+1&:j log '&1

j is decreasing and
tends to zero.

For instance, one could take 'j=2&2 j
and : j=2& j

- }� to get the
required properties. The above condition (iii) will only be used in proving
Theorem 5.

Finally we define

g=:
m

:m9m .

Clearly, the function g satisfies the properties (a), (b), and (c) in
Theorem 4. The only remaining task is to check that g # VMO. Fix =>0
and choose N so that �m>N :m<=(2C )&1. Thus

�|
Q

| g& gQ |� :
N

m=1

:m �|
Q

|9m&(9m)Q |+ :
m>N

:m &9m&
*

< :
N

m=1

�|
Q

|9m&(9m)Q |+
=
2

<=

if |Q| is either sufficiently small or sufficiently large. Consequently, Theorem
4 is proved.

To prove Theorem 5 we choose a sequence of cubes centered at 0 and
tending to 0:

P0

P1

P2
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Consider the cubes

P0= .
�

k=1

Ck

Pm= .
=k�'m

Ck if m�1.

Obviously, [Pm] satisfies the packing condition mentioned in Lemma 3.1.
We assign to every cube Pm a Lipschitz function hm supported on 3

2 Pm such
that 0�hm(x)�dm , hm is equal to dm on Pm and |grad hm |�4dml (Pm)&1.
Define the unbounded function

h=:
m

hm .

By Lemma 3.2, h # VMO and &h&
*

�C. By construction

lim
$ � 0

�|
Q($)

h=+�

because h(x)�:m log '&1
m if x # Pm . But we would like the function to be

bounded on the set A. The function g from Theorem 4 is unbounded on A.
One could consider a function h& g that satisfies &h& g&

*
�2C, h& g #

VMO, and lim$ � 0 ��Q($) (h& g)=+�, but still we could not assure that
h& g is bounded on A.

However, if for all integer m�1 we had the estimates

:m log '&1
m �g(x)�:m+1 log '&1

m+1 for any x # A & (Pm"Pm+1),

(3.1)

then we would finish the proof because

|h(x)& g(x)|�dm , x # A & (Pm"Pm+1).

We need to modify the construction of the function g in Theorem 4. Recall
that the composition of a BMO (VMO) function g with a real Lipschitz
function T is again a BMO (VMO) function and

&T b g&
*

�&T&Lip(1) &g&
*

.

By truncation we can assume 0�9m�log '&1
m and also if x # A & (Pm"Pm+1)

then 9m(x)=log '&1
m . Let

Tm(t)={t
:m log '&1

m

if t<:m log '&1
m

otherwise.
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Write

g1=:1 91

and if m�2

gm=Tm(:m 9m+ gm&1).

Since Tm is Lipschitz, one has

&gm&
*

�:m &9m&
*

+&gm&1&
*

� :
m

i=1

: i &9i &*
�C.

Observe that if x # Pm"Pm+1 then g j (x)= gm+1(x) for all j�m+1. So we
may take a limit and define

g(x)= lim
m � �

gm(x).

Moreover, [gm] tends to g in L1 because 0�gm�� j :j 9j # L1. Clearly, g
satisfies (3.1) and lim$ � 0 ��Q($) g=0. Now, we have to see that &g&

*
�C

and g # VMO. It turns out that supm &gm&
*

<� and the functions gm are
uniformly in VMO, that is, given =>0 there are $>0 and R>1, independent
of m, such that if |Q|<$ or |Q|>R, then

�|
Q

| gm&(gm)Q |<=.

Take (C1)Q=:1(91)Q and if m�2,

(Cm)Q=Tm(:m(9m)Q+(Cm&1)Q).

Thus

1
|Q| |

Q
| gm&(Cm)Q |

=
1

|Q| |
Q

|Tm(:m9m+ gm&1)&Tm(:m(9m)Q+(Cm&1)Q)|

�
:m

|Q| |
Q

|9m&(9m)Q |+
1

|Q| |
Q

| gm&1&(Cm&1)Q |

�
1

|Q|
:
m

j=1

:j |
Q

|9j&(9j)Q |.

37JOINT APPROXIMATION IN BMO



Therefore

&gm&
*

� :
m

j=1

:j &9j&*
�C :

m

j=1

|:j |�C.

Moreover, given =>0 choose an integer N such that � j>N :j<=�2C. Then

1
|Q| |

Q
| gm&(Cm)Q |� :

N

j=1

1
|Q| |Q

|9j&(9j)Q |+
=
2

<=

if |Q| is either small enough or large enough. So the functions gm are
uniformly in VMO.

On the other hand, gQ=limm � �(gm)Q since gm � g in L1. Consequently

1
|Q| |

Q
| g& gQ |=

1
|Q| |Q

lim
m � �

| gm&(gm)Q |

� lim
m � �

1
|Q| ||Q|

| gm&(gm)Q |<=

if either |Q|<$ or |Q|>R.
Finally, define

f =|h& g|;

then f satisfies the conclusions of Theorem 5. K

4. FARRELL AND DOMINATING SETS

This section is devoted to the proofs of Theorems 1, 2, and 3. Let F be
a relatively compact set in the upper half space. Given :>0, let Fnt (:) be
the set of points x # Rd that are in the closure of F & 1(x, :). Thus

Fnt= .
:>0

Fnt (:).

However, for any :>0, the set Fnt"Fnt (:) has zero measure (e.g., [T]). So,
except for a set of zero measure, the nontangential closure may be defined
using cones of a fixed aperture.

For fixed k>1, given a point z in the upper half space Rd+1
+ , let

T(z)=Tk (z)=[x # Rd : |x&z|<kzd+1] (4.1)
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be its scope over Rd. Given a set F/Rd+1
+ and $>0, let F$ denote the

open set

F$= .
z # F, zd+1<$

T(z).

Thus, except for a set of measure zero, Fnt is the intersection of F$ ; that is,

}Fnt> ,
$>0

F$ }=0.

So |F� & Rd "Fnt |>0 if and only if there exists '>0 such that

|F� & Rd "F' |>0.

Two proofs of Theorem 3 are presented. The first, using Theorem 5, is
shorter, while the second is based on Corollary 4.1 below, which is a conse-
quence of the easier Theorem 4. We will also use this corollary in the proof
of Theorem 2.

First Proof of Theorem 3. Part (b) follows trivially from (a). Since
Poisson extensions of BMO functions have nontangential limits at almost
every point, one gets (a) from (c). So one only has to show that (c) is
necessary.

Assume |F� & Rd"Fnt |>0; that is, |F� & Rd"F' |>0 for some '>0. Let x
be a point of density of F� & Rd "F' . Observe that x # F� ' and apply Theorem
5 with the set A=F' . So one obtains a nonnegative function g # VMO(Rd)
such that g( y)�1 at every point y # F' and

lim
$ � 0

1
|Q(x, $)| |

Q(x, $)
g( y) dy=�. (4.2)

Then, if k in (4.1) is sufficiently large, Lemma 2.2 gives sup[g(z): z # F,
zn+1<']�2. Consequently

sup[g(z): z # F ]<�.

On the other hand, since g # VMO, one has

1
|Q(x, $)| |

Q(x, $)
| g( y)& gQ(x, $) | dy � 0 as $ � 0.

Now, the Chebyshev inequality gives that for any =>0 one has

1
|Q(x, $)|

|[ y # Q(x, $) : | g( y)& gQ(x, $) |>=]| � 0 as $ � 0.
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This, together with (4.2), implies that for any M>0 one gets

lim
$ � 0

|[ y # Q(x, $) : g( y)>M]|
|Q(x, $)|

=1.

Since x is a point of density of F� & Rd one deduces that

lim
$ � 0

|[ y # Q(x, $) & F� : g( y)>M]|
|Q(x, $)|

=1.

This shows that g � L�(F� ) and finishes the proof. K

We will need the following auxiliary result.

Corollary 4.1. Let F be a relatively compact set of the upper half
space Rd+1

+ . Assume |F� & Rd "Fnt |>0. Then, for almost every point x # F� &
Rd "Fnt and for any N>0, there exists a nonnegative function g= g(x, N ) #
VMO(Rd), &g&

*
�1, satisfying

(a) infz # F g(z)�N.

(b) 1
|Q(x, $)| �Q(x, $) g � 0 as $ � 0.

(c) inf [g(z): z # F, |z&x|<$] � � as $ � 0.

Proof of Corollary 4.1. Since |F� & Rd "Fnt |>0 there exists '>0 such
that |F� & Rd "F' |>0. Let x # Rd be a density point of this set. In particular
x # F� ' , and

lim
$ � 0

|Q(x, $) & F� |
|Q(x, $)|

=1,

and

lim
$ � 0

|Q(x, $) & F' |
|Q(x, $)|

=0.

Applying Theorem 4 one obtains a function f�0, f # VMO, & f &
*

� 1
2 ,

satisfying inf [ f ( y): y # F' , | y&x|<$] � � as $ � 0 and

lim
$ � 0

1
|Q(x, $)| |Q(x, $)

f ( y) dy=0.

We claim that, given $0>0 and N>0, one has a nonnegative function
h # VMO(Rd ) such that &h&

*
� 1

2 , h( y)�2N for all y # Rd "Q$0
(x), and

h#0 on a neighbourhood of x. Easily, if $0 is sufficiently small, one
deduces h(z)�N if z # Rd+1

+ , zn+1�'.
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Finally, the function g= f+h satisfies the conditions of Corollary 4.1.
Recall that given z # Rd+1

+ one has

}g(z)&
1

|T(z)| |T(z)
g( y) dy}�C &g&

*
.

Thus, g(z)�N at any point z # F, zn+1�'.
Observe that the function H defined by H( y)=|log |x& y| |1�2 if

|x& y|�1 and H( y)=0 otherwise belongs to VMO, &H&
*

�C(d ).
Truncating the function H, one gets the function h in the Claim. K

Second Proof of Theorem 3. Assume (b) holds. A standard application
of the Open Mapping Theorem shows that there exists a constant C>0
such that for any u # VMO(Rd ) & L�(F ), one has

&u&L� (F� )�C(&u&
*

+&u&L� (F )). (4.3)

Assume |F� & Rd "Fnt |>0. Let x # Rd & F� "Fnt be a point given by
Corollary 4.1, let N>0 be a large number to be fixed later, and let gN be
the corresponding function and g= gNN&1�2. Define f =exp(&g). Thus, f
is in VMO with & f &

*
�N&1�2, 0� f�1, sup[ f (z): z # F ]�exp(&N1�2),

and lim$ � 0 fQ(x, $)=1. Therefore,

lim
$ � 0

|[ y # Q(x, $) : f ( y)� 1
2] |

|Q(x, $)|
=1.

Since x is a density point of F� & Rd we deduce

lim
$ � 0

|[ y # Q(x, $) & F� : f ( y)� 1
2] |

|Q(x, $)|
=1.

So & f &L� (F� )�
1
2 . But, for N large enough, the function f contradicts (4.3).

K

Proof of Theorem 1. We first show that condition (c) is necessary. We
will proceed as in the first proof of Theorem 3. Assume |F� & Rd "Fnt |>0,
that is, |F� & Rd "F' |>0 for some '>0. Let x be a density point of
F� & Rd "F' . Observe that x # F� ' and apply Theorem 5 with the set A=F' .
So one obtains a nonnegative function g # VMO(Rd ), g( y)�1 for all
y # F' , and

lim
$ � 0

gQ(x, $)=�. (4.4)
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Then, if the parameter k in (4.1) is sufficiently large, Lemma 2.2 gives that
sup[g(z): z # F, zn+1<']�2. Consequently

sup[g(z): z # F ]<�.

Now, if F is a Farrell set for BMO (or VMO) there is a sequence of con-
tinuous functions [Pn] tending to g in the weak-V topology, Pn(z) � g(z)
for any z # F and &Pn&F � &g&F . Thus, for some absolute constant C and
for all n, |Pn(z)|�C, for any z # F, &Pn&

*
�C and, by Lemma 2.1, we have

Pn(z) � g(z) for any z # Rd+1
+ . (4.5)

By continuity, |Pn( y)|�C at every point y # F� & Rd. Next, using that x is
a density point of F� & Rd and supn &Pn&

*
�C we get

|(Pn)Q(x, $) |�2C

if $ is small. Then, from the estimate |Pn(z)&(Pn)T(z) |�C &Pn&
*

we
deduce that |Pn(z)|�4C for all n where z=(x, t) and 0<t<$. This
contradicts (4.5) because from (4.4) the values g(z) are unbounded when
z=(x, t), and t tends to 0.

Conversely, assume |F� & Rd "Fnt |=0 and let us show that F is a Farrell
set for BMO (VMO). So, given f # BMO ( f # VMO), & f &

*
=1, | f (z)|�1

for any z # F, one has to find continuous functions Pk tending to f in the
weak-V (norm) topology, pointwise in F, and satisfying

|Pk (z)|�1 if z # F. (4.6)

Observe that, by Lemma 2.4 and Theorem 2.5, one can assume that f is
bounded. We now claim that it is sufficient to have condition (4.6) for
points x # F� & Rd, that is, given =>0 it is enough to find continuous func-
tions 8k tending to f in the weak-V (norm) topology, pointwise in F,
&8k &��C & f &� , where C is a universal constant, and satisfying

|8k (x)|<1+=, for x # F� & Rd. (4.7)

To establish this claim, observe that Lemma 2.1 gives that 8k tend to f
uniformly on compact sets of Rd+1

+ . Hence, there exists 'k>0, 'k � 0 as
k � �, such that

|8k (z)|�1+= for any z # F such that zd+1�'k .
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Also since 8k are continuous, condition (4.7) gives that there exists a
neighborhood U of F� & Rd in [(x, t): x # Rd, t�0] such that |8k (z)|�1+=
for z # U. So there is $k>0 such that

|8k (z)|�1+= for any z # F with zd+1�$k .

Consequently, |8k (z)|�1+= for the points z # F satisfying either zd+1�$k

or zd+1�'k . Considering a subsequence of 8k one may assume that 'k>
$k>'k+1 for any k=1, 2, ... . Now, one can take

PN=
1
N

:
2N

k=N+1

8k .

It is clear that PN tend to f in the weak-V (norm) topology and pointwise
in F. Also, if z # F there is at most one k such that $k<zd+1<'k or 'k+1<
zd+1<$k . Hence for points z # F, one has

|PN(z)|�
N&1

N
(1+=)+

&8k &�

N
�

(N&1)(1+=)+C & f &�

N

and this would finish the proof. Therefore, one only has to find the func-
tions 8k mentioned in the previous claim.

Since | f (z)|�1 for z # F and |F� & Rd "Fnt |=0, Fatou's Theorem gives
that | f (x)|�1 at almost every point x # F� & Rd. Given k=1, 2, ... let D(k)
denote the collection of dyadic cubes in Rd of length side 2&k. Proposi-
tion 2.3 asserts that the functions

.k= :
Q # D(k)

aQ 9Q

tend to f in the weak-V topology and if f # VMO tend to f in norm. Now,
we require the continuity of the functions 9Q and therefore the functions
.k will be continuous. However, the natural choice 8k=.k does not work
becuase .k may not be bounded by 1+= on F� . The same trouble would
appear if we took 8k (x)= f (x, k&1), the restriction of f at level k&1.

Denote by B=B(k) the subcollection of those cubes Q in D(k) satisfy-
ing that F� & 5

4 Q{< and A=A(k, =) those cubes in B such that
|aQ |>1+=. If x # F� "�A

5
4 Q then |.k (x)|��Q |aQ | 9Q(x)�1+=. Thus,

we should modify .k on the points x # F� & (�A
5
4 Q). We next claim that

:
Q # A

|Q| � 0 as k � �. (4.8)
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Note first that �Q # B 9Q � /F� in L1(Rd ) as k � �, because F� is a compact
set, and so �Q # B aQ9Q tend to f/F� in L1(Rd). Fix a cube Q # A. For all
x # ( 3

4Q)"F� , one has

} :
Q # B

aQ9Q(x)& f (x) /F� (x)}=|aQ |>1+=

and for almost every x # ( 3
4 Q) & F�

} :
Q # B

aQ 9Q(x)& f (x) /F� (x)}�|aQ |&| f (x)|>1+=&1==.

Consequently,

}.
A

3
4 Q }� }{x # Rd : }:

B

aQ 9Q(x)& f (x) /F� (x)}>==} ww�
k � �

0

and then we get (4.8).
We first assume that functions .k are nonnegative. For each k we will

construct a nonnegative continuous function gk supported in �Q # A 2Q
with &gk&

*
�C, where C is an universal constant, such that .k (x)& gk (x)

�1+= for all x # F� & Rd. In the BMO setting, gk � 0 in the weak-V topology
as k � �. Then 8k=max(.k& gk , 0) will satisfy our claim. Notice that
8k � f in the weak-V topology because .k&8k tend to 0. When f # VMO we
also will get gk � 0 in BMO and then 8k=max(.k& gk , 0) tend to f in BMO
(using now that .k are uniformly in VMO).

To construct the functions gk first we point out that there exist constants
C1 , C2>0 such that for any Q # D(k) one has

| 5
4 Q & F� |�C1 exp(&C2 |aQ | ) | 5

4 Q|. (4.9)

To see this one may assume that |aQ | is large. Remember that aQ is close
to f(5�4)Q ; that is, |aQ& f5�4Q |�C & f &

*
. Then (4.9) follows from the John�

Nirenberg Theorem applied to *=|aQ |&1 because | f (x)|�1 at almost
every x # F� & Rd. Moreover, if f # VMO one may take C2=C2(k) � � as
k � �.

Fix a cube Q # A. Now, we apply the proof of the Main Lemma (finite
case, because 5

4Q & F� is compact) and we obtain a nonnegative continuous
function g= gQ satisfying
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g#0 on (2Q)c

g#aQ on 5
4 Q & F� ,

�|
Q

g�C,

&g&��C & f &� ,

&g&
*

�m(C2),

where C is a constant independent of k and m(C2) � 0 as C2 � �. In
particular, if f # VMO, m(C2) � 0 as k � �. Define

gk= :
Q # A

gQ .

Again, &gk&
*

�C maxQ # A &gQ&
*

�Cm(C2). From (4.8) and the estimate
&gk&��C & f &� we have gk � 0 in L1. Thus, gk � 0 in the weak-V topology
(or in norm if f # VMO).

In the general setting, we write .k=max(.k , 0)&max(&.k , 0)=
.+

k &.&
k . We apply the above construction to .+

k and .&
k separately. We

get nonnegative continuous functions gk and hk with the required proper-
ties. Finally, take

8k=max(.+
k & gk , 0)&max(.&

k hk , 0)

and the proof is completed. K

Proof of Theorem 2. We first show that condition (c) is necessary.
Assume |F� & �D"Fnt |>0 and let ! # �D be the point and g= gN�0 the
function given by Corollary 4.1. Consider

H=exp(&g&ig~ ),

where g~ denotes the conjugate function of g with g~ (0)=0. Then
H # VMOA, &H&

*
�1 and

|H(z)|�e&N, z # F

lim
r � 1

|H(r!)|=1.

Since H # VMOA, given =>0 there exists a small arc I/�D centered at !
such that

|[' # I : |H(')|< 3
4]|<= |I |.
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Assume F is a Farrell set for BMOA or VMOA; then there exist analytic
polynomials Pn , &Pn &

*
�C, converging pointwise to H in D and such that

sup
z # F

|Pn(z)|�e&N.

We now use an argument from [B�P�S�T]. Since (&Pn&2�- 2? &Pn&
*

+
|Pn(0)| ), the norms &Pn&2 are uniformly bounded and, passing to a sub-
sequence if necessary, one can assume PN � H weakly in L2. Then, if
E=F� & I, one has

| PnH� /E � |
E

|H |2�
9

16
|E |
2

,

while

}| PnH� /E }�e&N |E |,

which gives a contradiction because |E |>0.
Conversely, assume |F� & �D"Fnt |=0 and let us show that F is a Farrell

set for BMOA (VMOA). Let f be a function in BMOA and assume
sup[ | f (z)|: z # F ]�1. Then, C. Sundberg [Su] constructed fN # H �,
& fN&

*
�C & f &

*
such that for any C>0, fN � f uniformly on the set

[z # D : | f (z)|�C]. Since Farrell sets for H� are characterized by condition
(c) [S], there exists a sequence [P(N)

k : k=1, 2, ...] of analytic polynomials
with sup[ |P(N )

k (z)|: z # F ]�1, tending to fN in the weak-V topology of H �

as k � �. This gives convergence in the weak-V topology of BMOA and a
diagonal process finishes the proof.

Now assume that f # VMOA, sup[ | f (z)|: z # F ]�1, and =>0. Theorem
1 provides a continuous function . in the unit circle such that

&.& f &
*

<=

sup[ |.(z)|: z # F ]�1+=.

Here .(z) denotes the value of the harmonic extension of . at the point
z # D. We want to approximate f by functions of the form .&h, where
h # C (D� ) satisfies

�� h=�� . on D (4.10)

sup[ |h(!)|: ! # �D]�C=. (4.11)
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Assume one can find such a function h. Observe that (4.10) and (4.11)
show that h is harmonic in D and bounded by C=. So .&h is a holo-
morphic function in the unit disk and continuous up to the boundary. So
the estimates

&.&h& f &
*

�(1+C)=

sup[ |.(z)&h(z)| : z # F ]�1+(1+C) =

will finish the proof.
To find the function h, observe that the Fefferman�Stein decomposition

(see [G, p. 252]) provides

.& f=u+v~ , on T,

where u, v are continuous functions on the unit circle and

&u&�+&v&��C=.

Then, the function h=.& f+i(v+iv~ ) satisfies (4.10) because �� h=
�� (.& f )=�� . and (4.11) because on T, h=u+iv. K

As Pe� rez-Gonza� lez pointed out to us, one can also prove that a Farrell
set for BMOA must be Farrell for VMOA. Actually if F is a Farrell set for
BMOA and f # VMOA, one can find polynomials Pn tending to f in the
weak-V topology of BMOA. Since f # VMOA, the polynomials Pn also tend
to f in the weak topology of VMOA. Then, there exist convex lineal com-
binations of Pn which tend to f in norm.
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