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INTERPOLATION BY POSITIVE HARMONIC FUNCTIONS

DANIEL BLASI and ARTUR NICOLAU

Abstract

A natural interpolation problem in the cone of positive harmonic functions is considered and the corresponding
interpolating sequences are geometrically described.

1. Introduction

Let h+ = h+(D) be the cone of positive harmonic functions in the unit disc D of the complex
plane. If u ∈ h+, the classical Harnack inequality says that

1 − |z|
1 + |z| � u(z)

u(0)
� 1 + |z|

1 − |z| .

for any z ∈ D. Recall that the hyperbolic distance β(z, w) between two points z, w ∈ D is

β(z, w) = log2
1 + |(z − w)/(1 − w̄z)|
1 − |(z − w)/(1 − w̄z)| .

Hence the estimates above can be read as | log2 u(z) − log2 u(0)| � β(z, 0). Since these notions
are preserved by automorphisms of the disc, we deduce that

| log2 u(z) − log2 u(w)| � β(z, w) (1.1)

for any z, w ∈ D. So for any function u ∈ h+, a sequence of points {zn} ⊂ D and the
corresponding sequence of values wn = u(zn), n = 1, 2, . . . , are linked by | log2 wn − log2 wm| �
β(zn, zm), n, m = 1, 2, . . . . However, given a sequence of points {zn} ⊂ D, one cannot expect
to interpolate by a function in h+ any sequence of positive values {wn} satisfying the above
compatibility condition unless the sequence {zn} reduces to two points. Actually it is well
known that having equality in (1.1) for two distinct points z, w ∈ D forces the function u to be
a Poisson kernel and hence one cannot expect to interpolate further values. In other words, the
natural trace space given by Harnack’s Lemma (1.1) is too large, and we are led to consider
the following notion.

A sequence of points {zn} in the unit disc will be called an interpolating sequence for h+

if there exists a constant ε = ε({zn}) > 0, such that for any sequence of positive values {wn}
satisfying

| log2 wn − log2 wm| � εβ(zn, zm), n, m = 1, 2, . . . , (1.2)

there exists a function u ∈ h+ with u(zn) = wn, n = 1, 2, . . . .
Observe that this is a conformally invariant notion, that is, if {zn} is an interpolating

sequence for h+, so is {τ(zn)}, for any automorphism τ of the unit disc. Moreover, the
corresponding constants satisfy ε({τ(zn)}) = ε({zn}). Recall that a sequence of points {zn}
in the unit disc is called separated if infn�=m β(zn, zm) > 0. The main result of this paper is the
following.
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Theorem 1.1. A separated sequence {zn} of points in the unit disc is interpolating for h+

if and only if there exist constants M > 0 and 0 < α < 1 such that

#{zj : β(zj , zn) � l} � M2αl (1.3)

for any n, l = 1, 2, . . . .

We have restricted attention to separated sequences because we want to consider an
interpolation problem by positive harmonic functions and not by their derivatives. However,
it is worth mentioning that any interpolating sequence for h+ is the union of at most three
separated sequences. Let us now discuss condition (1.3). As usual, in this kind of problem, the
geometrical description of interpolating sequences is given in terms of a density condition which
says, in the appropriate sense, that interpolating sequences are not too dense. The number 2
shows up in (1.3) because of the normalization of the hyperbolic distance. We have chosen
this normalization because it fits perfectly well with dyadic decompositions. As we will show
in Section 4, there are a number of conditions which are equivalent to (1.3). For instance, a
sequence {zn} satisfies (1.3) if and only if there exist constants M1 > 0 and 0 < α < 1 such
that

#
{

zj :
∣∣∣∣ zj − zn

1 − z̄nzj

∣∣∣∣ � r

}
� M1(1 − r)−α

for any n = 1, 2, . . . and 0 < r < 1. One can also write an equivalent condition in terms of
Carleson measures. It will be shown in Section 4 that a sequence {zn} ⊂ D satisfies (1.3) if and
only if there exist constants M2 > 0 and 0 < α < 1 such that∑

j

(1 − |zj |)α � M2(1 − |zn|)α, n = 1, 2, . . . ,

where the sum is taken over all points zj ∈ {zk} such that |zj − zn| � 2(1 − |zn|). This
resembles the usual Carleson condition with an exponent α < 1 for the Carleson squares
which contain a point of the sequence in its top part. Let us now discuss the geometrical
meaning of condition (1.3). It tells that, when viewed from a point of the sequence, sequences
satisfying (1.3) are, at large scales, exponentially more sparse than merely separated sequences.
Actually, a sequence of points {zn} ⊂ D is a finite union of separated sequences if and only
if (1.3) holds with α = 1. It should also be mentioned that in condition (1.3) one counts points
in the sequence which are at hyperbolic distance less than l from a given point zn in the
sequence, instead of taking as a base point any z ∈ D as in [3]; see also [16, pp. 63–77]. This
last condition is stronger. Actually it will be shown in Section 4 that there exist two separated
interpolating sequences Z1, Z2 for h+ with inf{β(z, ξ) : z ∈ Z1, ξ ∈ Z2} > 0 such that Z1 ∪ Z2
is not an interpolating sequence for h+.

It is tempting to try to prove Theorem 1.1 using the Nevanlinna–Pick necessary and
sufficient condition for interpolation by analytic functions on the disc with positive real part.
In this direction, Koosis has found a proof of the classical result by Carleson describing the
interpolating sequences for bounded analytic functions using the Nevanlinna–Pick condition
(see [13]). Related material can be found in [2, 15]. As the referee pointed out to us, it would
be interesting to find a proof of Theorem 1.1.

Let us now explain the main ideas of the proof. Let E∗ denote the radial projection of a set
E ⊂ D, that is, E∗ = {ξ ∈ ∂D : rξ ∈ E for some 0 � r < 1}. An application of Hall’s Lemma
yields that there exists a universal constant C > 0 such that for any u ∈ h+ one has∣∣∣∣{z ∈ D :

u(z)
u(0)

> λ

}∗∣∣∣∣ � C

λ
, λ > 0.

The necessity of condition (1.3) follows easily from this estimate. The proof of the sufficiency is
harder. Given a sequence of points {zn} ⊂ D satisfying (1.3) and a sequence of positive values
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{wn} satisfying the compatibility condition (1.2), one has to find a function u ∈ h+ such that
u(zn) = wn, n = 1, 2, . . . . The construction of the function u ∈ h+ may be split into three steps.

(1) We will apply a classical result in Convex Analysis called Farkas’ Lemma which may be
understood as an analogue for Cones of the Hahn–Banach Theorem. Actually Farkas’ Lemma
follows from the Separation Theorem for convex sets in locally convex spaces, but the version
we use predates the Separation Theorem. Instead of constructing directly the function u ∈ h+

which performs the interpolation, Farkas’ Lemma will tell us that it suffices to prove the
following statement. Given any partition of the sequence {zn} into two disjoint subsequences,
{zn} = T ∪ S, there exists a function u = u(T, S) ∈ h+ such that

u(zn) � wn, if zn ∈ T,

u(zn) � wn, if zn ∈ S.

(2) Let ω(z, G) denote the harmonic measure in D of the set G ⊂ ∂D from the point z ∈ D,
that is,

ω(z, G) =
1
2π

∫
G

1 − |z|2
|ξ − z|2 |dξ|.

For each point zn of the sequence {zn} we will construct a set Gn ⊂ ∂D and we
will show that condition (1.3) provides some sort of independence of harmonic measures
{ω(zn, ·) : n = 1, 2, . . .}. Actually, given 0 < δ < 1, there exists N > 0 and a collection of
pairwise disjoint subsets {Gn} of ∂D such that

ω(zn,∪k∈A(n)Gk) � 1 − δ,∑
k/∈A(n)

2ηβ(zk,zn)ω(zn, Gk) � δ.

Here A(n) denotes the set of indexes k so that β(zk, zn) � N . The number η = η(δ,M,α) > 0 is
a constant depending on δ > 0 and on the constants M > 0 and α < 1 of (1.3). The construction
of the sets {Gn} uses a certain stopping time argument and constitutes the most technical part
of the proof.

(3) Carleson and Garnett found a description of the interpolating sequences for the space
h∞ of bounded harmonic functions in the unit disc (see [6, 9] or [10, p. 313]). Using their
result it is easy to show that a separated sequence satisfying (1.3) is interpolating for h∞.
Hence there exists γ > 0 and a harmonic function h, with sup{|h(z)| : z ∈ D} < 1 such that
h(zn) = γ if zn ∈ T , while h(zn) = −γ if zn ∈ S. Then for fixed ε > 0 and δ > 0 sufficiently
small, using the compatibility condition (1.2) and the estimates in step 2, one can show that
the function

u(z) =
∑

zn∈T

wn

∫
Gn

1 − |z|2
|ξ − z|2 (1 + h(ξ))

|dξ|
2π

, z ∈ D,

satisfies u(zn) � wn if zn ∈ T and u(zn) � wn if zn ∈ S.
One may consider a similar problem in higher dimensions. Let h+(Rd+1

+ ) denote the cone of
positive harmonic functions in the upper half space R

d+1
+ = {(x, y) : x ∈ R

d, y > 0}. A sequence
of points {zn} ⊂ R

d+1
+ will be called an interpolating sequence for h+(Rd+1

+ ) if there exists a
constant ε = ε({zn}) > 0 such that for any sequence of positive values {wn} satisfying

| log2 wn − log2 wm| � εβ(zn, zm), n, m = 1, 2, . . . ,

there exists u ∈ h+(Rd+1
+ ) with u(zn) = wn, n = 1, 2, . . .. When d > 1 we do not have a complete

geometric description of interpolating sequences. In this direction the situation is analogous
to the work of Carleson and Garnett [6] on interpolating sequences for the space h∞(Rd+1

+ ) of
bounded harmonic functions in R

d+1
+ ; see Section 6 for details.
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The paper is organized as follows. Section 2 is devoted to the proof of the necessity of
condition (1.3). Section 3 contains the proof of the sufficiency. Section 4 is devoted to the
analysis of condition (1.3). In Section 5 a related interpolation problem for bounded analytic
functions in the unit disc without zeros is considered. This may be compared to [8]. In the
last section the interpolation problem for positive harmonic functions in higher dimensions is
discussed. The letter C will denote an absolute constant with value that may change from line
to line. Also C(M) will denote a constant which depends on M .

2. Necessity

Given a set E ⊂ D, let ω(z, E, D \ E) denote the harmonic measure from the point z ∈ D \ E
of the set E in the domain D \ E. The classical Hall’s Lemma tells that there exists a universal
constant C > 0 such that ω(0, E, D \ E) � C|E∗| for any set E ⊂ D; see [11] or [14]. Recall
that E∗ denotes the radial projection of E. The main auxiliary result is the following.

Lemma 2.1. There exists a constant C > 0 such that for any u ∈ h+ and λ > 0 one has∣∣∣∣{z ∈ D :
u(z)
u(0)

> λ

}∗∣∣∣∣ � C

λ
.

Proof. One may assume that λ > 1. Fix u ∈ h+, and let E = {z ∈ D : u(z) > λu(0)}. The
maximum principle shows that

u(z) � λu(0)ω(z, E, D \ E), z ∈ D \ E.

Taking z = 0, one gets ω(0, E, D \ E) � λ−1 and applying Hall’s Lemma one finishes the
proof.

Proof of the necessity of condition (1.3). Assume that {zk} is an interpolating sequence for
h+. By conformal invariance it is sufficient to prove (1.3) when the base point zn is the origin.
So assume that z1 = 0 and take wk = 2εβ(zk,0), k = 1, 2, . . . . It is clear that the compatibility
condition (1.2) holds. So, there exists u ∈ h+ with u(zk) = wk, k = 1, 2, . . . . Let Dk be the
hyperbolic disc centered at zk of hyperbolic radius 1. By Harnack’s Lemma

u(z) � wk

2
, z ∈ Dk, k = 1, 2, . . . .

So, if A(j) denotes the set of indexes k corresponding to points zk with j − 1 � β(zk, 0) � j,
j = 1, 2, . . ., one deduces

u(z) � 2ε(j−1)−1, z ∈ Dk, k ∈ A(j).

Now since u(0) = 1, Lemma 2.1 gives∣∣∣∣∣
( ⋃

k∈A(j)

Dk

)∗
∣∣∣∣∣ � C12ε(1−j).

Since the sequence {zk} is separated, the discs {Dk} are quasi-disjoint and one deduces∑
k∈A(j)

1 − |zk| � C22ε(1−j).

Since 1 − |zk| is comparable to 2−j for any k ∈ A(j), one deduces

#A(j) � C32(1−ε)j .

Adding up for j = 1, . . . , l, one gets

#{zk : β(zk, 0) � l} � C42(1−ε)l.
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3. Sufficiency of condition (1.3)

By a normal families argument, one may assume that the sequence {zn} consists of finitely
many points. As explained in the introduction the proof consists of three steps.

3.1. First step

Let e1, . . . , em be a collection of vectors of the euclidian space R
d. Farkas’ Lemma asserts

that a vector e ∈ R
d is in the cone generated by {ei : i = 1, . . . , m}, that is, e =

∑
λiei for

some λi � 0, i = 1, . . . , m, if and only if 〈x, e〉 � 0 for any vector x ∈ R
d for which 〈x, ei〉 � 0,

i = 1, . . . , m; see [12]. This classical result will be used in the proof of the next auxiliary result.

Lemma 3.1. Let {zn} be a sequence of distinct points in the unit disc and let {wn} be
a sequence of positive values. Assume that for every partition of the sequence {zn} = T ∪ S,
into two disjoint subsequences T and S, there exists u = u(T, S) ∈ h+ such that u(zn) � wn if
zn ∈ T and u(zn) � wn if zn ∈ S. Then, there exists u ∈ h+ such that u(zn) = wn, n = 1, 2, . . . .

Proof. By a normal families argument, one may assume that both the sequences of points
{zn} and values {wn} consist of finitely many, say d, points. Consider the set of all partitions
{zn} = Tk ∪ Sk, k = 1, . . . , m, of the sequence {zn}. Let u1, . . . , um ∈ h+ be the corresponding
functions such that uk(zn) � wn if zn ∈ Tk and uk(zn) � wn if zn ∈ Sk, and consider the vector

ui := (ui(z1), . . . , ui(zd)), i = 1, . . . , m.

If x ∈ R
d satisfies 〈x, ui〉 � 0, i = 1, . . . , m, that is,

∑d
n=1 ui(zn)xn � 0, let F = {zn : xn � 0}.

Then F = Tk for some k and let Sk = {zn} \ F . Its corresponding function uk satisfies xnwn �
xnuk(zn) for all n = 1, . . . , d. So,

〈x, w〉 =
d∑

n=1

wnxn �
d∑

n=1

uk(zn)wn � 0.

Now, by Farkas’ Lemma, w = (w1, . . . , wd) is in the cone generated by the vectors {ui, i =
1, . . . , m}. So there exist constants λi � 0, i = 1, . . . , m, such that u(z) =

∑m
i=1 λiui(z) ∈ h+

and u(zn) = wn, n = 1, 2, . . . , d.

3.2. Second step

The second step in the proof consists of using condition (1.3) to construct a collection of
disjoint subsets {Gn} of the unit circle which provide a suitable kind of independence of the
harmonic measures {ω(zn, ·), n = 1, 2, . . .}. The precise statement is given in the following result
which is the main technical part of the proof. Recall that ω(z, G) denotes the harmonic measure
in D of the set G ⊂ ∂D from the point z ∈ D, that is,

ω(z, G) =
1
2π

∫
G

1 − |z|2
|ξ − z|2 |dξ|.

Lemma 3.2. Let {zn} be a sequence of distinct points in the unit disc which satisfies
condition (1.3). Then for any δ > 0, there exist numbers N = N(δ) > 0, η = η(δ) > 0 and a
collection {Gn} of pairwise disjoint subsets of the unit circle such that

ω

(
zn,

⋃
k∈A(n)

Gk

)
� 1 − δ, n = 1, 2, . . . , (3.1)
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Figure 1. A Carleson square.

and ∑
k/∈A(n)

2ηβ(zk,zn)ω(zn, Gk) < δ, n = 1, 2, . . . . (3.2)

Here A(n) = A(n, N) denotes the collection of indexes k such that β(zk, zn) � N .

We first introduce some notation. Given a point z ∈ D and C > 0 we denote

I(z) = {eiθ : −π(1 − |z|) < θ − Arg z � π(1 − |z|)},

Q(z) =
{
reiθ : 0 < 1 − r � 1 − |z|, eiθ ∈ I(z)

}
,

CI(z) =
{
eiθ : −π C(1 − |z|) < θ − Arg z � π C(1 − |z|)

}
,

CQ(z) =
{
reiθ : 0 < 1 − r � C(1 − |z|), ei θ ∈ C I(z)

}
;

see Figure 1.
Observe that if C(1 − |z|) � 1, one has CI(z) = ∂ D and CQ(z) = D. When z = zk ∈ {zn},

we simply denote Ik = I(zk). We will use the following two elementary auxiliary results.

Lemma 3.3. Fixed δ > 0, there exists M0 = M0(δ) > 0 such that

ω(zk, M0Ik) � 1 − δ

100
, k = 1, 2, . . . .

Proof. If zk = 0 one may take M0 = 1. If zk �= 0 observe that there exists an absolute
constant C0 > 0 such that |eit − zk| � C0|t − Arg zk|. Since

ω(zk, ∂D \ M0Ik) =
1 − |zk|2

2π

∫
∂D\M0Ik

|dξ|
|ξ − zk|2 ,

one gets

ω(zk, ∂D \ M0Ik) � 1 − |zk|2
2πC2

0

∫∞

πM0(1−|zk|)

dx

x2 .

Hence

ω(zk, ∂D \ M0Ik) � 1
π2C2

0M0
,

and taking M0 = 100/πC2
0δ the result follows.
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Lemma 3.4. Fixed M > 0, there exists a constant C(M) > 0 such that for all pairs of
points z, w ∈ D with w ∈ 20MQ(z), one has∣∣∣∣β(z, w) − log2

(
1 − |z|
1 − |w|

)∣∣∣∣ � C(M).

Proof. One may assume that z, w ∈ D \ {0}. Since

|1 − w̄z| � (1 − |z| |w|) � (1 − |z|)

and

|1 − w̄z| � |w|
∣∣∣∣ 1
w̄

− z

∣∣∣∣
� |w|

∣∣∣∣ 1
w̄

− ei Arg w

∣∣∣∣ +
∣∣ei Arg w − ei Arg z

∣∣ +
∣∣ei Arg z − z

∣∣
� (20M + 20Mπ + 1)(1 − |z|),

we deduce

1 − |z| � |1 − w̄z| � K(M)(1 − |z|),

where K(M) = 20M + 20Mπ + 1. So,

β(z, w) = 2 log2

(
1 +

∣∣∣∣ z − w

1 − w̄z

∣∣∣∣) − log2

(
1 −

∣∣∣∣ z − w

1 − w̄z

∣∣∣∣2
)

= 2 log2

(
1 +

∣∣∣∣ z − w

1 − w̄z

∣∣∣∣) − log2
(1 − |z|2)(1 − |w|2)

|1 − w̄z|2

= C + log2

(
1 − |z|
1 − |w|

)
,

where −2 � C � 2 + 2 log2 K(M).

Proof of Lemma 3.2. The construction of the sets {Gn} may be split into three steps.
First, for each zk ∈ {zn} and λ > 0, we will construct certain points zγ

n(k) ∈ D with
I(zn) ⊂ I(z(γ)

n (k)) and ∑
zn∈20M0Q(zk)

β(zk,zn)�N

1 − |zγ
n(k)| � λ(1 − |zk|) for all zk ∈ {zn}. (3.3)

Here N is a constant depending on λ, M0 and on the constants M and α appearing in (1.3).
Next, we will construct certain sets Ek ⊂ ∂D with Ek ∩ Ej = ∅ if β(zk, zj) � N such that

ω(zk, Ek) � 1 − δ

10
. (3.4)

In the construction of the sets Ek we will use the points zγ
n(k) of the first step which satisfy

the estimate (3.3) above for a certain fixed λ sufficiently small.
Finally we will construct the pairwise disjoint sets Gn satisfying conditions (3.1) and

(3.2).

(i) Construction of the points zγ
n(k). Fix δ > 0. Applying Lemma 3.3, there exists a constant

M0 = M0(δ) > 0 such that

ω(zk, M0Ik) � 1 − δ

100
, k = 1, 2, . . . . (3.5)
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Figure 2. Construction of the points zγ
n(k).

Fix zk ∈ {zn}. Let γ = γ(α) > 0 be a small number to be fixed later. For any zn ∈ 20M0Q(zk)
with β(zk, zn) � N we define zγ

n(k) as the point in D satisfying the following three conditions:

Arg(zn) = Arg(zγ
n(k)),

β(zγ
n(k), zn) = γβ(zk, zn), (3.6)

|zγ
n(k)| < |zn|.

Here N = N(γ, M0, λ) is a large number to be fixed later. In particular N > 0 will be taken so
large that zγ

n(k) ∈ 20M0Q(zk) whenever zn ∈ 20M0Q(zk) satisfies β(zn, zk) > N ; see Figure 2.
Using Lemma 3.4 and β(zγ

n(k), zn) = γβ(zk, zn) we obtain the following inequalities:(
1 − |zk|
1 − |zn|

)C−1γ

� 1 − |zγ
n(k)|

1 − |zn| �
(

1 − |zk|
1 − |zn|

)Cγ

, (3.7)

where C is a constant depending on M0. So,∑
zn∈20M0Q(zk)

β(zk,zn)�N

1 − |zγ
n(k)| � (1 − |zk|)Cγ

∞∑
j=N

∑
zn∈20M0Q(zk)

j�β(zn,zk)<j+1

(1 − |zn|)1−Cγ
.

Now, if zn ∈ 20M0Q(zk) and j � β(zn, zk) < j + 1, Lemma 3.4 states that 1 − |zn| �
K(M0)2−j(1 − |zk|). So, using (1.3), the right-hand side term is bounded by

K(M0)1−Cγ(1 − |zk|)
∞∑

j=N

M2αj2−j(1−Cγ).

Since α < 1, taking γ > 0 so small that α + Cγ < 1, the expression above may be bounded by

M K(M0)1−Cγ 2N(α+Cγ−1)

1 − 2α+Cγ−1 (1 − |zk|).

Finally, given λ > 0, taking N sufficiently large, we obtain∑
zn∈20M0Q(zk)

β(zn,zk)�N

1 − |zγ
n(k)| � λ (1 − |zk|) for all zk ∈ {zn}.

(ii) Construction of the sets {Ek}. For each zγ
n(k), we define Iγ

n(k) = I(z(γ)
n (k)). Fixed

M0 > 0 and N > 0, we introduce the notation:

B(k) = {zn : |zn| � |zk|, β(zk, zn) � N, zn ∈ 20M0Q(zk)}.
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Now we will prove that the sets Ek = M0Ik \
⋃

zn∈B(k) Iγ
n(k) satisfy

ω(zk, Ek) � 1 − δ

10
. (3.8)

Using the elementary estimate of the Poisson Kernel

1 − |zk|2
|eit − zk|2 � 1 + |zk|

1 − |zk| ,

one obtains

ω

(
zk,

⋃
zn∈B(k)

Iγ
n(k)

)
�

∑
zn∈B(k)

1 + |zk|
1 − |zk|

∫
Iγ

n(k)

dt

2π
� 2

1 − |zk|
∑

zn∈B(k)

1 − |zγ
n(k)|,

which by (3.3) is smaller than 2λ. Since

ω(zk, Ek) = ω(zk, M0Ik) − ω

⎛⎝zk,
⋃

zn∈B(k)

Iγ
n(k)

⎞⎠ ,

the estimate (3.5) tells us that

ω(zk, Ek) � 1 − δ

100
− λ.

If we take λ > 0 sufficiently small, we deduce (3.8). Since M0In ⊂ Iγ
n(k), it is clear from the

definition that Ek ∩ Ej = ∅ if β(zk, zj) > N .

(iii) Construction of the pairwise disjoint sets Gn. We rearrange the sequence {zn} so
that {1 − |zn|} decreases. For each point zn we will construct a set Gn ⊂ En so that the
corresponding family {Gn} will satisfy (3.1), (3.2) and Gn ∩ Gm = ∅ if n �= m. The construction
will proceed by induction and will ensure that the sets Gn are pairwise disjoint and satisfy (3.1).

Take G1 = E1. By (3.8), the estimate (3.1) is satisfied when n = 1. Assume that pairwise
disjoint subsets G1, . . . , Gj−1 of the unit circle have been defined so that

ω

(
zn,

⋃
k�n, k∈A(n)

Gk

)
� 1 − δ, for n = 1, 2, . . . , j − 1.

The set Gj will be constructed according to the following two different situations.
(1) If β(zj , {z1, . . . , zj−1}) � N we define Gj = Ej . By (3.4) we have

ω

⎛⎝zj ,
⋃

k�j, k∈A(j)

Gk

⎞⎠ � ω(zj , Gj) � 1 − δ.

Now let us show that Gk ∩ Gj = ∅ for any k = 1, . . . , j − 1. Since Gk ⊂ Ek and Gj ⊂ M0Ij , it
is sufficient to show that M0Ij ∩ Ek = ∅ for k = 1, . . . , j − 1. Fix k = 1, . . . , j − 1 and consider
two cases.

(a) If zj ∈ 20M0Q(zk), since M0Ij ⊂ Iγ
j (k) and Ek = M0Ik \

⋃
Iγ
j (k), we have Ek ∩

M0Ij = ∅.
(b) If zj /∈ 20M0Q(zk), since |zj | > |zk|, we have M0Ij ∩ M0Ik = ∅. Hence Ek ∩ M0Ij = ∅.

(2) If β(zj , {z1, . . . , zj−1}) � N , consider the set of indexes F = F(j) = {k ∈ [1, . . . , j − 1] :
β(zk, zj) � N}. Let us distinguish the following two cases.

(a) If ω
(
zj ,

⋃
k∈F Gk

)
� 1 − δ, define Gj = ∅. It is obvious that

ω

⎛⎝zj ,
⋃

k�j, k∈A(j)

Gk

⎞⎠ � 1 − δ.
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Figure 3. The sum is split into three parts corresponding to the location of the points
zk in the regions (A), (B) or (C).

(b) If ω(zj ,
⋃

k∈F Gk) < 1 − δ, define Gj = Ej \
⋃

k∈F Gk. Arguing as in case (1) one
can show that Gk ∩ Gj = ∅ for any k = 1, . . . , j − 1. Also, applying (3.8), one gets

ω

⎛⎝zj ,
⋃

k�j, k∈A(j)

Gk

⎞⎠ � ω(zj , Ej) � 1 − δ.

So, by induction, a family {Gn} of pairwise disjoint subsets of the unit circle is constructed so
that condition (3.1) is satisfied. It just remains to show that the family {Gn} satisfies (3.2),
that is, there exists η = η(δ) > 0 such that∑

k : β(zk,zn)�N

2ηβ(zk,zn)ω(zn, Gk) � δ, n = 1, 2, . . . .

For fixed n = 1, 2, . . ., consider the following set of indexes:

A = {k : β(zk, zn) � N, zk ∈ 20M0Q(zn)},

B = {k : β(zk, zn) � N, 2M0Ik ∩ M0In = ∅},

C = {k : β(zk, zn) � N, k /∈ A ∪ B}.
Now split the sum above into three parts∑

k : β(zk,zn)�N

2ηβ(zk,zn)ω(zn, Gk) = (A) + (B) + (C),

where

(A) =
∑
k∈A

2ηβ(zk,zn)ω(zn, Gk),

(B) =
∑
k∈B

2ηβ(zk,zn)ω(zn, Gk),

(C) =
∑
k∈C

2ηβ(zk,zn)ω(zn, Gk);

see Figure 3.
In (A) and (B) we will use the estimate ω(zn, Gk) � C(M0)2−β(zn,zk) and for (C) we will

use the constant γ > 0 appearing in the construction of the sets Ek.
We first claim that there exists a constant C = C(M0) > 0 such that for points zk in part

(A) or (B), that is those satisfying either zk ∈ 20M0Q(zn) or 2M0Ik ∩ M0In = ∅, one has

ω(zn, Gk) � C2−β(zk,zn). (3.9)
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For the points zk in part (A) we have zk ∈ 20M0Q(zn). Since Gk ⊆ M0Ik, a trivial estimate of
the Poisson kernel gives

ω(zn, Gk) �
∫
M0Ik

1 − |zn|2
|eit − zn|2

dt

2π
� 2M0

1 − |zk|
1 − |zn| .

Applying Lemma 3.4, since zk ∈ 20M0Q(zn), one has

log2
1 − |zk|
1 − |zn| � C(M0) − β(zk, zn).

Hence, if zk ∈ 20M0Q(zn) we deduce

ω(zn, Gk) � C2−β(zk,zn)

with C = 2M02C(M0). For the points zk in part (B) we have 2M0Ik ∩ M0In = ∅. An easy
calculation shows that there exists a constant C1 = C1(M0) such that for any eit ∈ Ik one has

|eit − zn| � C1|1 − znz̄k|.
Then

ω(zn, Gk) �
∫
M0Ik

1 − |zn|2
|eit − zn|2

dt

2π
� C−2

1 M0
(1 − |zn|2)(1 − |zk|2)

|1 − znz̄k|2 .

It is easy to see from the estimates above that there exists a universal constant C2 > 0 such
that

β(zn, zk) � C2 − log2
(1 − |zn|2)(1 − |zk|2)

|1 − znz̄k|2 ,

and so one deduces
ω(zn, Gk) � C2−β(zn,zk)

with C = C−2
1 M02C2 . Hence (3.9) holds for points zk in parts (A) and (B). Therefore

(A) + (B) � C
∑

k : β(zk,zn)�N

2(η−1)β(zn,zk).

Observe that condition (1.3) gives∑
k : β(zk,zn)�j

2(η−1)β(zn,zk) � M2(η+α−1)j ,

for any j = 1, 2, . . . . Since α < 1 one may choose 0 < η = η(α) < 1 − α so that α + η < 1. So,
adding up for j � N , one obtains

(A) + (B) � CM
2(η+α−1)N

1 − 2η+α−1 .

Hence, taking N > 0 sufficiently large one deduces

(A) + (B) � δ

3
.

The estimate of the third term (C) depends on the choice of the constant γ > 0 appearing
in the construction of the sets {En}. For fixed zn, consider

U(n) = {zk : β(zk, zn) � N, zk /∈ 20M0Q(zn), 2M0Ik ∩ M0In �= ∅} .

So (C) =
∑

zk∈U(n) 2ηβ(zk,zn)ω(zn, Gk).
Observe that if zk ∈ U(n), then |zk| < |zn| and zn ∈ 3M0Q(zk). In particular, zn ∈

20M0Q(zk) so, by the construction of the sets {Gk}, Gk ⊂ M0Ik \ Iγ
n(k). Hence

ω(zn, Gk) �
∫
M0Ik\Iγ

n(k)

1 − |zn|2
|ξ − zn|2

|dξ|
2π

�
∫
∂D\Iγ

n(k)

1 − |zn|2
|ξ − zn|2

|dξ|
2π
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and a change of variable gives an absolute constant C3 > 0 such that

ω(zn, Gk) � C3 (1 − |zn|)
∫∞

1−|zγ
n(k)|

dx

x2 � C3
1 − |zn|

1 − |zγ
n(k)| . (3.10)

This estimate is worse than (3.9) which was used for (A) and (B) but it is good enough for
our purposes. The key is that in (C) we sum over ‘few’ terms corresponding to the points
zk ∈ U(n).

Observe that if zk ∈ U(n), than zk belongs to the Stolz angle Γn = Γn(M0) = {z ∈ D : |z −
ei Arg zn | � 11M0(1 − |z|)} with vertex ei Arg zn and a certain opening depending on M0. To see
this we only need to observe that 2M0Ik ∩ M0In �= ∅ implies |Arg zk − Arg zn| � 10M0(1 −
|zk|) and use this inequality to get

|zk − ei Arg zn | � 11M0(1 − |zk|).

Define V (n) = {zk ∈ Γn : |zk| < |zn|, β(zk, zn) � N} and then

(C) =
∑

zk∈U(n)

2ηβ(zk,zn)ω(zn, Gk) �
∑

zk∈V (n)

2ηβ(zk,zn)ω(zn, Gk).

Using inequalities (3.10) and (3.7) we obtain

(C) � C3

∑
zk∈V (n)

2ηβ(zk,zn) 1 − |zn|
1 − |zγ

n(k)| � C3

∑
zk∈V (n)

2ηβ(zk,zn)
(

1 − |zn|
1 − |zk|

)C−1γ

.

Since zn ∈ 3M0Q(zk), Lemma 3.4 gives∣∣∣∣β(zn, zk) − log2
1 − |zk|
1 − |zn|

∣∣∣∣ � C(M0).

Hence
1 − |zn|
1 − |zk| � 2C(M0)−β(zn,zk).

Therefore
(C) � C3 2C(M0)C−1γ

∑
zk∈V (n)

2(η−C−1γ)β(zn,zk).

Since the sequence {zn} is separated, there exists C4 = C4(M0) > 0 such that for any j � 0,
the number of points zk ∈ Vn with j � β(zk, zn) � j + 1 is at most C4. Hence

(C) � C3 C42C(M0)C−1γ
∞∑

j=N

2(η−C−1γ)j .

Taking η > 0 so small that η − C−1γ < 0 and taking N sufficiently large, we deduce

(C) � δ

3
.

So condition (3.2) is satisfied and the proof of Lemma 3.2 is finished.

3.3. Third step

In the last step given a partition {zn} = T ∪ S the sets {Gn} constructed in the second step
subsection (3.2) will be used to find a function u = u(T, S) satisfying the conditions stated in
Lemma 3.1. This will end the proof of the sufficiency of condition (1.3).

A sequence of points {zn} in the unit disc is called an interpolating sequence for the space
h∞ of bounded harmonic functions in the unit disc if for any bounded sequence {wn} of real
numbers there exists u ∈ h∞ with u(zn) = wn, n = 1, 2, . . .. Carleson and Garnett characterized
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interpolating sequences for h∞ as those sequences {zn} satisfying infn�=m β(zn, zm) > 0 and

sup
1

�(Q)

∑
zn∈Q

(1 − |zn|) < ∞, (3.11)

where the supremum is taken over all Carleson squares of the form

Q = {reiθ : 0 < 1 − r < �(Q), |θ − θ0| < �(Q)}

for some θ0 ∈ [0, 2π); see [6, 9] or [10, p. 313]. We next show that a separated sequence
{zn} satisfying (1.3) satisfies the condition above. Actually it is sufficient to show (3.11) for
Carleson squares Q which contain a point of the sequence {zn} in its top part T (Q) = {reiθ ∈
Q : 1 − r > �(Q)/2}. Let Q be a Carleson square of this type. Let zn ∈ T (Q) and A(j) = {k :
zk ∈ Q, j − 1 � β(zk, zn) < j}. Lemma 3.4 tells that for any k ∈ A(j) the quantity 1 − |zk| is
comparable to 2−j�(Q). Hence condition (1.3) yields∑

k∈A(j)

1 − |zk| � C12−j�(Q)#A(j) � C1M2(α−1)j�(Q).

Since α < 1, adding up over j = 1, 2, . . ., one obtains (3.11). Hence {zn} is an interpolating
sequence for h∞. Then by the Open Mapping Theorem, there exists a constant γ = γ({zn}) > 0
such that for any partition of the sequence {zn} = T ∪ S, there exists h = h(T, S) ∈ h∞ with
sup{|h(z)| : z ∈ D} < 1 and h(zn) > γ for zn ∈ T while h(zn) < −γ for zn ∈ S. Let δ > 0 be a
small number to be fixed later and let N = N(δ), η = η(δ) be the positive constants and {Gn}
the pairwise disjoint collection of subsets of the unit circle given in Lemma 3.2. Let ε = ε(δ)
be a small number to be fixed later which will satisfy εδ−1 → 0 as δ tends to 0. Let {wk} be
a sequence of positive numbers satisfying the compatibility condition (1.2). Given a partition
{zn} = T ∪ S, consider the function u = u(T, S) ∈ h+ defined by

u(z) =
∑

k

wk

∫
Gk

Pz(ξ)(1 + h(ξ))|dξ|,

where h = h(T, S) and

Pz(ξ) =
1
2π

1 − |z|2
|ξ − z|2

is the Poisson kernel. Our aim is to show that u(zn) � wn for zn ∈ T and u(zn) � wn for
zn ∈ S. For n = 1, 2, . . ., let A(n) be the set of indexes k such that β(zk, zn) � N . Write u(zn) =
(I) + (II), where

(I) =
∑

k/∈A(n)

ωk

∫
Gk

Pzn(ξ)(1 + h(ξ)) |dξ|,

(II) =
∑

k∈A(n)

ωk

∫
Gk

Pzn(ξ)(1 + h(ξ)) |dξ|.

We first show that

(I) < 2δwn, n = 1, 2, . . . . (3.12)

Actually if the constant ε = ε(δ) > 0 is taken so that ε < η, the compatibility condition (1.2)
tells that (I) can be bounded by

wn

∑
k/∈A(n)

2ηβ(zk,zn)2ω(zn, Gk)

which, by (3.2), is bounded by 2δwn. Hence (3.12) holds.
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For the other term, using the fact that the sets {Gn} are pairwise disjoint and the
compatibility condition (1.2) we have

(II) =
∑

k∈A(n)

wk

∫
Gk

Pzn(ξ)(1 + h(ξ))|dξ| � 2εNwn(1 + h(zn)).

Also, since sup{|h(zn)| : z ∈ D} � 1, the compatibility condition (1.2) and the estimate (3.1)
yield

(II) � wn2−εN

(
1 + h(zn) −

∫
∂D\

⋃
k∈A(n) Gk

Pzn
(ξ) (1 + h(ξ))|dξ|

)
� 2−εNwn(1 + h(zn) − 2δ).

So
2−εNwn(1 + h(zn) − 2δ) � (II) � 2εNwn(1 + h(zn)).

Hence
(a) if zn ∈ T , h(zn) � γ then u(zn) � (II) � wn2−εN (1 + γ − 2δ);
(b) if zn ∈ S, h(zn) � −γ then u(zn) = (I) + (II) � wn(2δ + 2εN (1 − γ)).

For fixed γ > 0, taking δ = δ(γ) > 0 and ε = ε(δ, η,N) > 0 sufficiently small, we deduce that
u(zn) � wn if zn ∈ T and u(zn) � wn if zn ∈ S. An application of Lemma 3.1 concludes the
proof of the sufficiency of condition (1.3). �

4. Equivalent conditions

In this section several geometric conditions which are equivalent to (1.3) are collected.

Proposition 4.1. Let {zn} be a sequence of distinct points in D. Then the following are
equivalent.

(a) Condition (1.3) holds, that is, there exist constants M > 0 and 0 < α < 1 such that

#{zj : β(zj , zn) � l} � M 2αl

for any n, l = 1, 2 . . .
(b) There exist constants M1 > 0 and 0 < α < 1 such that

#
{

zj :
∣∣∣∣ zj − zn

1 − z̄nzj

∣∣∣∣ � r

}
� M1(1 − r)−α,

for any 0 < r < 1 and any n = 1, 2, . . .
(c) There exist constants M2 > 0 and 0 < α < 1 such that

#{zj ∈ Q(zn) : 2−l−1(1 − |zn|) � 1 − |zj | � 2−l(1 − |zn|)} � M2 2α l

for any n, l = 1, 2, . . .
(d) There exist constants M3 > 0 and 0 < α < 1 such that∑

zj∈Q(zn)

(1 − |zj |)α � M3(1 − |zn|)α

for any n = 1, 2, . . . .

Proof. The equivalence between (a) and (b) follows from the following obvious observation.
Let z, w ∈ D, then β(z, w) � l if and only if∣∣∣∣ z − w

1 − wz

∣∣∣∣ =
2β(z,w) − 1
2β(z,w) + 1

= 1 − 2
2β(z,w) + 1

� 1 − 2
2l + 1

.
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Assume that (a) holds. Fix two positive integers n, l. Let zj ∈ Q(zn) satisfy

2−l−1(1 − |zn|) � 1 − |zj | � 2−l(1 − |zn|).

Applying Lemma 3.4 one shows that there exists a universal constant C > 0 such that

|β(zn, zj) − l| � C.

Hence{
zj ∈ Q(zn) : 2−l−1(1 − |zn|) � 1 − |zj | � 2−l(1 − |zn|)

}
⊆ {zj : β(zj , zn) � l + C}

and condition (1.3) gives (c). Adding up over l = 1, 2, . . . one shows that (c) implies (d). Assume
that (d) holds and let us show condition (1.3). By conformal invariance one may assume that
zn = 0. So condition (d) tells us that

∞∑
j=1

(1 − |zj |)α � M3.

Since β(zj , 0) � l implies that

1 − |zj | � 2
2l + 1

,

we deduce

#{zj : β(zj , 0) � l} � M3

(
2

2l + 1

)−α

which gives (1.3).

As mentioned in the introduction, condition (1.3) says how dense is the sequence when one
looks at it from a point of the sequence. It is worth mentioning that one cannot take as a
base point an arbitrary point in the unit disc. This follows from the following example of
two separated interpolating sequences for h+ which will be called Z1, Z2 so that inf{β(z, ξ) :
z ∈ Z1, ξ ∈ Z2} > 0 but such that the union Z1 ∪ Z2 is not an interpolating sequence for h+.
For instance one may take Z1 = {rk}, where r1 = 0, rk → 1 and β(rk, rk+1) → ∞ as k → ∞.
For each k = 1, 2, . . ., choose points {z

(k)
1 , . . . , z

(k)
N(k)}, N(k) = 2nk , equally distributed in the

hyperbolic circle centered at rk of hyperbolic radius nk. Here nk → ∞ as k → ∞ in such a way
that nk < β(rk, rk+1)/4. Let Z2 = {z

(k)
i : i = 1, . . . , N(k), k = 1, 2, . . .}. It can be shown that

Z1 and Z2 satisfy condition (1.3) with the exponent α = 1/2, while Z1 ∪ Z2 does not fulfill
(1.3) for any 0 < α < 1 because the number of points in Z2 at hyperbolic distance nk from the
point rk ∈ Z1 is 2nk ; see Figure 4.

5. An interpolation problem for bounded analytic functions without zeros

Let H
∞ denote the algebra of bounded analytic functions in the unit disc D. Let (H∞)∗ be the

subalgebra of H
∞ which consists on the functions in H

∞ without zeros in D. If f ∈ (H∞)∗ then
log (‖f‖∞/|f(z)|) ∈ h+. So if {zn} is a sequence in D and tn = log (‖f‖∞/|f(zn)| ), Harnack’s
inequality tells us that

| log tn − log tm| � β(zn, zm), n, m = 1, 2, . . . .

So, as before, we may consider a notion of interpolating sequence.

Definition 5.1. A sequence of points {zn} in the unit disc is called an interpolating
sequence for (H∞)∗ if there exist constants ε > 0 and 0 < C < ∞ such that for any sequence
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Figure 4. Union of two interpolating sequences that is not an interpolating sequence.

of non-vanishing complex values {wn}, |wn| < C, n = 1, 2, . . ., satisfying∣∣∣∣log
(

log
(

C

|wn|

))
− log

(
log

(
C

|wm|

))∣∣∣∣ � εβ(zn, zm), n, m = 1, 2, . . . , (5.1)

there exists a function f ∈ (H∞)∗ with f(zn) = wn, n = 1, 2, . . . .

The characterization of the interpolating sequences for (H∞)∗ is given in the following result.

Theorem 5.2. A separated sequence {zn} of points in the unit disc is interpolating for
(H∞)∗ if and only if there exist constants M > 0 and 0 < α < 1 such that

#{zj : β(zj , zn) � �} � M2α
 for any n, � = 1, 2, . . . . (5.2)

Proof. Let us start by showing the neccessity of condition (5.2). Given a separated
interpolating sequence {zn} for (H∞)∗, consider the constants ε > 0 and C < ∞ given in
Definition 5.1. Define the sequence of positive values tn = 2εβ(0,zn), n = 1, 2, . . . . It is clear
that

|log2 tn − log2 tm| � εβ(zn, zm), n, m = 1, 2, . . . .

Then, if we consider a sequence of complex values {wn} with tn = log (C/|wn|), we have
supn |wn| � C and furthermore {wn} satisfies condition (5.1). So, there exists a function
f ∈ H

∞ without zeros with f(zn) = wn, n = 1, 2, . . . . The function v(z) = log(C/|f(z)|) is a
harmonic function, v(z) � log(C/‖f‖∞) := −k1, and interpolates the values {tn} at the points
{zn}. So, u(z) = v(z) + k1 ∈ h+(D) and u(zn) = tn + k1 = 2εβ(0,zn) + k1, n = 1, 2, . . . . Now,
arguing as in the proof of the necessity of Theorem 1.1, we can conclude that there exist
constants M > 0 and 0 < α < 1 such that

#{zj : β(zj , zn) � �} � M2α
 for any n, � = 1, 2, . . . .
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Let us now show the sufficiency of condition (5.2). Given a separated sequence {zn}
satisfying (5.2) and {wn} satisfying (5.1) for some ε, C, consider tn = log C/|wn|. We can take
C > ‖wn‖∞. Then obviously {tn} satisfies the compatibility condition (1.2). So, there exists a
function u ∈ h+(D) with u(zn) = log C/|wn|, for n = 1, 2, . . . . Consider u0(z) = u(z) − log(C)
and let ũ0(z) be the harmonic conjugate function of u0(z). Then e−(u0+iũ0) is a bounded
analytic function that interpolates the values {|wn|γn} at the points {zn}, where γn =
e−iũ0(zn), n = 1, 2, . . .. The sequence {zn} is separated and satisfies condition (1.3), so it is
an interpolating sequence for H

∞ (see [4] or [10]). So there exists a bounded analytic function
g(z) such that g(zn) = − Arg(γn) + Arg(wn) and then the function h(z) = e−u0−iũ0eig is a
bounded analytic function without zeros with h(zn) = wn for any n = 1, 2, . . . .

6. Higher dimensions

Let h∞(Rd+1
+ ) be the space of bounded harmonic functions in the upper-half space

R
d+1
+ = {(x, y) : x ∈ R

d, y > 0}. A sequence of points {zn} ⊂ R
d+1
+ is called an interpolating

sequence for h∞(Rd+1
+ ) if for any bounded sequence {wn} of real numbers there exists

u ∈ h∞(Rd+1
+ ) with u(zn) = wn, n = 1, 2, . . .. When the dimension d > 1, there is no complete

geometric description of the interpolating sequences for h∞(Rd+1
+ ). In [4, 6], Carleson and

Garnett proved the following result.

Theorem 6.1 [4, 6]. Let {zn = (xn, yn)} be a sequence of points in R
d+1
+ , d > 1.

(a) Assume that {zn} is an interpolating sequence for h∞(Rd+1
+ ). Then

inf
n�=m

β(zn, zm) > 0 (6.1)

and there exists a constant C = C({zn}) such that∑
zn∈Q

yd
n � C�(Q)d (6.2)

for any Carleson cube Q of the form

Q = {(x, y) ∈ R
d+1
+ : |x − x0| < �(Q), 0 < y < �(Q)},

where x0 ∈ R
d.

(b) Assume that {zn} satisfies the two conditions (6.1) and (6.2) above. Then {zn} can be
splitted into a finite number of disjoint subsequences Λj , j = 1, . . . , N , that is,

{zn} = Λ1 ∪ . . . ∪ ΛN ,

such that Λi ∪ Λj is an interpolating sequence for h∞(Rd+1
+ ) for any i, j = 1, . . . , N .

Here β(z, w) denotes the hyperbolic distance between the points z, w ∈ R
d+1
+ ,

β(z, w) = log2
1 + ρ(z, w)
1 − ρ(z, w)

,

where ρ(z, w) = |z − w|/|z − w̄| and w̄ = (w1, . . . , wd,−wd+1).
Moreover in [6], the authors present several geometric conditions on the sequence {zn},

which imply that {zn} is an interpolating sequence for h∞(Rd+1
+ ). However it is not known if

the two necessary conditions (6.1) and (6.2) are sufficient. Related interpolation problems have
been considered in [1, 7]. The situation for interpolating sequences for the space h+(Rd+1

+ ) of
positive harmonic functions in R

d+1
+ is quite similar. A sequence of points {zn} ⊂ R

d+1
+ will be

called an interpolating sequence for h+(Rd+1
+ ) if there exists a constant ε = ε({zn}) > 0 such
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that for any sequence {wn} of positive values satisfying

| log2 wn − log2 wm| � εβ(zn, zm), n, m = 1, 2, . . . ,

there exists a function u ∈ h+(Rd+1
+ ) with u(zn) = wn, n = 1, 2, . . . .

As before, a sequence of points {zn} ⊂ R
d+1
+ is called separated if infn�=m β(zn, zm) > 0.

Theorem 6.2. Let {zn} be a separated sequence of points in the upper-half space R
d+1
+ ,

d > 1.
(a) Assume that {zn} is an interpolating sequence for h+(Rd+1

+ ). Then there exist constants
M > 0 and 0 < α < 1 such that

#{zk : β(zk, zn) � l} � M2αdl, l, n = 1, 2, . . . . (6.3)

(b) Assume that {zn} satisfies condition (6.3) above. Then {zn} can be split into a finite
number of disjoint subsequences Λi, i = 1, . . . , N ,

{zn} = Λ1 ∪ . . . ∪ Λn,

such that Λi ∪ Λj is an interpolating sequence for h+(Rd+1
+ ) for any i, j = 1, . . . , N .

The proof of (a) follows the same lines as the proof of the necessity in Theorem 1.1. The
first two steps (Subsections 3.1 and 3.2) of the proof of the sufficiency in Theorem 1.1 can
be extended to several variables. However, the third step (Subsection 3.3) cannot be fulfilled
because we have not been able to show that a separated sequence satisfying condition (6.3)
is an interpolating sequence for h∞(Rd+1

+ ). Since it is clear that (6.3) implies (6.2), applying
the result of Carleson and Garnett, the sequence {zn} can be split into a finite number of
disjoint subsequences Λ1, . . . ,ΛN such that Λi ∪ Λj is an interpolating sequence for h∞(Rd+1

+ ),
i, j = 1, . . . , N . Arguing as in the third step (Subsection 3.3) of the proof of the sufficiency,
one can show that for any i, j = 1, . . . , N , the sequence Λi ∪ Λj is an interpolating sequence
for h+(Rd+1

+ ).
It is worth mentioning that we have not been able to prove that a separated sequence

satisfying (6.3) is interpolating for h+(Rd+1
+ ), when d > 1.
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12. J. B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I. Fundamen-

tals, Grundlehren der Mathematischen Wissenschaften 305 (Springer, Berlin, 1993).
13. P. Koosis, ‘Carleson’s interpolation theorem deduced from a result of Pick’, Complex analysis, operators,

and related topics, Operator Theory: Advances and Applications 113 (Birkhäuser, Basel, 2000) 151–162.
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Universitat Autònoma de Barcelona
08193 Bellaterra
Spain

dblasi@mat.uab.cat
http://www.mat.uab.cat/∼dblasi/
artur@mat.uab.cat
http://www.mat.uab.cat/∼artur/


	1. Introduction
	2. Necessity
	3. Sufficiency of condition (1.3)
	3.1. First step
	3.2. Second step
	3.3. Third step

	4. Equivalent conditions
	5. An interpolation problem for bounded analytic functions without zeros
	6. Higher dimensions
	References

