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HARMONIC AND SUPERHARMONIC MAJORANTS
ON THE DISK

ALEXANDER BORICHEV, ARTUR NICOLAU and PASCAL J. THOMAS

Abstract

A proof is given to show that a positive function on the unit disk admits a harmonic majorant if
and only if it has a certain explicit upper envelope that admits a superharmonic majorant. The
(logarithmic) Lipschitz regularity of this superharmonic majorant is discussed.

1. Definitions and statements

Let D denote the open unit disk in the complex plane, and H+(D) the cone of
positive harmonic functions on D. We would like to describe the nonnegative
functions ϕ : D �−→ R+ which admit a harmonic majorant: that is, h ∈ H+(D)
such that h � ϕ. This question arises in problems about the decrease of bounded
holomorphic functions in the unit disk, as well as in the description of free
interpolating sequences for the Nevanlinna class. See [4], where an answer is given
in terms of duality with the measures that act on positive harmonic functions. The
aim of this paper is to reduce this problem first to the finiteness of a certain best
Lipschitz majorant function, and then to the existence of a merely superharmonic
(nontrivial) majorant.

Let the hyperbolic (or Poincaré) distance ρ on the disk be defined by dρ(z) :=
(1−|z|2)−1|dz|. This is invariant under biholomorphic maps from the disk to itself.
Explicitly, if we first define the pseudohyperbolic (or Gleason) distance by

d(z, w) :=
∣∣∣∣ z − w

1 − zw

∣∣∣∣ ,

then

ρ(z, w) =
1
2

log
1 + d(z, w)
1 − d(z, w)

. (1.1)

For h ∈ H+(D), the classical Harnack inequality reads, for 0 < r < 1, θ ∈ R:

1 − r

1 + r
h(0) � h(reiθ ) � 1 + r

1 − r
h(0).

This implies that the function log h is Lipschitz with constant 2 with respect to the
hyperbolic distance. We will say that a positive valued function F is Log-Lipschitz
(with constant C) if and only if | log F (z) − log F (w)| � Cρ(z, w) for all z, w ∈ D.
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Theorem 1. A nonnegative function ϕ admits a superharmonic and
Log-Lipschitz majorant with constant C � 2 if and only if ϕ admits a harmonic
majorant.

Since the infimum of two harmonic functions is not in general harmonic, there is
no smallest harmonic majorant for a given function. On the other hand, the cone
Sp(D) of superharmonic functions is stable under finite infima. Denote by R(ϕ) the
reduced function of ϕ; that is,

R(ϕ)(z) := inf{u(z) : u ∈ Sp(D), u � ϕ on D}

(see, for example, [2]). We use the convention that R(ϕ) ≡ ∞ if there is no (non
identically infinite) superharmonic majorant. The reduced function could also be
called the ‘superharmonic envelope’, as in [8]. The reduced function is not in general
superharmonic, because it can fail to be lower semicontinuous. J. W. Green [3,
Theorem 2] has proved that when ϕ is continuous, then R(ϕ), if finite, is also
continuous, and therefore superharmonic, so the infimum in its definition is really
a minimum; furthermore, R(ϕ) is harmonic in the open set {z : R(ϕ)(z) > ϕ(z)}.

If, instead of taking the infimum of all superharmonic functions above ϕ, we
restrict ourselves to those that are Log-Lipschitz with a given constant C, then the
corresponding infimum RC (ϕ) (if finite) will again be Log-Lipschitz with constant
C, and hence it will be the smallest Log-Lipschitz superharmonic majorant of ϕ
with constant C. Theorem 1 means that ϕ admits a harmonic majorant if and only
if RC (ϕ) is finite for any given C � 2.

In order to study the finiteness of RC (ϕ), it would be nice to be able to proceed in
two steps, dealing first with the Lipschitz property, and then with superharmonicity.
The smallest Log-Lipschitz majorant with constant C of a given nonnegative
function ϕ is (see [7], or [5] for a more recent survey)

LC (ϕ)(z) = exp
{

sup
w∈D

(ϕ(w) − Cρ(w, z))
}

.

Clearly, LC (ϕ) � RC (ϕ), so R(LC (ϕ)) � RC (ϕ). That inequality can be strict
when C < 2.

Proposition 2. For every 0 < γ � β < 2 there exists a bounded positive
function H on the disc such that

R(Lγ (H)) �= Rβ (H).

However, we do not know whether R(LC (ϕ)) = RC (ϕ) holds for C � 2.
Nevertheless, if a Log-Lipschitz function admits a superharmonic majorant s, then
the invariant averages of s will provide us with a superharmonic majorant with a
weak Log-Lipschitz property, and so we obtain the following result.

Theorem 3. If there exists C > 0 such that LC (ϕ) admits a superharmonic
majorant, then ϕ admits a harmonic majorant.

Note that it would not help to perform our two steps in the reverse order.
Typical data for many problems of harmonic majorants are functions ϕ which
vanish everywhere except on a discrete subset [4]. For such ϕ, we have R(ϕ) = ϕ.
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Of course, Theorem 3 raises the question of criteria to ensure the finiteness of the
reduced function of Log-Lipschitz data. In this general direction, one should note
results of Koosis [6, p. 77] and Cole and Ransford [1, Theorem 1.3], which imply
that when ϕ is merely continuous, then

R(ϕ)(x) = sup
{ ∫

ϕdµ : µ ∈ Ix

}
= sup

{ ∫
ϕdµ : µ ∈ Hx

}
,

where Ix denotes the set of Jensen measures for x, and Hx denotes the set of
harmonic measures for x with respect to a domain ω ⊂⊂ D. A perhaps more
computable characterization of R(ϕ) is given by [6, Théorème, p. 80]: let DH (z, r)
stand for the disc of center z and radius r with respect to the hyperbolic distance
ρ, and let dβ(z) := (1 − |z|2)−2dm(z) be the invariant measure on the disk, where
m denotes two-dimensional Lebesgue measure. Given a real-valued continuous
function F on D, let

MF (z) := sup
r>0

1
β(DH (z, r))

∫
DH (z ,r)

F (w) dβ(w),

and define F (0) := F and F (k+1) := MF (k). Then, arguing as in [6], one can check
that

Rϕ(z) = lim
n→∞

ϕ(n)(z).

So Theorem 3 says that ϕ admits a harmonic majorant if and only if the sequence
LC (ϕ)(n)(0) remains bounded.

The paper is organized as follows. The next section is devoted to studying the
dyadic analogue of the problem of harmonic majorants. Theorems 1 and 3 are
proved in Sections 3 and 5 respectively. Proposition 2 is proved in Section 4.

2. A discrete model

Recall that any positive harmonic function h is the Poisson integral of a finite
positive measure µ on the boundary of the disk:

h(z) =
∫2π

0

Pz (eiθ ) dµ(θ), where Pz (eiθ ) :=
1
2π

(1 − |z|2)
|z − eiθ |2 .

The following considerations concern the simpler case of functions that are
generated by the ‘square’ kernel

Kz (eiθ ) :=
1
|Iz |

χIz
(eiθ ), where Iz := {eiθ : z ∈ Γα (eiθ )}.

Here, χE stands for the characteristic function of the set E, and Γα (eiθ ) for the
Stolz angle of aperture α and vertex eiθ . The ‘square’ integral of a finite measure
µ is defined by ∫2π

0

Kz (eiθ ) dµ(θ) =
µ(Iz )
|Iz |

.

Consider the usual partition of ∂D in dyadic arcs, for any n in Z+:

In,k := {eiθ : θ ∈ [2πk2−n , 2π(k + 1)2−n )}, 0 � k < 2n . (2.1)
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Note that |In,k | = 2π2−n . To this subdivision we associate the Whitney partition
in ‘dyadic squares’ of the unit disk :

Qn,k := {reiθ : eiθ ∈ In,k , 1 − 2−n � r < 1 − 2−n−1}.
It is well known and easy to see that there exists a constant cα such that for
any z ∈ Qn,k , we have Pz � cαKIn , k

. This implies that sufficient conditions for
majorization by ‘K-harmonic functions’ yield sufficient conditions for majorization
by (true) harmonic functions.

Theorem 4. Given a collection of nonnegative data {pn,k} ⊂ R+, there exists
a finite positive measure µ on ∂D such that

µ(In,k )
|In,k |

� pn,k (2.2)

if and only if there exists a constant S such that∑
n,k

pn,k |In,k | � S, (2.3)

where the sum is taken over any disjoint subfamily of the whole family of dyadic
arcs {In,k} defined in (2.1).

Proof. Condition (2.3) is clearly necessary with S = µ(∂D). To prove the
converse direction, let us consider the following modified data:

p̃n,k :=
1

|In,k |
sup

{∑
pq,j |Iq,j |

}
,

where the supremum is taken over any disjoint subfamily {Iq,j} of the family of all
dyadic subarcs of the given In,k . Observe that p̃n,k � pn,k , and that p̃n,k satisfies
the following discrete superharmonicity property:

p̃n,k � 1
2 (p̃n+1,2k + p̃n+1,2k+1).

Assuming that (2.3) holds, we will construct a sequence of positive measures µn

of bounded total mass, uniformly distributed on each arc In,j , such that for all
m � n,

µn (Im,k ) � |Im,k |p̃m ,k . (2.4)

Let µ0 be the uniform measure of total mass S on the arc I0,0 = ∂D. The
hypothesis (2.3) coincides with (2.4) in this case. Assuming that µm , m � n, have
already been constructed satisfying (2.4), we will choose µn+1. Fix j, 0 � j < 2n .
Then In,j = In+1,2j ∪ In+1,2j+1, so (2.4) implies in particular that

µn (In,j ) � |In+1,2j |p̃n+1,2j + |In+1,2j+1|p̃n+1,2j+1.

Now choose α, β � 0 such that

µn (In,j ) = α + β, α � |In+1,2j |p̃n+1,2j , β � |In+1,2j+1|p̃n+1,2j+1,

and set µn+1(In+1,2j ) = α and µn+1(In+1,2j+1) = β. This defines a measure µn+1

which satisfies (2.4) at rank n + 1 for m = n + 1. It also satisfies

µn+1(Im,j ) = µn (Im,j ), ∀m � n,

so (2.4) is satisfied by µn+1 for all m � n + 1. This bounded sequence of measures
contains a weakly convergent subsequence, whose limit µ will satisfy (2.2).
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3. Proof of Theorem 1

We will prove the following slightly more general fact, which will be useful in
Section 5.

Proposition 5. Let u be a positive superharmonic function on D such that,
for any z, w ∈ D,

|log u(z) − log u(w)| � C1(1 + ρ(z, w)). (3.1)

Then there exists h ∈ H+(D) such that h � u.

Proof. The Riesz representation theorem tells us that there exists a positive
measure ν = −∆u in the sense of distributions, and a positive harmonic function
h0 such that

u(z) = h0(z) +
∫

D

log
1

d(z, w)
dν(w) =: h0(z) + u0(z).

Let δ ∈ (0, 1), to be chosen later. Then define

u0(z) =
∫
{w :d(z ,w )�δ}

log
1

d(z, w)
dν(w) +

∫
{w :d(z ,w )>δ}

log
1

d(z, w)
dν(w)

=: u1(z) + u2(z).

For d(z, w) > δ, we have

log
1

d(z, w)
� Cδ

1 − |zw|2
|1 − zw|2 (1 − |w|2),

which is harmonic in z. Note that

∞ > u(0) �
∫

D

log
1
|w| dν(w) �

∫
D

(1 − |w|) dν(w), (3.2)

so that the harmonic function

h2(z) := Cδ

∫
D

1 − |zw|2
|1 − zw|2 (1 − |w|2)dν(w)

is bigger than u2. Now we need only to to find a harmonic majorant for the
remaining term, u1.

A sequence {zk} ⊂ D is called uniformly dense if there exists 0 < r1 < r2

satisfying
(i) DH (zj , r1) ∩ DH (zk , r1) = ∅ for any j �= k,
(ii) D ⊂ ∪kDH (zk , r2).

Here, DH (z, r) denotes the hyperbolic disk with center z and radius r.

Lemma 6. For δ ∈ (0, 1), a properly chosen absolute constant, there exist a
uniformly dense sequence {zk} and a positive harmonic function h1 such that for
any k, we have u1(zk ) � h1(zk ).

Conclusion of the proof of Proposition 5. Accepting this lemma, if we write
h3 := h0 + h1 + h2, we see that we have u(zk ) � h3(zk ), for any k. Now by
Harnack’s inequality, for any z ∈ DH (zk , r2), we have h3(z) � e−2r2h3(zk ), while
by (3.1) — note that this is the only step in this argument where this hypothesis
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is used — we have

u(z) � exp[C1(1 + r2)]u(zk ) � exp[C1(1 + r2)]h3(zk ) � exp[C1(1 + r2)]e2r2h3(z).

So we have found a harmonic majorant of u.

Proof of Lemma 6. First, let Tn,j := {z ∈ Qn,j : ρ(z, ∂Qn,j ) > δ}. For δ small
enough, we have

m(Qn,j ) � m(Tn,j ) � C(δ)m(Qn,j ),

where m is two-dimensional Lebesgue measure, and 0 < C(δ) < 1.
Choose in each Tn,j a point zn,j such that

u1(zn,j ) � 1
m(Tn,j )

∫
Tn , j

u1(ζ) dm(ζ).

It is enough to estimate this last average. We apply Fubini’s theorem:

1
m(Tn,j )

∫
Tn , j

u1(z) dm(z) =
1

m(Tn,j )

∫
Tn , j

∫
{w :d(z ,w )�δ}

log
1

d(z, w)
dν(w) dm(ζ)

� 1
m(Tn,j )

∫
Qn , j

(∫
Tn , j

log
1

d(z, w)
dm(z)

)
dν(w)

� C

∫
Qn , j

dν(w),

where the last inequality is due to the following explicit estimate: for w ∈ Qn,j ,∫
Tn , j

log
1

d(z, w)
dm(z) �

∞∑
k=0

log
1

2−k−1
m

(
{z : 2−k−1 < d(w, z) � 2−k}

)

� C
∞∑

k=0

k2−2n−2k

� C2−2n

� Cm(Tn,j ).

Now we set

pn,j :=
1

|In,j |

∫
Qn , j

(1 − |w|) dν(w) ≈
∫
Qn , j

dν(w).

Since the ‘squares’ Qn,j are disjoint, the condition (3.2) implies that∑
n,j

|In,j |pn,j < ∞. (3.3)

Hence {pn,j} satisfies (2.3), and Theorem 4 provides a positive measure µ on the
unit circle such that for any dyadic arc In,j ,

µ(In,j ) � |In,j |pn,j . (3.4)

However, whenever condition (3.3) is satisfied, a more direct construction can be
applied. Namely, one may take dµ = f(eiθ ) dθ where

f(eiθ ) :=
∑

In , k �ei θ

pn,k .



256 alexander borichev, artur nicolau and pascal j. thomas

Observe that
∫2π

0
f(eiθ )dθ =

∑
|In,k |pn,k , and since f(eiθ ) � pn,k whenever eiθ ∈

In,k , the measure µ satisfies (3.4).
Then, by the remarks before Theorem 4, there exists a harmonic function h1 such

that

h1(zn,j ) � Cpn,j � C

∫
Qn , j

dν(w) � u1(zn,j ).

4. Proof of Proposition 2

The gist of this proof is that the Poisson kernel itself cannot be log-Lipschitz
with a constant better than 2.

Denote
f(z) = Re

1 + z

1 − z
= Pz (1).

Fix γ > 0. For small δ > 0, consider the function

g(z) = f((1 − δ)z),

positive and harmonic in (1/(1 − δ))D. For 0 < ε < δ/2, consider

gε(z) = g
( z

1 − ε

)
, z ∈ D.

Denote
Mδ = sup

0<ε<δ/2, z∈D

‖∇(log gε)(z)‖.

Put
h(z) = gε(z), z ∈ (1 − ε)∂D.

Lemma 7. For sufficiently small ε < δ/2, and for any w ∈ (1− ε)∂D, z ∈ D, we
have

|log gε(w) − log gε(z)| � Mδ |z − w| � γρ(z, w),

where ρ is defined as in (1.1).

Applying this to the special case where z ∈ (1− ε)∂D, we see that for sufficiently
small ε, log h satisfies the Lipschitz condition with respect to ρ with constant γ.

Consider the γ-log-Lipschitz (with respect to ρ) extension of h to D:

H(z) = sup
w∈(1−ε)∂D

h(w)e−γρ(w,z).

It also follows from the lemma that for sufficiently small ε < δ/2, we have

H � gε on D.

Proof of Lemma 7. To prove the second inequality, note that if∣∣∣∣ z − w

1 − zw̄

∣∣∣∣ � 1
2
,

then |1 − zw̄| � u(ε) → 0 as ε → 0, and then (since log((1 + s)/(1 − s)) � 2s,
0 � s < 1) we have

2ρ(w, z) � 2
∣∣∣∣ z − w

1 − zw̄

∣∣∣∣ � 2
u(ε)

|z − w|.
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If ∣∣∣∣ z − w

1 − zw̄

∣∣∣∣ >
1
2
, and |z − w| � γ

2Mδ
,

then

2ρ(w, z) � log 3 > 1 � 2Mδ

γ
|z − w|.

Finally, if |z − w| > γ/2Mδ , then∣∣∣∣ z − w

1 − zw̄

∣∣∣∣ � 1 − u1

(
ε,

γ

2Mδ

)
,

where u1(ε, γ/2Mδ ) → 0 as ε → 0, and

2ρ(w, z) � log
1

u1(ε, γ/2Mδ )
� 2Mδ

γ
,

as ε → 0. This completes the proof of Lemma 7.

By definition of H, we have Lγ (H) = H.
Since R(H) is superharmonic, and H coincides with gε on (1 − ε)∂D, with gε

harmonic in D, we obtain

R(H) � gε on (1 − ε)D.

Furthermore, since H � gε on D,

R(H) � gε on D.

As a result,

R(H) = gε on (1 − ε)D,

and, writing z = x + iy, we see that
∂

∂x
(log R(H))(0) =

∂

∂x
(log gε)(0)

=
1 − δ

1 − ε

∂

∂x
(log f)(0)

= 2
1 − δ

1 − ε
.

Therefore, the function R(H) is no better than 2((1 − δ)/(1 − ε)-log-Lipschitz,
and

R(Lγ (H)) = R(H) �= Rc(H), c < 2
1 − δ

1 − ε
.

This completes the proof of Proposition 2.

5. Comparison of the upper envelopes

The aim of this section is to prove Theorem 3. Proposition 5 shows that it will
follow from the following result.

Lemma 8. Given C0 > 0, there is a C1 � C0 such that if ϕ is Log-Lipschitz with
constant C0 and admits a non-trivial superharmonic majorant, then there exists a
superharmonic function v such that v � ϕ and v satisfies (3.1) with constant C1.
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Proof. Let u ∈ Sp(D) such that u � ϕ. We note (see Lemma 9) that an averaged
version of u always satisfies (3.1), and that (up to a multiplicative constant) it
provides the regular superharmonic majorant that we are seeking.

For any δ ∈ (0, 1
2 ], let DH (z, δ) stand, as above, for a hyperbolic disk of radius δ

centered at z. Let dβ(z) := (1−|z|2)−2dm(z) be the invariant measure on the disk.
For any Möbius automorphism φ of the disk, any measurable function f and any
measurable set E, we have (see, for example, [9, (2.19), p. 19])∫

E

f ◦ φ dβ =
∫
φ(E )

f dβ.

For any measurable function g on the unit disk, let

gδ (z) :=
1

β(DH (z, δ))

∫
DH (z ,δ)

g dβ.

Since ϕ is Log-Lipschitz with constant C0, we have ϕ(w) � e−C0δϕ(z) for any
w ∈ DH (z, δ), so that, being an average of such values, ϕδ (z) � e−C0δϕ(z). Now
ϕ � u implies that

ϕ(z) � eC0δϕδ (z) � eC0δuδ (z).

The proof of Lemma 8 will conclude with the next two lemmas.

Lemma 9. There exists an absolute constant κ such that for any positive-valued
superharmonic function u, and for any z, w in D such that d(z, w) � δ/4, one has
uδ (w) � κuδ (z), and therefore uδ satisfies (3.1).

Proof. Recall that since u is superharmonic, for any z ∈ D and r1 < r2,

1
β(DH (z, r1))

∫
DH (z ,r1)

u dβ � 1
β(DH (z, r2))

∫
DH (z ,r2)

u dβ. (5.1)

This fact is clear when z = 0, because dβ has radial density, and we can reduce
ourselves to this case by composing u with an appropriate Möbius automorphism
of D.

Pick a constant K < 1 such that ρ(z, w) � δ/4 implies that DH (w,Kδ) ⊂
DH (z, δ). Then (5.1) implies that

uδ (w) � uK δ (w) � 1
β(DH (w,Kδ))

∫
DH (z ,δ)

u dβ,

by the inclusion of discs and the positivity of u. But

1
β(DH (w,Kδ))

∫
DH (z ,δ)

u dβ � κ
1

β(DH (z, δ))

∫
DH (z ,δ)

u dβ = κuδ (z),

since β(DH (w,Kδ)) and β(DH (z, δ)) are comparable.

Lemma 10. Let u be a positive superharmonic function on D. Then uδ is also
superharmonic.

Proof. If we were dealing with superharmonic functions on the plane, we could
simply use the invariance of harmonicity under translations to define suitable
averaged functions. In D, we need invariance under Möbius automorphisms. The
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appropriate machinery happens to have been developed in the more general case of
the unit ball of C

n .
We will follow the notation and use the results of [9, Chapter 4, pp. 34–39],

which was itself inspired by [10]. Let φz denote the unique involutive Möbius auto-
morphism of the disk that exchanges z and 0. Define the invariant convolution of
two measurable functions by

(f ∗ g) (z) :=
∫

D

f(w) (g ◦ φz ) (w) dβ(w),

whenever the integral makes sense. This operation is commutative (see [9, bottom
of page 34]). If we set

Ωδ (z) :=
1

β(DH (0, δ))
χDH (0,δ)(z),

then fδ = f ∗Ωδ . Note that DH (0, δ) = D(0, tanh δ), so that Ωδ is a radial function.
The M-subharmonic functions defined in [9, Chapter 4, (4.1)] reduce for n = 1

to ordinary subharmonic functions. The invariant Laplacian (the Laplace–Beltrami
operator for the Bergman metric of the ball) reduces in the case n = 1 to

∆̃ = 2(1 − |z|2)2 ∂2

∂z∂z̄
,

so that C2 superharmonic functions g can be characterized as those such that ∆̃g �
0. Since our function Ωδ is not smooth, we need to perform an approximation
argument. It will be enough to show that u∗Ωδ can be approximated from below by
an increasing sequence of C2 superharmonic functions. Pick an increasing sequence
of smooth, nonnegative, radial functions Ωδ,n so that limn→∞ Ωδ,n = Ωδ almost
everywhere. Then the monotone convergence theorem tells us that u∗Ωδ,n converges
to u∗Ωδ , and the sequence is clearly increasing. For f ∈ C2(D), by [9, (4.11), p. 36]
we have

(∆̃f)(a) = lim
r→0

4
r2

[(f ∗ Ωr )(a) − f(a)].

Now, by applying, twice, Ulrich’s lemma about the associativity of the invariant
convolution when the middle element is radial [9, Lemma 4.5, p. 36], we have

∆̃(u ∗ Ωδ,n ) = lim
r→0

4
r2

[(u ∗ Ωδ,n ) ∗ Ωr − u ∗ Ωδ,n ]

= lim
r→0

4
r2

[u ∗ (Ωδ,n ∗ Ωr ) − u ∗ Ωδ,n ]

= lim
r→0

4
r2

[u ∗ (Ωr ∗ Ωδ,n ) − u ∗ Ωδ,n ]

= lim
r→0

4
r2

[(u ∗ Ωr ) ∗ Ωδ,n − u ∗ Ωδ,n ]

= lim
r→0

4
r2

[(u ∗ Ωr − u) ∗ Ωδ,n ] .

Since u is superharmonic, u ∗ Ωr − u � 0, and since Ωδ,n � 0, we finally have
∆̃(u ∗ Ωδ,n ) � 0.
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Université Paul Sabatier
118 route de Narbonne
31062 Toulouse CEDEX
France

pthomas@cict.fr

Artur Nicolau
Departament de Matemàtiques
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