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Abstract

We consider a free interpolation problem in Nevanlinna and Smirnov classes and find a
characterization of the corresponding interpolating sequences in terms of the existence of
harmonic majorants of certain functions. We also consider the related problem of
characterizing positive functions in the disk having a harmonic majorant. An answer is given
in terms of a dual relation which involves positive measures in the disk with bounded Poisson
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balayage. We deduce necessary and sufficient geometric conditions, both expressed in terms of
certain maximal functions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results
1.1. Interpolating sequences for the Nevanlinna class

Let A be a discrete sequence of points in the unit disk D. For a space of
holomorphic functions X, the interpolation problem consists in describing the trace
of X on A, ie. the set of restrictions X|A, regarded as a sequence space. One
approach is to fix a target space / and look for conditions so that X|4 =/. An
alternative approach, known as free interpolation, is to require that X |4 be ideal,
i.e. stable under multiplication by /%. See [Nik02, Section C.3.1, Vol. 2], in
particular, Theorem C.3.1.4, for functional analytic motivations. This approach is
natural for those spaces that are stable under multiplication by H*, the space of
bounded holomorphic functions on D. For Hardy and Bergman spaces both
definitions turn out to be equivalent, with the usual choice of / as an /7 space with an
appropriate weight (see [ShHSh,Se93]).

The situation changes for the non-Banach classes we have in mind, namely the
Nevanlinna class

2n
N = {feHol(ID) + lim 21/ 1og+|f(ref9)|d9<oo}
r— T Jo

and the related Smirnov class

2n

1 2n ) 1 )
+ A _ + i0 _ + i0
NT = {feN : ’hml o /0 log™ | f(re™)|d0 = o /0 log™ | f(e )|d0}.

We briefly discuss the known results. Naftalevi¢ [Na56] described the sequences A
for which the trace N|A coincides with the sequence space Ina = {(a1), : sup, (1 —
|4]) log* |a;| < oo} (we state the precise result after Proposition 1.12). The choice of
Ina is motivated by the fact that sup.(1 — |z|) log" | f(z)]< o for feN, and this
growth is attained. Unfortunately, the growth condition imposed in /N, forces the
sequences to be confined in a finite union of Stolz angles. Consequently a big class of
Carleson sequences (i.e. sequences such that H* |4 = /*), namely those containing
a subsequence tending tangentially to the boundary, cannot be interpolating in the
sense of Naftalevi¢. This does not seem natural, for H® is in the multiplier space of
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N. In a sense, the target space Iy, is “too big”. Further comments on Naftalevic’s
result can be found in [HaMaO1] and below, after Proposition 1.12.

For the Smirnov class, Yanagihara [Ya74] proved that in order that N*t|A
contains the space Iy, = {(a;); : >, (1 — |4]) log" |a;| < o0}, it is sufficient that A is a
Carleson sequence. However, there are Carleson sequences such that N*|A does not
embed into ly, [Ya74, Theorem 3]: the target space ly, is “too small”.

We now turn to the definition of free interpolation.

Definition. A sequence space / is called ideal if /*Icl, i.e. whenever (a,),€!/ and
(wn), €7, then also (wyay), €.

Definition. Let X be a space of holomorphic functions in D. A sequence A<D is
called free interpolating for X if X|A is ideal. We denote AeInt X.

Remark 1.1. For any function algebra X containing the constants, X|A is ideal if
and only if

(% < X|A.

The inclusion is obviously necessary. In order to see that it is sufficient notice
that, by assumption, for any (w;),e/® there exists geX such that g(1) = w,.
Thus, if (f(4)),eX]|4, the sequence of values (w;f(4)), can be interpolated
by fge X.

It is then clear that Int N* <Int N.

Free interpolation for these classes entails the existence of non-zero functions
vanishing on all 4 except a given Jy. Hence, the Blaschke condition ), _,(1 —|4|)
< oo is necessary and will be assumed throughout this paper.

Given the Blaschke product B4 = [[,., b; with zero-sequence A, denote B, =

By = Ba/b;. Here b; = (|2|/2)(A— z)(1 — 2z)"". Define then

log |B,(2)|™" if z=AeA,
oalz) = { AN
0 if z¢ A.

Definition. We say that a Borel measurable function ¢ defined on the unit disk
admits a positive harmonic majorant if and only if there exists a positive harmonic
function /4 on the unit disk such that A(z) > ¢(z) for any zeD.

Let Har(D) denote the space of harmonic functions in D and Har, (D) the
subspace of its positive functions. Consider also the Poisson kernel in D:

C—|—Z>_1—|z|2

P(z,0) = P.(¢) = Re(C =)
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Our characterization of interpolating sequences for the Nevanlinna class is as
follows. Note that the existence of a harmonic majorant occurs at two junctures:
first, to decide which sequences of points are free interpolating, second, to identify
the trace space that arises for those sequences which are indeed free interpolating.

Theorem 1.2. Let A be a sequence in D. The following statements are equivalent:

(a) A is a free interpolating sequence for the Nevanlinna class N.
(b) The trace space is given by

N|A = Iy ={(a,);: 3heHar. (D) such that h(2)=log" |a,|, AeA}.

(¢) ¢4 admits a harmonic majorant.
(d) There exists C>0 such that for any sequence of non-negative numbers {c,},

> pa2) = cilogBi(A)|'<C sup > eiPi(0).

e JeA (edD 7oy

We recall that any positive harmonic function on the unit disk is the Poisson
integral of a positive measure on the unit circle,

h(z) = Plu)(z) = /8 PO ()

We will say that a harmonic function is quasi-bounded if and only if it admits an
absolutely continuous boundary measure (for the reasons for this terminology, see
[He69, pp. 6-7]). The analogous result for the Smirnov class will, as can be expected,
involve quasi-bounded harmonic functions.

Let do denotes the normalized Lebesgue measure in 9D. Also, for a non-negative
function ¢ on the unit disk, let M ¢ denote the associated non-tangential maximal
function (see (1.1) below).

Theorem 1.3. Let A be a sequence in D. The following statements are equivalent:

(a) A is a free interpolating sequence for the Smirnov class N*.
(b) The trace space is given by

NT|A = Iy ={(a;),: 3heHar, (D) quasi-bounded such that h(%)>log" |a;|, e A}.

(¢) ¢4 admits a quasi-bounded harmonic majorant.

(d) limyo o0 SUP(e,yeBA) Doiig, (1) C2PA(4) = 0, where B(A) denotes the set of non-
negative sequences {c;} such that sup;cop > ;4 2P () <1.

(&) (i) sup,q to({L€dD : M ,(()>1})< 0, and
(i) imy— o D yey cg") @ (1) =0 for any sequence of sequences of non-negative
numbers {c(i")}eB(A) such that lim,_, ) ,_,¢
on 0D.

(")PA(C) =0 almost everywhere

P
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The classical Carleson condition characterizing interpolating sequences for
bounded analytic functions in the unit disk is supp ¢ < oo, hence statements (c)
in both results above can be viewed as Carleson-type conditions.

In view of Theorems 1.2 and 1.3, it seems natural to ask whether the measure p
such that ¢ < P[y] can be obtained from A in a canonical way. We do not have an
answer to this question, but with Propositions 1.12 and 1.13 it is easy to construct
examples that discard natural candidates, such as the (weighted) sum of Dirac
masses u = ,(1—[4])d;/;, or Poisson balayage measures dv= ) ,(1 —
[A])P,(C) da({) (see definition below).

1.2. Positive harmonic majorants

The conditions in Theorems 1.2 and 1.3(d) arise in the solution of a problem of
independent interest:

Problem. Which functions ¢ : D — R, admit a (quasi-bounded) harmonic majorant?

Answers to this problem lead to rather precise theorems about the permissible
decrease of the modulus of bounded holomorphic functions, e.g. Corollary 1.5
below. See [Hay,LySe97,PaTh, and also EiEs] for a survey of such results along
with some new ones. The existence of harmonic majorants is relevant as well
to the study of zero-sequences for Bergman and related spaces of holomorphic
functions [Lu96].

An answer to the problem of positive harmonic majorants can be given
in dual terms (see [BNT] for another characterization). The Poisson balayage
(or swept-out function) of a finite positive measure u in the closed unit disk is
defined as

B(u)(() = / P.(0) du(z), LD,

We will be interested in the class of measures having bounded balayage. Recall
that Carleson measures are those finite positive measures whose balayage has
bounded mean oscillation (see [Gar81, Theorem VI.1.6, p. 229]); this is also an
easy consequence of the H'-BMO duality (see [Gar81, Theorem VI.4.4, p. 245]).
Hence, positive measures with bounded balayage form a subclass of the usual
Carleson measures. It is easy to see (cf. Section 6) that positive measures with
bounded balayage are precisely those which operate against positive harmonic
functions, that is, those measures u for which there exists a constant C = C(u)
such that

/D h(z) du(z) < Ch(0)

for any positive harmonic function in the unit disk D.
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Define

B = { u positive Borel measures on D such that sup B(,u)(C)Sl}.
{edD

Theorem 1.4. Let ¢ be a non-negative Borel function on the unit disk D. The following
statements are equivalent:

(a) There exists a (positive) harmonic function h such that ¢(z)<h(z) for all ze D.
(b) There exists a constant C = C(¢) such that

sup/ @(z)du(z)<C.
neBJD

The necessity of condition (b) is obvious (e.g. C = /(0)), while the sufficiency follows
from a convenient version of a classical result in convex analysis, known as Minkowski—
Farkas Lemma. The characterization of interpolating sequences in the Nevanlinna class
in dual terms given by condition (d) in Theorem 1.2 follows from this result.

This can be applied to study the decrease of a non-zero bounded analytic function
in the disk along a given non-Blaschke sequence.

Corollary 1.5. Let A be a separated non-Blaschke sequence and (¢;),_ , a sequence of
positive values. Then there exists a non-zero function f € H* (D) with | f(1)| <g;, L€ A,
if and only if A is the union of a Blaschke sequence and a sequence I' for which there
exists a universal constant C = C(I') such that

Z ¢, log a/’l < C sup Z ¢, Py ()
yel (edD yel

for any sequence of non-negative numbers (c,), _r-

In a similar way, Theorem 1.3(d) and (e) are obtained as an application of the
following analogue of Theorem 1.4 for quasi-bounded harmonic functions (i.e. for
the Smirnov class).

Theorem 1.6. Let ¢ be a non-negative Borel function on the unit disk D. The following
Statements are equivalent:

(a) There exists a (positive) quasi-bounded harmonic function h such that ¢(z) <h(z)
for all zeD.

(b) There is a convex increasing function \ : [0, c0)— [0, 00) with lim,_, ,, Y(1)/t =
400 such that Yo admits a harmonic majorant on D;

(¢) lim,, o, sup,.5 f{q@n} @du=0.

(@) (i) supy- 16({(0D : Mo(Q)>1}) < o0, and
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(i) lim, o [p@dw, =0 for any sequence {w,}<=B such that lim,_ . B(u,)
() = 0 almost everywhere on 0D.

Condition (b) is inspired by a characterization of quasi-bounded harmonic
functions given in Armitage and Gardiner’s book [ArGa, Theorem 1.3.9, p. 10].

For the problem of harmonic majorants it is desirable to obtain criteria which,
although only necessary or sufficient, are more geometric and easier to check than
the duality conditions of Theorems 1.4 and 1.6.

Recall that the Stolz angle with vertex {€dD and aperture o is defined by

[0 ={zeD: |z = {|<a(l = |z}

In our considerations the angle « is of no importance, so we will write I'({) for the
generic Stolz angle with aperture «. Given a function f from D to R., the non-
tangential maximal function is defined as

Mf () =sup f. (1.1)
rQ©
Recall that ¢ denotes the normalized Lebesgue measure on dD. Consider the weak-
L' space

L!(0D) = {f measurable : sup to({{: | f({)|>1}) < oo}

t>0

and let
L., (D) = { / measurable : lim 1o({C: | £(0)]>1}) = o}.

It is well-known that the non-tangential maximal function of the Poisson
transform of a positive finite measure belongs to L! (see [Gar81, Theorem 5.1, p.
28]). A more careful analysis shows that if pu is absolutely continuous, then its
Poisson transform is in L), ;. This and some easy estimates imply the following result.

Proposition 1.7. (a) If ¢ admits a harmonic majorant, then Mpe L} (0D).
(b) If @ admits a positive quasi-bounded harmonic majorant, then M q)eLn 0(8[@).
(c) If MpeL'(OD), then the function ¢ admits P[M¢) = P[M¢ do| as a quasi-
bounded harmonic majorant.

As far as necessary conditions are concerned, there is a way to improve the

previous result by using the Hardy—Littlewood maximal function. Given f >0, this is
defined as

JH(x) = sup—rz /f,

where the supremum is taken over all arcs I containing x.
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For ¢ >0 define

NI,
9" (0) = sup ¢(2)17.() = sup ¢(z) sup M,
zeD zeD Itel o'(])

where y is the characteristic function of a set £ and I is the “Privalov shadow”
interval

I. ={(edD:zel({)}. (1.2)

Proposition 1.8. (a) If ¢ admits a harmonic majorant, then ¢ e L! (D).
(b) If ¢ admits a quasi-bounded harmonic majorant, then ¢ eL}V’O(aD).

We will give some examples in Proposition 7.4 that show that this is indeed
stronger than the necessary condition given in the first part of Proposition 1.7, but
still falls short of giving a sufficient condition for the existence of a harmonic
majorant.

1.3. Geometric criteria for interpolation

We would like to obtain some geometric implications of the analytic conditions
given in Theorems 1.2 and 1.3. To begin with, we would like to state the
maybe surprising result that separated Blaschke sequences (with respect to the
hyperbolic distance) are interpolating for the Smirnov class (and hence the
Nevanlinna class). Recall that a sequence A is called separated if 6(A) =
inf; ., p(2,A') >0, where

p(z,w) = [bz(w)| =

Z—w ‘
1 —zwl’
is the pseudo-hyperbolic distance.

For such sequences, the values log | B;(4) |71 can always be majorized by the values
at Le A of the Poisson integral of an integrable function (see Proposition 4.1), thus
the following corollary is immediate from Theorem 1.3.

Corollary 1.9. Let A be a separated Blaschke sequence. Then Aelnt Nt (hence
Aelnt N).

More precise conditions can be deduced from Propositions 1.7, 1.8 and (c) in
Theorems 1.2 and 1.3.

Corollary 1.10. Let A be a sequence in D.

(@) If AeInt N then o e L} (0D). If AeInt N* then ¢ e L} ,(0D).
(b) If Mo e L' (D) then Aelnt N* (and hence Aelnt N).
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Notice that the necessary conditions obtained by replacing ¢l by M¢ , in (a) also

hold. This in an immediate consequence of the estimate ¢ >Mo,,.
This result implies the following Carleson-type conditions.

Corollary 1.11. (a) If AcInt N*, then

Vl}ml(l — ) log |By(A)] " =0. (1.3)
(b) If AeInt N, then
iup(l —|4]) log |By(A)| ' < 0. (1.4)
e
(c) If A is Blaschke and
> (1= 12)log |B;(4)| "' < o0, (1.5)

reA

then Aelnt Nt (and so AeInt N as well).

Condition (1.3) already appeared in [Ya74, Theorem 1] as a necessary condition for
the sequence space ly, (as defined in the beginning of Section 1.1) to be included in
the trace of N*. Condition (1.4) is discussed in Proposition 1.12 and the corollary
thereafter.

In some situations, the conditions above are indeed a characterization of
interpolating sequences. For instance, the weak L'-condition characterizes
interpolating sequences lying on a radius, while for sequences approaching the unit
circle very tangentially the characterization is given by the strong L'-condition. This
is collected in the next results.

Proposition 1.12. Assume that A<D lies in a finite union of Stolz angles.

(a) Aelnt Nt if and only if (1.3) holds.
(b) Aelnt N if and only if (1.4) holds.

It should be mentioned that (b) can also be derived from Naftalevic’s result [Na56,
Theorem 3]. On the other hand, his full characterization of the sequences such that
N|A = IN, can also be deduced from Theorem 1.2.

Corollary (Naftalevi¢ [Na56]). N|A = Ina if and only if A is contained in a finite union
of Stolz angles and (1.4) holds.
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Let us consider the other geometric extreme, sequences which in particular only
approach the circle in a tangential fashion. Write

wi= > (1=, (1.6)

)

where ¢, stands for the Dirac measure at A.

Proposition 1.13. If u, has bounded balayage, then AeInt N if and only if AcInt N*,
and if and only if (1.5) holds.

Note that the condition that p, has bounded balayage implies in particular that A
approaches the circle tangentially. In Section 8, we will see more concrete conditions
of geometric separation which are sufficient to imply that u, has bounded balayage
(Proposition 8.2).

When p, has bounded balayage, the trace space will embed into Yanagihara’s
target space. More precisely, the following result holds.

Proposition 1.14. The following are equivalent:

(@) N|Acly,,
(b) N*|Ac lya,
(¢) wy has bounded balayage, i.e. sup;cpp >, (1 —|A|)Pi({) < 0.

Yanagihara considered the sequences such that NT|A>ly,. These are auto-
matically in Int N*, since for any Blaschke sequence ly, >/%. Conversely, Lemma
8.1 (see Section 8) implies that ly, =/y+, thus if AeInt N*, then by Theorem 1.3(b)
NT|A>ly,. Therefore Theorem 1.3 characterizes in particular the sequences studied
by Yanagihara.

Altogether, free interpolation for the Nevanlinna and Smirnov classes can be
described in terms of the intermediate target spaces /y and /y+. Notice first that
always N*|Acly+ and N|A<ly (this is proved at the beginning of Section 5). So,
Aelnt N* if and only if N*|A>Iy+, and AeInt N if and only if N|A>ly. Observe
also that Iy, cly+ cly <IN,

The paper is organized as follows. The next section is devoted to collecting some
basic results on functions in the Nevanlinna class. In Section 3, we prove the
sufficiency for interpolation of the conditions (c) of Theorems 1.3 and 1.2. We
essentially use a result by Garnett allowing interpolation by H® functions on
sequences which are denser than Carleson sequences, under some decrease
assumptions on the interpolated values. In Section 4, we study the necessity of
these conditions. We first observe that in the product B;(1) appearing in Theorem
1.2, only the factors b,(1") with A’ close to 4 are relevant. Then we split the sequence
into four pieces, thereby reducing the interpolation problem, in a way, to that on
separated sequences. The trace space characterization will be discussed in Section 5.
In Section 6, we consider measures with bounded balayage, show that they operate
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against positive harmonic functions and prove Theorems 1.4 and 1.6. In Section 7,
we prove Proposition 1.8, and provide examples to show that the sufficient
condition is not necessary, and the necessary condition not sufficient. Section 8
is devoted to the proofs of Corollary 1.11, Propositions 1.12-1.14, as well as
the deduction of Naftalevic’s result from Theorem 1.2. Also, we give examples
of measures with bounded balayage. In the final section, we exploit the reasoning
of Section 3 to construct non-Carleson interpolating sequences for big”
Hardy—Orlicz classes.

2. Preliminaries

We next recall some standard facts about the structure of the Nevanlinna and
Smirnov classes (general references are e.g. [Gar81,Nik02] or [RosRov]).
A function f is called outer if it can be written in the form

1) = Cexp{ [ e do(é)},

pl{—z

where |C| =1, v>0 a.e. on 9D and logve L' (D). Such a function is the quotient
S =/1i/f> of two bounded outer functions f,/>,e H* with ||fi||., <1, i=1,2. In
particular, the weight v is given by the boundary values of | f /f2|. Setting w = log v,
we have

log | f(2)] :P[W](Z):/ P=(Ow(L) da(0).

oD

This formula allows us to freely switch between assertions about outer functions f
and the associated measures w do.

Another important family in this context are inner functions: /€ H* such that
|7] = 1 almost everywhere on 9D. Any inner function I can be factorized into a
Blaschke product B, carrying the zeros A = {4,}, of I, and a singular inner function

S defined by
s =en{- [ Fauo].

for some positive Borel measure p singular with respect to Lebesgue measure.
According to the Riesz—Smirnov factorization, any function feNT is repre-
sented as

_BSh
f_aﬁ>
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where f,f> are outer with || fi||.., || /2|l <1, S is singular inner, B is a Blaschke
product and |«| = 1. Similarly, functions f'e N are represented as

_ _BS\fi
f=e S2./2

with f; outer, || fi|| , <1, S; singular inner, B is a Blaschke product and |o| = 1.

In view of the Riesz—Smirnov factorization described above, the essential
difference between Nevanlinna and Smirnov functions is the extra singular factor
appearing in the denominator in the Nevanlinna case. This is reflected in the
corresponding result for free interpolation in NV by the fact that ¢, is bounded by a
harmonic function, not necessarily quasi-bounded.

3. From harmonic majorants to interpolation

For a given Blaschke sequence A<D set 0, = |B;(4)|. The key result to the proof
of the sufficient condition is the following theorem by Garnett [Gar77], that we cite
for our purpose in a slightly weaker form (see also [Nik02] as a general source, in
particular C.3.3.3(g) (Vol. 2) for more results of this kind).

Theorem. Let  : [0, 0)— [0, c0) be a decreasing function such that [, (1) di< 0.
If a sequence a = (a,), satisfies

|aﬂ|<w<1og§>, Jed,

then there exists a function f€ H* such that f|A = a.

Observe that according to our former notation we have log(e/d;) = 1+ ¢ ,(4).

As we have already noted in Remark 1.1, in order to have free interpolation in the
Nevanlinna and Smirnov classes, it is sufficient that /“ = N|A and /* <N T |4,
respectively. Our aim will be to accommodate the decrease given in Garnett’s result
by an appropriate function in N or N*. This is the crucial step in the proof given
hereafter of the sufficiency of conditions (c¢) in both Theorems 1.3 and 1.2.

Proof of sufficiency of 1.3(c) and 1.2(c). The proof will be presented for the more
difficult case of the Nevanlinna class. So, assume that AeHar, (D) majorizes ¢,.
Then £ is the Poisson integral of a positive measure p on the circle and the function

g9(z) =/0 szu(é) (3.1)

pl{—z

has positive real part in the disk. By Smirnov’s theorem, ¢ is an outer function in
some H?, p<1, and therefore in Nt (see [Nik02], in particular A.4.2.3 (Vol. 1)).
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Also exp(g) is in the Nevanlinna class. By assumption we have log(1/9,) <Re g(4),
LeA.

Take now (1) = (1 + t)_z, which obviously satisfies the hypothesis of Garnett’s
theorem, and set H = (2 4 g)*, which is still outer in N*. We have the estimate

e 1

2
H()| =2+ g(A) =2+ Reg(Z 2><1+10 ):—,
H(2)| = 2+ ()= (2 + Reg(2) £5) = JioateTo )
hence the sequence (y,), defined by

1
" T HG) W (0g(e/5,))

AEA,

is bounded by 1.
In order to interpolate an arbitrary w = (w;),e/* by a function in N, split

Since by hypothesis (w;y; exp(—g(4))/d;), is bounded, we can apply Garnett’s
result to interpolate the sequence

a; = 7; exp(_g(/“)) 51[# logi , JVEA,
0; 0;

by a function fe H*. Now F = fH exp(g) is a function in N with F|4 = w.

The proof for the Smirnov case is obtained by observing that if the measure y is
absolutely continuous, then exp(g) is in the Smirnov class and so is the interpolating
function F. O

4. From interpolation to harmonic majorants

We first show that in order to construct the appropriate function estimating

log |Bl(i)\71 we only need to consider the factors of B; given by points A’ € A which
are close to A. This is in accordance with the results for some related spaces of
functions [HaMa01, Theorem 1], and it obviously implies Corollary 1.9.

Proposition 4.1. Let A be a Blaschke sequence. For any d€ (0, 1), there exists a quasi-
bounded positive harmonic function h = P[w], we L' (0D), such that

~log  [[ 1bi(2)I<h(z), zeD,

Ap(Az)=0
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and therefore an outer function Ge N, where G = exp(—g) and g is given by (3.1) with
du=wda, such that

I[I 2:1>16(), zeD.

lip(Az)=0

Proof. We shall use the intervals /. introduced in (1.2). In [NPT, p. 124, lines 3-17],
it is proved that the function w given by

w(l) =co Y 11,0,

ieA

where ¢¢ is an appropriate positive constant, is suitable. At this juncture, the
separation hypothesis made in [NPT, Lemma 4] is no longer used. [

Proof of the necessity of 1.3(c) and 1.2(c). We will use a dyadic partition of the disk:
for any n in N, let

Ly = {": 0e2nk2™" 2n(k +1)27")}, 0<k<2". (4.1)
and the associated Whitney partition in “dyadic squares”:
Oni = {re” 1 e’ el, 1 —27"<r<1 =271}, (4.2)

Observe that the hyperbolic diameter of each Whitney square Q,; is bounded
between two absolute constants.

We split the sequence into four pieces: A4 = U?Zl A; such that each piece A; lies in
a union of dyadic squares that are uniformly separated from each other. More
precisely, set

Ay = AﬂQU),

where the family OV is given by {Qan 2k}, (for the remaining three sequences we
respectively choose { Q2 2611 }nyk, {Q2”+l-,2k}n,k and {Qont12641 }'hk)' In order to avoid
technical difficulties we count only those Q containing points of A (in case AN Q is
empty there is nothing to prove). In what follows we will argue on one sequence, say
Aj. The arguments are the same for the other sequences.

Our first observation is that, by construction, for Q,Le Q) Q#L,

p(Q, L) = ian , Pz w)=0>0,

for some fixed 6. In what follows, the letters j, k... will stand for indices in N2 of the
form (n,1),0</<2". The closed rectangles Q; are compact in D so that A; " Q; can
only contain a finite number of points (they contain at least one point, by
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assumption). Therefore

O<m; = i B; (A
m ;Vel}llllrI}QA 5 (4)]

(note that we consider the entire Blaschke product B; associated with A\{A}). Take
/1} € Q; such that m; = |B, (/1]1)|

Assume now that Aelnt N. Since /* < N|A, there exists a function f; € N such

that
1 if 2e{Al},
ﬁu){o B
if Ae A\{4;};.

By the Riesz—Smirnov factorization we have

/11
= Bagh oy (4.3)
where T3 is singular inner, /; is some function in H* and #; is outer in H*. Again,
we can assume ||/;||, <1, i=1,2. Hence

1

L= 1)< IByygp, (i)l oo
WIS, o oD

and
B }].(/1/1()| >|hy(A) Ta(4)],  keN,
Since /1, T> does not vanish and is bounded above by 1, the function log |, T3| is a

negative harmonic function. By Harnack’s inequality, there exists an absolute
constant ¢>1 such that

% llog [ (2) T2(2) | < log [ha(2) T2 (2) | < cllog [ha () Ta ()], z€ Ok
hence
() T2 (20| < a2 (2) Ta(2) | < Ve (G T ()1, 2 O
This yields
(T2 OIS T2) (21 < B i1y (A0 (4.4)

for every e AN Q.
Let us now exploit Proposition 4.1. By construction, the sequence {)L} }jc/ll
is separated. Therefore, there exists an outer function G; in the Smirnov class
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such that
|B{A}}/\{/1,'(}(/1/lc)|>\Gl(i}c)h keN.

Again, G is a quotient of two bounded outer functions and we can suppose that
G, is outer in H® with ||Gi]|, <1. Also, we can use Harnack’s inequality as
above to get

|G1(4)|=Gi (7))
for every 2 e A; U Q. This together with (4.4) and our definition of )L,lc give

|B/1\{A’}(/V)| = |BA\{;V}‘}()~11»»)| = |BA\\{A}}/.(/111c)| : |B{;i}}j\u}(}(/lil()|

2 |(laT2) ()] - 1GI(X)]

for every /'€ QO and Qre Q). Set g; = (h,G)" and S| = T5; by construction, g; is
outer with ||gi1||, <1 and S; is singular inner.

Construct in a similar way functions g;, S; for the sequences A4;, i = 2,3,4, and
define the products g = H?:l giand S = H?:l S;. Of course g is outer in H*, and S
is singular inner. So, whenever 1’ € A, there exists ke {1,2, 3,4} such that /'€ Ay, and
hence

|B;(A) =gk (4)Sk(4)

=g(2)S(A)]- (4.5)

Therefore, the positive harmonic function /= —loglgS| satisfies h(1)> —
log |B,(4)]. The proof for N* goes along the same lines, except that singular inner
factors do not occur in (4.3), and so will not appear in (4.5) neither. [

5. The trace spaces

In this short section we prove the trace space characterization of free interpolation
given in Theorems 1.2 and 1.3.

In order to see that (b) in each theorem implies free interpolation it suffices to
observe that /* <ly+ =ly and use Remark 1.1.

For the proof of the converse, we will only consider the situation in the
Nevanlinna class, since the case of the Smirnov class is again obtained by removing
the singular part of the measure and the singular inner factors.

Assume that (a;), € N|A and that f e N is such that f(1) = a;, Ae A. Since f can be
written as f =f1/(S2/2), where fieH®”, ||fill, <1, S, is singular inner with
associated singular measure g, and f> € H* is an outer function with || /|| , <1, we
can define the positive finite measure u = log(1/|f3]) do + dug which obviously
satisfies P[u](4)=log"|a;|, AeA.
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Conversely, suppose that (a;), is such that there is a positive finite measure u with
Plu](2) =log*|a;|. The Radon-Nikodym decomposition of p is given by du = w do +
dug, where we L' (0D) is positive and g is a positive finite singular measure. Let S be
the singular inner function associated with ug, and let /* be the function defined by

By definition, f is outer in N* and F =f/SeN. Clearly, log" |a;|<log |F(4)|, thus
|a;|<|F(Z)]. Since N|A is ideal by assumption, there exists fo€N interpolating
(a;);- O

6. Harmonic majorants and measures with bounded balayage

Let us start by proving that positive measures with bounded balayage are precisely
those which operate against positive harmonic functions. Recall that B(u)({) =

Jo P ) and

B = {,u positive Borel measures on D such that sup B(,u)({)gl}.
{edD

Proposition 6.1. Let p be a positive Borel measure on the disk. Then fD hdu is finite
for any positive harmonic function h on the disk if and only if there exists some ¢>0
such that u has balayage uniformly bounded by c. Furthermore, the relevant constants
are related.

sup B(u)(¢) = sup{/@h dp : heHar, (D), h(0) = 1}7

{edD

and for any positive harmonic function h,
= max / hdu.
neB

Proof. Let 4 = P[v], where v>0 is a measure on D. If u has balayage bounded by c,

| 1) dutz /6 | P due) v <ex(@D) = aifo).

Conversely, since z— P-({) is a harmonic function for any fixed {, [, P-({) du(z) is
pointwise defined. Pick a sequence ,, such that

lim [ P.(t) du(z) = sup / P.(¢) du(z),

n— oo D CE(?D



18 A. Hartmann et al. | Journal of Functional Analysis 217 (2004) 1-37

where the supremum on the right-hand side might a priori be infinite. Since the set
E = {heHar (D) : h(0) = 1} is uniformly bounded on compact sets in D, a normal
family argument shows that sup{ fD hdu:heE}<oo. Observe that the mapping
z—P.((,) is in E for every {,, neN. Hence sup, [, P-({,) du(z) < .

This proves that u has bounded balayage, and the equalities between constants
that we had announced. O

The next result is a refined version of Theorem 1.4 stated in the introduction.

Theorem 6.2. Let ¢ be a non-negative Borel function on the unit disk. Then there exists
a harmonic function h such that h(z) = ¢(z) for any zeD if and only if

M, = sup/ Qdu< . (6.1)
neBJD

Furthermore,
M, = inf{h(0) : heHar(D),h=¢}.

That (6.1) is necessary is clear from the above considerations. In order to prove
that it is sufficient, we will reduce ourselves to a discrete version of it. We will use the
dyadic squares introduced in (4.2). As in the previous section, choose a point z, in
each square, say

2(Onk) = zni = (1 —27") exp(2mk27™").

Observe that by Harnack’s inequality, there exists a universal constant K such
that: if z,z/ lie in the same Whitney square Q,; (as defined in (4.2)), then

K'Po(0) < P-(0) <KP(0), for any {edD.

Lemma 6.3. The function ¢ satisfies condition (6.1) if and only if there exists a
constant M,,' such that for any sequence of non-negative coefficients {c,} such that

sup Y eniP-, (O <1, (6.2)
(edD nk
then
Z cn,k sup (PSM(/)I- (63)
nk s

Furthermore, C~'M,<M,' < CM,, where C>1 is an absolute constant.

Proof of Lemma 6.3. Pick z; ; € O, such that ¢(z,,)>(supy,, ¢)/2 and define the

nk

measure u = vak ¢n k0 . Then, if {cni} satisfies (6.2),

B(w)(0) = / PO dp(z) = 3 epPe (<K cuiPan, (O <K.
nk nk
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So if ¢ satisfies (6.1),

chk sup (p<2chk(p Znk —2/(pd,u<2KM¢.

nk nk

The converse direction is easier, and left to the reader (it also follows from the proof
of the theorem, below). [

We now need a classical result in convex analysis. Recall that the convex hull of a
subset 4R is defined as

Conv(4 {Z oia; : a;€A, 0= O,Zoci = 1}.

If we write Ry 4 :={/lx:1>0,xeAd}, then the conical convex hull of A4 is
defined as

Cone(A4) = Conv(R; 4) = {Z oa;  a;€A, oc,)O}

i=1

When 4 is a finite set, the conical convex hull is equal to its closure: Cone(A4) =
Cone(A) (for this and other facts, see [HULL]). The key fact for us will be the
generalized form of the Minkowski-Farkas Lemma (see [HULL, Chapter III,
Theorem 4.3.4]) that we cite here only for finite 4. Let {-,-) stand for the standard
Euclidean scalar product in R?.

Theorem  6.4. Let  (a,h))eR! xR, 1<j<N, be such that X =
{xeR?: {aj,xy <bj}#0. Denote A = {(a;, b;), 1<j<N}cR? x R. Then the follow-
ing properties are equivalent for (v,r)eR? x R:

(a) For any xe X, {v,x) <r.
(b) (v,r)eCone(A).

We will use the following special case. For a vector ve R, the coordinates are
denoted by v*, 1<i<d. Also, [Ri denotes the set of points of RY with non-negative
coordinates.

Corollary 6.5. Given aje[Rd, I<j<N, let X, = {xe R : {aj,x) <1}, and suppose
that X #0. Then the following properties are equivalent for ve [R‘_’i.

(a) For any xeX,, {v,x><1.
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(b) There exist 0; 20,1 <j<N such that ZJJL oy =1 and for any i=1,...,d,

N
v'< Z oidt.
7

J=1

Proof. Let {¢;},,., be the canonical basis of R’ and consider
A ={(a;,1),1<j<N}U{(—e;,0),1<i<d}.

Then X, corresponds to the X in Theorem 6.4, from which we see that (a) implies
that there exist ¢;>0, ,>0, 1<j<N, 1<i<d, such that

N

d
= Z %;(aj, 1) Z (e, 0

j=1
When applied to each coordinate, this yields 1 = Z/Ail o; and
N N
=3 s
j= j=1

The converse implication is immediate. [

Proof of Theorem 6.2. Suppose that ¢ satisfies (6.1). For each non-negative integer
m, we define

aj = (Pan(eXp(U27m2ﬂ))) 0o<n<m for 0<]<2m -1,
‘ 0<k<21-1

d=>,2"and

d
X+ = {Cn,k} o<n<m ER+ :
0<k<2"-1

> kP, (exp(ij-272m)) <1, for 1</<2" 1
0<n<m
0<k<21-1
Obviously, X is not empty: for instance c¢pp = 1 and ¢, = 0 for n>1 gives a point
in X;. We claim that any {¢,;} € X, will satisfy (6.2) up to a constant. Indeed, for
any 0€e[0,2n), there is an index j<2" so that j-27"2n<0<(j+1)-27"2x,
therefore by Harnack’s inequality, for any z such that |z|<1 — 27",

P-(¢") = P, axp(i( j2- m2n—0y) (exp(if - 27"27)) < KP-(exp(ij - 27"21)).
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Therefore {K !¢, } satisfies (6.2), and by Lemma 6.3 and the hypothesis, ¢ satisfies

(6.3) with constant KM’ Corollary 6.5 then implies the existence of positive

2"—1

coefficients («");_,  with sum equal to KM, such that

2m—1

sup < Z o' P, (exp(ij - 27"2n)) = / P, dv",
Qn/ i oD

where v is the discrete measure on the circle given by the following combination of
Dirac masses:

om_1
m m
Ve = § % 5exp(ij<2*’”2n) .

7=0

Since the mass of v is uniformly bounded by KM,,’, we can take a weak™ limit v of
this sequence of measures, so that for any (n,k),

Onk oD

where h = P[v]. Harnack’s inequality now implies that there is an absolute
constant C; such that Cih(z) = ¢(z) for any zeD. This proves the theorem, with
the inequality

inf{(0) : heHar(D),h=¢} < C1KM,' <CC,KM,.

The constants C, K and C; only depend on the discretization we have chosen.
Picking a discretization with smaller ““squares’, we may make all three constants as
close to 1 as we wish. [

Now we can prove Corollary 1.5.

Proof of Corollary 1.5. Given a non-Blaschke sequence A, arguing as in [NPT] one
can show that there exists a function f'e H* (D) in the unit disk with | f(1)| <g, for
any A€ A if and only if A is the union of a Blaschke sequence and a sequence I' for
which there exists a positive harmonic function / in the unit disk with A(y) > — loge,
for all yeI'. Then the result follows from Theorem 1.4. [

We finish this section with the proof of Theorem 1.6.
Proof of Theorem 1.6. (a) = (d). Part (i) holds whenever ¢ admits a harmonic

majorant, be it quasi-bounded or not (see Proposition 1.7), while (ii) follows from
the dominated convergence theorem.
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(d) = (c). We proceed by contradiction. Suppose that there exist >0 and a
sequence of measures p, €3 such that

/ @du,=9o. (6.4)
{o=n}
Let iy = J{p=nyHy- Then

| 8@ do@) = (D) = ({021,

Since p, €8, their Carleson norms are uniformly bounded by some Cy>0. We
apply the direct part of [Gar81, Lemma 1.5.5, p. 32] to ¢; the lemma is stated for
harmonic functions, but harmonicity plays no role in the proof of the direct part. We
obtain

(D) = i, ({p=n}) <1 Cos{Mp=n}) <c1 CoCy i,

by (d)(i). So the sequence (B(i,)), tends to 0 in L'(0D) and subsequence must tend
to 0 almost everywhere, and applying (d)(ii) to that subsequence, we find a
contradiction with (6.4).

(c) = (b). We define a function  on R, by

V() =y,(t) =at+ b, for te[n,n+ 1],

where (a,) is an increasing sequence of positive numbers tending to infinity, to be
determined later, and (b,) is given recursively by by =0 and y,(n+ 1) =y, (n +
1). Observe that each , is defined on the whole real line (they give supporting
hyperplanes for the polygonal convex graph of /). We shall also use u™ = max(u, 0)
for ueR.

We prove that yo¢ admits a harmonic majorant using Theorem 1.4. Let ¢, =

®p=ny and &, = sup, ([, @, dw). If peB, then

/D eole) dute) = 3 /{Mw}wnwpn(z) du(z)

/ W7 o0u(2) — ot (2)] du(2)
n=0

- / Vooo(2) du(z) / Wi 0u(2) — W o (2)] du(z)
D n=1

<ao/D<p< / — ) (u(2) — 1) dp(z)

< apéo + § — dp—1 Sn

n=1
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Since lim, ¢, = 0, we can choose an increasing sequence (a,) such that lim, a, = oo,
but > - (@ — ay-1)e,< 00, and we are done.

(b) = (a). First notice that i can be replaced by a function y <i with the same
properties as Yy and the additional explicit description:

W (t) = Y,(t) = apt + b,>a,'t for LE Vs Vnit)s

where a,>a),>0 for n>1, yy =0 and (y,),>, is an increasing sequence of positive
numbers tending to infinity fast enough so that ), 1/a;, < 0.

Define ¢, = 01, <g<y,,,}5 thus Yop =3, o0,

The following Lemma is due to Alexander Borichev.

Lemma 6.6. There exists an absolute constant C>0 such that whenever ¢=0 is
bounded and ¢ <h for some he Har,. (D), then there exists he Har (D) quasi-bounded
such that ¢ <h and

| Q) do() = h(0) < Ch(0).

In order to prove (a) let Ay be a harmonic majorant of Yep. Each ¢, is then
bounded and majorized by hy/a),, hence by applying the previous lemma we find s
quasi-bounded such that ¢, </, and £,(0)<Chy(0)/a,’. The series h = h,
converges in L'(dD), since /,>0 for all n and

h(0) =" hy(0)< Cho(0) Y~ 1/a, < o0,

and defines therefore a quasi-bounded harmonic majorant of ¢. [

Proof of Lemma 6.6. Set M :=max(||¢||.,,2#(0)). Let u denote the boundary
measure of A, i.e. the measure such that & = P[u]. We use the standard dyadic
decomposition of the circle given in (4.1).

Let Ey=0. For any n>1, let E, be the union of the dyadic intervals
L, <OD\J,., E;such that

,u(ln.k) > MG(L1,k)~

Note that £, cannot contain two contiguous intervals such that 7,y U L, k11 = L—1 p,
because then I,_; < U,-, Ei, a contradiction. Therefore, if I, < E,, then

,U(In,k) < .u(ln—l,k’) < Ma(ln—lﬁk’) = 2MO-(II1J€) < 2ﬂ(ln,k)-

For any interval I, let [ be the interval of same center and triple length, and
let E£:=JI, where the union is taken over all the dyadic intervals included
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in E =, E, We write
di = CZMXEdU(C) + JoD\E du=dp + di,,

where C, >0 is to be chosen. This measure is absolutely continuous with respect to
arc length.

The function we are looking for is /i == P[fi]. Indeed, let ze D and suppose that
there exist a dyadic interval I « E, maximal among the dyadic intervals contained in
E, such that

1
/i PO do(0) > (6.5)

Then clearly h(z)=M>¢@(z). We claim that if z is such that (6.5) does not
hold for any maximal dyadic interval I < E, then /(z)>h(z), which will finish the
proof.

Under that assumption, since the level sets of the Poisson integral in (6.5) are arcs
of circles connecting the extremities of 7, where they make a fixed angle with 9D
depending on C,, we must have |z — {| > ¢3a(]) for any (e and any maximal dyadic
subinterval I of E, so that all the values P.({) for (el are comparable, say to the
value at its center {;. Therefore for any such 7,

[ 0o ari) [auo<aar) [ dsw<2d [ up.q o

2
2

-2 [ P ano.

Since ¢;3 is an increasing function of C,, and therefore ¢4>1 a decreasing function
of Cy, we may choose a value of C; > 1 large enough so that C; >2¢3, and therefore,
since E is the union of its maximal dyadic subintervals,

E

/ P.(0) dii(0)> /E P-(0) di(0) > /E P(0) du(0).

By construction, [y, P-(0) di(() = [opz P-(0) dp((), and we are done. [

7. Weaker conditions for the existence of harmonic majorants

In this section, we state first a sufficient condition implied by a result of Borichev
on a similar problem. On the other hand, we also prove the necessary condition of
Proposition 1.8 and show that it is not sufficient.
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Theorem 1.7 (Borichev et al. [BNT]). Given a collection of non-negative data
{@ui} =Ry, there exists a finite positive measure v on 0D such that

V(In k)
— =
0( ) (pn,k

~N

nk

if and only if

S =:sup Z ®uge0(Inie) * {Ink}npyea i a disjoint family » < oo.
(nk)eA

(7.1)

This is an analogue of the discretized version of Theorem 1.2(d), (as in Lemma 6.3)
obtained by considering only measures of type (y = >, x)c4 0(Ink)J:,., and by
replacing the Poisson kernel P. by the “square” kernels

. . 1 .
Ke(e) = K () = s (&),
Here I. denote the intervals defined in (1.2) and yj stands again for the characteristic
function of E.

The similarity of Theorem 1.2 with this result leads us to an:

Open Question. Is condition (d) in Theorem 1.2 still sufficient if we restrict it to
{c,} such that for any 1eA, ¢; =0 or (1 —|4])?

Theorem 7.1 together with the estimate K, <P, provide a sufficient (but not
necessary) condition for domination by true harmonic functions, which is clearly less
restrictive than requiring that M@ e L'(0D), but easier to check in concrete examples
than the characterizing condition of Theorem 1.4.

Corollary 7.2. Any positive function ¢ such that ¢, , = supg,, ¢ satisfies (7.1) admits

a harmonic majorant. On the other hand, the positive harmonic function zv+ P_(1) does
not satisfy (7.1) for certain choices of A.

Proof. It is well known and easy to see that there exists a constant ¢ such that
P.=cK;, for any ze 0, (the constant ¢ depends on the aperture « of the Stolz
angle). Therefore, for any ze O,

<

PRE)ze [ K @Oz s o~ csup g,
oD O-(In,k) ’ Ok

which proves that P[(1/c¢)v] is the harmonic majorant we are looking for.

To see that the condition is not necessary, consider any 4 <{(n, 1) : neN}. Then
the intervals I, are all disjoint; however, P, (1) ~2"~g(I,;)"", so that condition
(7.1) will fail (the sum is comparable to #A4). [
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In the same way as in Corollaries 1.11, 7.2 and Proposition 1.8 imply the following
result. For Q = O, write I(Q) = I, (the radial projection of the square to an arc
of the circle).

Corollary 7.3. Assume that A is contained in a union A of Whitney squares Q of center

z(Q) and that
l}< o0,

where the supremum is taken over all A'< A such that {I(Q), Qe A’} is a disjoint
family, then A is interpolating for the Nevanlinna class.

Sup{ Y (-0 sup_ log |B;(4)

QGA/ LrEAN

We move next to the proof of the necessary condition in terms of the Hardy—
Littlewood maximal function.

Proof of Proposition 1.8. (a) The problem can be localized, so we may work on the
upper half plane, C; = {x+iy:y>0}, with I, = (x—y,x+y), restricting
ourselves to positive harmonic functions which are Poisson integrals of positive
measures with finite mass. Here the Poisson kernel is given by

1 y
Panls) = i
For convenience we shall write here | E| for the Lebesgue measure of a measurable set
E cR. Also, we only need to look at boundary points in a fixed bounded interval, say
—-I<x<I.

For any t>0, let E; = {se[~1,1] : ¢ (s)>t}. For any se E,, there exists z = z(s)
and J = J(s) > I such that

0(2) / 1), e o(2)|L>1J]. (72)

By Vitali’s covering lemma, there exist an absolute constant ¢; € (0, 1) and a disjoint
family of intervals J; == J(s;), | /<N, such that 3 |J;| > c¢1[Ef|.

Write z; = z(s;) =: x; + iy;. Note that since the point z; is contained in the “tent”
over I, (therefore in the tent over J;) the points z; are separated in the hyperbolic metric.

Now define new points z;’ in the following way: let y;' == |J;|/2 = y;|J;|/|L,| =y,
and z;/ == x; + iy//. Note that |ijlz;|>\‘]j|/2.

We claim that /(z;’) >, where & is a harmonic majorant of ¢. Indeed, writing
h = Plu],

1 1 1 1 ;i
h(z/ :—/7dul>—/7dut =L h(z;
)=y R1+(m)2 O R1+<m)2 =)
yi! Vi

and, by (7.2), h(z)) = ¢(z;) > || /|| = tv}/y;-
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Therefore, since Mhe L! (R),

C1l 1 C/
SIEISS D WIS Yo L <{Mh> | <=
J J

(b) Similarly. O

We now give two examples showing that the necessary condition of Proposition
1.8 is strictly stronger than that of Proposition 1.7 but still not sufficient.

Proposition 7.4. (a) There are functions ¢ such that " e L} (0D), but that do not
admit a harmonic majorant.

(b) There are functions ¢ such that Mpe Ll (D), but ¢ ¢ L} (0D).

1
w
Proof. The proof rests on the following family of examples. Note that it is easy to
turn those examples into examples of sequences which are (or are not) interpolating
for the Nevanlinna class.

Again we will work on C.. Our functions ¢ will vanish everywhere on the upper
half plane, except on the sequence Ay = xx + iyx, where x; = k~* and y; = k”. To
ensure that y;<(xxy; — x¢)° we take f=2(x+1). With this choice, it can be
deduced from Proposition 8.2 (or the remark before Lemma 8.4), that a necessary
and sufficient condition for the existence of a harmonic majorant is that MpeL',
that is,

> plh)ye< . (7.3)
X
We note that
;) :
Xr = .
K 1 + max(1, 2=l

Yk

Henceforth we only study data {¢,} = {¢(4)} which are increasing sequences of
positive numbers tending to infinity. We also assume that {(¢ vk + @1 Ve+1)/ (Xk —
Xit+1)}, forms an increasing sequence. Let ko(f) == min{k : t<¢,}. The necessary
condition arising from the fact that Mg e L! (R) reads

> we=ky T)<= vi>o0. (7.4)
k?k{]([) 4

This condition will be assumed for both examples.
Now, for k> ko(t), define Ji = {x : @y} (x) >t} >~ (X — yipr/t, Xk + yepy /1), and
let ki (2) :== min{k : Jy nJyy1 #0}. Then,

Pk _ - Pr
U = (07Xk1<r> R0 ;m) = (0’161“(0 +h (1) %)
k=k (1)
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and

. H ~ 0 - qDkl(l‘) % ﬂN —a g ﬂ
{x 0" (x) >} =k (1) + k7 (1) += > ek (1) +~ >

In order to prove (a), choose ¢, == gk"~!. Since t:sko(,)ko(t)ﬁfl, condition (7.4)
becomes that (g), remains bounded above, while the necessary and sufficient

condition (see (7.3)) is c
k

—< 0
— k
With ¢ == (log k)™, this condition fails, so that ¢ admits no harmonic majorant.
However, ko(t)~(tlog [)1/(1371). Since xp — xps1 ~k !, then 1/k1(t)“+1:skl<,)/

(thy (1)), thus ki (f) ~ (l/‘£;ﬂ<t>)1/°‘7 and ki (¢) ~(¢log t)l/“.
Therefore, Eq. (7.5) becomes

k(1)
1 2 1 2 log k1 (¢)
o Al z —log| ——=<
H{x @™ (x)>1}] tlogl t zk: klogk zlogz+t o8 log ko(?)
S Lec
Stlogt 't ot

and this choice of ¢ does satisfy the necessary condition given in Proposition 1.8.

To prove the second statement in the Lemma, choose ¢ := 1. With similar but
easier calculations one sees that ko(f)~¢"/#~1 and k(t)~¢"/*. Therefore (7.5)
becomes

ki (f)*l

1 11 2 ki(1)\ logt
cof (x)> 1| ~= ~—+—lo (1 ):,
rso" W=t 30 3 ()=

so the weak L' condition fails for ¢, even though ¢ satisfies the necessary condition
in Proposition 1.7. [

8. Proofs of the geometric conditions
Proof of Corollary 1.11. Since
Lic{{edD : Mo, (()=log|B;()| "'}, ie,

to prove (a) and (b) it suffices to apply condition (a) of Corollary 1.10. Statement (c)
follows from the next Lemma applied to ¢ ,.
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Lemma 8.1. Let ¢ : D - Ry satisfy Y, (1 — |A|)o(A) < 0. Then ¢ admits a quasi-
bounded harmonic majorant.

Proof. Letu =), ¢(1)y;,. By assumption ue L'(0D) and obviously M ¢ <u, hence
the result follows from Corollary 1.10(b) and Theorem 1.3. [

Parts (b) and (c) also follow directly from Theorem 1.2(d), by a simple argument
based on the /!, /* duality. O

Proof of Proposition 1.12. It is enough to consider the case where A is contained in only
one Stolz angle. Indeed, if A = |J}_, A; with A;cT,, I =1,...,n, and {;#(;, then

lm [By(s) =1, j#

z-{zely;

so that log |B;(4)|™" behaves asymptotically like log \BAI,\{A}(/I)FI in I';, (here AeA;).
Also, we can assume that the sequence is radial (this means that we replace the initial
sequence by one which is in a uniform pseudo-hyperbolic neighborhood of the initial one;
by Harnack’s inequality such a perturbation does not change substantially the behavior of
positive harmonic functions).

According to Corollary 1.11 it is enough to prove the sufficiency of the conditions.
Let us first show that condition (1.3) implies interpolation in N*. In order to
construct a function we L!(9D) meeting the requirement of Theorem 1.3(c) assume
that A ={4,},<[0,1) is arranged in increasing order and set &, =(l—
7)) log | B;, (7,)| ", Clearly there exists a decreasing sequence (&n), with &, <e,
neN, and lim, &, = 0. Now, if I, = I, , set J,, = L,\Is1, B,, = &1 — &ny1, and

w(©) = ¥ 1,0, ceo.

Then we L'(9D), and

B B 1
PW](Zn) = /1 Um0 J(Jkn 1, (¢ (C)RZT};)m/Jk da(0)

k k>n

:Zk;n ﬁk _ &n > E;
1_‘)”n| I_Mnl 1_|’1|

= log |B;, (Z)| .

This and Theorem 1.3 prove the assertion.
The proof for the Nevanlinna class is even simpler. Set du, = J;, the Dirac mass
on 1€0D. From (1.4) we get

log |B;, (2n)] ' <

and we finish by applying Theorem 1.2. [
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Proof of Proposition 1.13. By Corollary 1.11(c), we already know that (1.5) is a
sufficient condition for A to be interpolating for N*. Conversely, suppose that A is
interpolating for N, that is, ¢ , admits a harmonic majorant. Since p, has bounded
balayage, then [, ¢, du, < oo, which is exactly (1.5). O

Proof of Proposition 1.14. It is obvious that (a) implies (b). If we assume (c), p, will
act against any positive harmonic function. Suppose FeN. As seen in Section 5,
there exists a positive harmonic function / so that log" |F|<h. Thus, taking u,
as in (1.6),

(1 = A tog” 1F(2) = [ tog” IF(2)| duai) < [ (2) diua(2

ieA

Finally, to prove that (b) implies (c), suppose that (¢) does not hold, i.e. g4 :=
>,(I —|A])P; is unbounded. Since g, is lower semi-continuous, this implies that
g1¢L*(0D). Since L* is the dual of L', there exists feL!'(0D) such that
Jop f94 = co. Taking an outer function Fe Nt with log |F| = P[f] we see that

S = [2)) log |F(2)] = $(1 - [4) /a RIS /d fua =,

reA reA
so (b) does not hold. O

Proof of Naftalevi¢’s theorem. Assume that A is contained in a finite union of Stolz
angles and (1.4) holds. By Proposition 1.12, A€Int N, hence the trace N|A is given
by the majorization condition of Theorem 1.2(b). Taking as majorizing function the
Poisson integral of the sum of the Dirac masses at the vertices, we see that N|A D /,.

Conversely, if N|A = In, then the trace is ideal, so A is free interpolating and by
Corollary 1.11(b) (1.4) holds. According to Theorem 1.2(b) and the definition of I\,
the function

=Tt ifz=eda
(p(z)_{o if z¢ A

admits a harmonic majorant 4. Let A(z) = P[p](z) and consider the intervals

I!={{edD :zel',()}.

There exist constants & and C, such that (1) > C, for any z such that &(z)> (1 — |z[)~"'
If A is not contained in a finite union of Stolz angles, then there is an accumulation
point {€ID of A’ = A such that A’ & I'4({) for any . Pick ff>o; then for X' e A, I}, ${
and we can construct an infinite subsequence A” = A’ such that the Privalov shadows
{I}}, <4 are disjoint. This prevents / from being the Poisson integral of a finite

positive measure. [
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We now give an example of a concrete separation condition implying that u, has
bounded balayage.

Proposition 8.2. Assume that A =D is contained in the union of a family A of Whitney
squares such that

|Arg(z(0)) — Arg(z(L))|>g7' (1~ 2(Q)])

forany Q,Le A, Q+# L, where z(Q) is the center of Q and g is a positive function, with
g(x)/x decreasing and
[
0 X2

Then Aelnt N if and only if Aelnt N*, and if and only if

PBIEEE2)]) sup_ log |B;(2)] ™' < 0.

OecA AEAN

Note that this covers some cases where i, does not have bounded balayage, even
though another measure associated with the sequence will (see the proof).

In order to prove Proposition 8.2 consider the “Carleson window” Q(e”,r)
centered at ¢, of side r:

Q(ei(-)’r) = {ZG[D 11— |Z|<7, |Arg(z) - 0|<r}

The next result is a Carleson-type condition which implies boundedness of the
balayage.

Lemma 8.3. Suppose that u(Q(e",r))<g(r), where g is a non-decreasing function on
[0,2) with

/de<oo.
0

2
Then w is a measure with bounded balayage.

A discrete version of this condition is

> 2" sup u(Q(e”,27") < o,

n 0eR

as can be checked by writing a Riemann sum.

Proof. For any >0, let Q,(0) == {zeD : P.(¢"”)>1}. This is a disk, tangent to the
unit circle at the point e, of radius 1/(z + 1). Therefore Q,(0) = Q(e, C/t) for t>1,
say, with C>0 an absolute constant.
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Using the distribution function p(Q,(6)) and the fact that the measure u is
bounded, we get the following estimate for the balayée of u:

AEWWM®=AmM@@M%Q+%mM@@MZ
<cit [ utee ciydr
<C1+/lxg(C/Z)dt<C1+C/01%dx<oo. O

We will now compare measures satisfying the condition in Lemma 8.3, measures
with bounded balayage and Carleson measures. Each set is included in the next, and
the examples will show that both inclusions are strict.

Example 1. Let o = {a,} be a sequence of non-negative reals. Let y, be the measure
concentrated on the circles centered at the origin of radius 1 — 27" given in dual
terms by

2n
Aﬂm%@F w [ £ =27 do.
n=>1

One can check that p, is a Carleson measure if and only if it has bounded balayage
and this happens if and only if )", a,< co. Also pu, satisfies the condition in Lemma
8.3 if and only if > >, ., o < o0.

Example 2. Let m be a non-negative-valued function on the interval [0, 1). Let p,, be
the measure concentrated on the ray from the origin to 1 given by

/fdw /f

One can check that y,, is a Carleson measure if and only if there exists a constant
K such that

1
/ m(x) dx<Kd, Vo>0
1-5
and y,, is a measure with bounded balayage if and only if it satisfies the condition in
Lemma 8.3, which happens if and only if
1

m(x)
1—x

dx< 0.
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In particular, if we take oy = k77, with 1<y<2, y,, is a measure with bounded
balayage but it does not satisfy the condition in Lemma 8.3; if we take m(x) = 1, y,,
is a Carleson measure, but it does not have bounded balayage.

In view of Proposition 1.13, among other things, it is interesting to understand for
which separated sequences A the corresponding measure p, has bounded balayage.
It is easy to see that this is the case when |4/|A] — /|/||=(1 —|A)"/?, ¥ #4, but
more is true.

Lemma 8.4. Suppose that g is a positive valued function such that g(x)/x is increasing
and

/Ode<oo.

x2

Let g~" stand for the inverse function of g. Then, if we have a sequence A<D such that

g7 (1 - 4l) WA £,

‘i _r
Ay
the measure 1, has bounded balayage.

Examples of such functions ¢ are given by x(log ;1()717"', with ¢>0. In that case,

g~ (1) ~t(log %)H‘g.
On the other hand, we can see that for the above lemma to hold, we must have
g~'(t)>t. More precisely, take the sequence in the upper half-plane given by

Ik =e K4 ik ek,

Then, Re Ax — Re Ay ~e*, so the sequence {/r} verifies the separation condition
, but

Re lk 2 1
> (Im i) P;, (0) ~ Z(lm ik) = z}: L=

k k k

in Lemma 8.4 with g~!(x) ~x(log 1)

Proof of Lemma 8.4. Let 0€]0,2n). By hypothesis, there is at most one A€ A such
that

Oeld; = (Arg(2) — g~ (1 —|A]), Arg(2) + 197" (1 — |A])).

Let o/ =3, ,(1 = |Z[)ox. Then

[ P diae) = (1= 1A0PAE) + [ Pl did ()< C o+ [ P il (2),
D D

D
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By the proof of Lemma 8.3 for this specific value of 0, we see that it will be enough to
check that for some absolute constants Cj, C,, one has

#/(Q(eievr))<c1g(C2r), for 0<r<2.
Consider X, = {X'#1: 2 €Q(e",r)}. For any X'€X, we have
o) =g (1 —|X])<2]0 — Arg(1)|<2r,

so the intervals Jy are all contained in [0 — 3r,0+ 3r]. Since they are disjoint,

Dores, 0(Ji)<6r.
Using that g(x)/x is increasing we have

L 11| _g(supyes, o(Jx) _g(2r)

su < < .
).’Eg,. U(J)/) Supzlezy O_(J/V) 2r
Finally,
. 1= X )
H(QE", )= 1—|%|< sup - > U(Jﬂ.')<g( ) 6 — 4g(2r). O
A’le ;‘/EZ/' O-(J/:/) /VGZ,- 2}"

Proof of Proposition 8.2. For each Whitney square Q in 4, let A(Q) be the point in
AN Q such that

log \BA(Q)(A(Q))FI = max{log |Bi(/1)|71 :AeAnQ}.

Let X be the sequence formed by {1(Q) : Qe 4}. By Lemma 8.4 the corresponding
measure us has bounded balayage. Therefore, there exists a positive harmonic

function / with A(A(Q))>=log |B;~<Q)()L(Q))|_1 if and only if

S(1 = [AQ)) log | Bio)(AM(Q))] ' < 0.

According to condition (c¢) in Theorem 1.2 one deduces that AeInt N if and only if
the last sum converges. Furthermore, when this is the case, the function / can always
be taken quasi-bounded (see Lemma 8.1), so that interpolation can actually be
performed in the Smirnov class. [

9. Hardy—Orlicz classes

Let ¢ : R—[0, c0) be a convex, non-decreasing function satisfying

() lim,, o ¢(2)/t = o0
(ii) A,-condition: ¢(t+2)<M¢p(t) + K, t=1t for some constants M,K>0 and
theR.
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Such a function is called strongly convex (see [RosRov]), and one can associate with
it the corresponding Hardy—Orlicz class

Ho={rens [ ottog 70D dott)< o )

where f({) is the non-tangential boundary value of /" at {€dD, which exists almost
everywhere. In [Har99], the following result was proved.

Theorem. Let ¢ be a strongly convex function satisfying (1), (ii) and the V,-condition:
20()<¢(t+0), 120

where o.>0 is a suitable constant and t e R. Then A<D is free interpolating for Hy if
and only if A is a Carleson sequence, and in this case

HolA = {a = (@), : lal, = (1= |2)g(log|a;]) < 0 }

reA

The conditions on ¢ imply that there exist p, g€ (0, o0 ) such that H? c’Hy < H?. In
particular, the V>-condition implies the inclusion H” c’Hy for some p>0. This V>-
condition has a strong topological impact on the spaces. In fact, it guarantees that
metric bounded sets are also bounded in the topology of the space (and so the usual
functional analysis tools still apply in this situation; see [Har99] for more on this and
for further references). It was not clear whether this was only a technical problem or
if there existed a critical growth for ¢ (below exponential growth ¢(7) = e
corresponding to H? spaces) giving a breakpoint in the behavior of interpolating
sequences for H.

We can now affirm that this behavior in fact changes between exponential and
polynomial growth. Let ¢ be a strongly convex function with associated Hardy—
Orlicz space ‘Hy. Assume moreover that ¢ satisfies

pla+b)<c(d(a) + (b)), ©.1)

for some fixed constant ¢>1 and for all a, b>¢,. The standard example in this setting
is ¢,(t) = # for p>1. We have the following result.

Theorem 9.1. Let ¢ : R— [0, c0) be a strongly convex function such that (9.1) holds. If
there exists a positive weight we L'(0D) such that powe L' (OD) and ¢ , < P[w], then
Aelnt Hy.

Proof. Note first that (9.1) implies that H, is an algebra contained in N, hence it is
sufficient to interpolate bounded sequences (see Remark 1.1). As in Section 3, we set

9(z) = /d =200 do(0).

p{—z
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The reasoning carried out in Section 3 leads to an interpolating function of the form

fH exp(g), with fe H*, and H = (2 +g)2 outer in H? for all p<1 (note that the
measure u defining g here is absolutely continuous, in fact u = w do). Also, H? ='Hy
for any p>0 by our conditions on ¢. By construction, [ ¢(loglexpg|) = [ ¢pow< o0
so that exp(g) eHg. Since H, is an algebra, we deduce that fH exp(g)eHy. O

Example 9.2. We give an example of an interpolating sequence for Hy4 which is not
Carleson, thus justifying our claim that there is a breakpoint between Hardy—Orlicz
spaces verifying the V;-condition and those that do not.

Consider the functions ¢, and let 49 = {/,}, <D be a Carleson sequence verifying
I, I = 0, n#k, where I, = I, are the arcs defined in (1.2). Since Y, (1 — |4,]) < o0,
there exists a strictly increasing sequence of positive numbers (7,), such that >~ (1 —
|4n])y, < 00 and lim,,_, o, y, = co. Setting

w=> ",
n

we obtain [ ¢,ow =", (1 — 4]}, < o0 and we L' (dD) since p> 1. Associate with
Ay a second Carleson sequence A; = {4,'}, such that the pseudo-hyperbolic distance

. . . RV
between corresponding points satisfies [b;,(4,)] = e . Since y,— oo the elements
of the sequence A = Agud; are arbitrarily close and A cannot be a Carleson

sequence. By construction, log |B;(4)| ™" < P[w](A) (as before, we may possibly have
to multiply » with some constant ¢ to have that condition also in the points 4,’, but
this operation conserves the integrability condition), and therefore AeIntH.
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