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A CHARACTERIZATION OF THE LEADING COEFFICIENT
OF NEVANLINNA’S PARAMETRIZATION

ARTUR NICOLAU

1. Introduction

Let H be the Banach space of all bounded analytic functions in the open
unit disc D, with the norm Ilfll sup{If(z)l: z D}. Given two sequences
of points {z}, {w} in D, the classical Pick-Nevanlinna problem consists on
finding analytic functions f H satisfying Ilfll-< 1 and f(z)= wn, n
1, 2, We will denote it as follows:

(.) Find f H, Ilfll 1, f(z) w, n 1,2,

Pick and Nevanlinna found necessary and sufficient conditions in order that
such an analytic function exists. Let E be the set of all solutions of the
problem (.). Nevanlinna showed that if E has more than one element, there
exist analytic functions p, q, r, s in D such that

(1.1)

(1.2)

pq+q
E= f e H" f rq / s

e n(R),llqll < l

ps-qr=B

where B is the Blaschke product with zeros {z,,}. See [2, p. 165] for the proof.
Let us remark that there is no explicit formula for the coefficients p, q, r, s in
terms of the sequences {zn}, {wn}.
We will say that a Pick-Nevanlinna problem (.)with more than one

solution has the function s as leading coefficient if s is analytic in D and
there exist analytic functions p, q, r in D such that if E is the set of all
solutions of (.), the functions p, q, r, s verify (1.1) and (1.2).

in this note, fixed a Blaschke sequence {z.} in D, we get a characterization
of the functions that can appear as leading coefficients of Pick-Nevanlinna
problems ( ).
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In order to exclude trivial situations, we will not consider the Pick-
Nevanlinna problem with wn 0, n 1, 2, Observe that in this case, one
can take p -= B, s 1, q -= r -= 0. If h is a function defined in the unit circle
such that log Ih[ is integrable, let E(h) be the function defined by

1 fr eit + z
E(h)(z) exp

eit- z
log h( eit)l dt ), zD.

A point in the unit ball of a Banach space is called an exposed point of the
unit ball if there is a continuous real functional on the space that equals 1 at
the point but takes values less than 1 elsewhere in the unit ball. Our main
result is the following.

THEOREM. Let {zn} be a Blaschke sequence ofpoints of the unit disc and let
B be the Blaschke product with zeros {Zn}. Let s be an analytic function in D.
Then, the following are equivalent"

(i) s belongs to the Smimov class N+(D), s -1 is a non-extreme point of the

unit ball ofH and thefunction F(eit) (s(eit) + B(eit)E(Isl 2 1)/2(eit))-2
is an exposed point of the Hardy space H1.

(ii) There exists a sequence of complex numbers {w,,} such that the Pick-
Nevanlinna problem in (,) has the function s as leading coefficient.

The notions of extreme and exposed points are discussed in Section 2,
where we also introduce some results that are needed for the proof of the
theorem that is given in Section 3. Finally in Section 4, we deal with
Pick-Nevanlinna problems with a finite number of points.

If B is a finite Blaschke product with zeros Zl,..., zN, let MB be the
space of complex linear combinations of the functions {(1- -z)-l: n--
1, 2,..., N} and let CB be the complex multiples of B. The result for finite
Pick-Nevanlinna problems is the following.

COROLLARY 1. Let z l, zN be points in the unit disc and let B be the
Blaschke product with zeros z1,..., Zlv. Let s be an analytic function in D.
Then, the following are equivalent"

(i) s-1 is a non-extreme point of the unit ball ofH and s Ms + CB.
(ii) There exist complex numbers w1,..., Wv such that the Pick-Nevanlinna

problem in (.) has the function s as leading coefficient.

Let us observe that in this situation the result is more satisfactory because
no condition on exposed points is needed.

This paper is a part of my thesis. I am grateful to Juli Cuff, my advisor,
for his valuable help and his guidance, i also thank Donald Sarason for
helpful discussions.
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2. Exposed points in H

A point in the unit ball of a Banach space is called an extreme point of the
unit ball if it cannot be written as a proper convex combination of two points
of the unit ball. In [1, p. 484] it is shown that a function f H, IIfll < 1 is
an extreme point of the unit ball of H if and only if

log(1 -If(eit)l) dt oo.

Thus, an exposed point, as it has been defined before, must be an extreme
point. For 0 < p < 0% let Hp be the usual Hardy spaces of analytic functions
in D. Since the extreme points of the unit ball of H are the outer functions
of unit norm (see [1, p. 470]), the exposed points of H must be outer
functions. A function F H will be called an exposed point of H if
FIIFII-1 is an exposed point of the unit ball of H1.
A function in H is called rigid if no other functions, except for positive

multiples of it, have the same argument as it almost everywhere on 0D. For
instance, a function in H whose reciprocal also is in H1, is rigid. It is well
known that a function F H is exposed if and only if it is rigid. See
[4, p. 486].
The following result of J. Garnett connects the exposed points of H with

the Adamyan-Arov-Krein parametrization. See [2, p. 157 and p. 179] or
[4, p. 493].

THEOREM (J. GARNETT). Let F H1, IIFII-- 1, be an exposed point of
the unit ball ofH1. Then, the coset

K= - + h" h -1 + h <1
has more than one element and defining X H by

1 +X(z)
1 -X(z) 1 freireit +-zZ iF(eit)ldt, zD,

one has

F F(1 X)(1 go) H,,K IFI 1 -x " [lll(R) < 1
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Now, let us outline a result of D. Sarason that is needed in the proof of the
theorem. Let F H2, [[F[[2 1, be an outer function, and consider

1 f:re
u + z [F(eU)[2 dt z D,H(F)(z)

eit z

a
2F

b H(F) 1
H(F) + 1’ H(F) + 1"

One can check that F a(1 b) -1, b(0) 0 and [al 2 + [b[ 2 1 almost
everywhere on OD. Actually, one can prove that this decomposition is unique.
In [4], D. Sarason conjectured that F2e H is exposed if and only if
11a2(1 bei)-2[[ 1 for all ei OD and proved the following implication.

THEOREM (D. SARASON). Let F H2, [[FI[2 1 be an outer function such
that F2 is an exposedpoint ofH1. Then, for every innerfunction I, a2(1 b/)-2

is an exposed point ofH and [[a2(1 b/)-2111 1.

Finally, let us mention some well known properties of the coefficients of
Nevanlinna’s parametrization that are also needed in the proof of the
theorem. Given a Pick-Nevanlinna problem (.)with more than one solution,
the four functions p, q, r, s are not determined by conditions (1.1) and (1.2).
In fact, changing in (1.1) q by

where 3’ R and a D, and taking c e-i/2(1 -la[2)-1/2, one can get
other functions

(2.1)
q c(peia + q),
S c(rei/ot + s),

that also satisfy (1.1) and (1.2). Indeed, this is the extent of the arbitrariness
of these four functions (see [3, p. 299]). It is well known that these systems of
four functions have some common properties. In particular, if four analytic
functions p, q, r, s in D satisfy (1.1) and (1.2), they belong to the Smirnov
class N/(D) and they also satisfy

(2.2)
(2.3)

p=Bg, q=B?, Is[ 2-lql2= la.e. on0D,

max{lp(z) 1, Iq(z)l, Ir(z)l} <ls(z)l, z O.

Furthermore, s
for the proof.

-1 is an outer function of the unit ball of H. See [3, p. 491]
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3. Proof of the theorem

Let us begin with the following result.

LEMMA 1. Let s be the leading coefficient of the Pick-Nevanlinna problem in
(,). Then the following problem also has leading coefficient s:

(. Y Find f e H, II/lloo 1, f(z,,) E(1 -Isl-2)l/2(z,), n 1,2,...

Proof of Lemma 1.
Let B be the Blaschke product with zeros {zn}. There exist analytic

functions p, q, r in D satisfying ps- qr B and

(3.1) {fH’" fsolves (,)} {Pq +q H’, )r0/’-" II0ll < 1

First, let us assume wn 4:0 for n 1, 2, By (2.2), one has Isl 2 Iql 2 1
almost everywhere on OD. Therefore, there exists an inner function I such
that

(3.2) q IE(Isl 2 1)1/2.

It is clear that in order to prove Lemma 1 it is sufficient to show

(3.3) f H(R)" f solves ( ,)’} ( pq + q/I
( rI) +

If f is a solution of (.Y, If solves (.) and applying (3.1) there exists a
function q in the unit ball of H such that

pq + q
rq + s

Since s is outer, applying (3.2) and ps qr B, one gets

(3.4) If- IE(1 -Isl-Z)/z p + q q Bq
rp + s s s(rq + s)

Since w, 4:0 for n 1,2,..., I and B have no common zeros. Then, I
divides q in H and one has

rI(l --[-s
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for some function q)l of the unit ball of H. Therefore,

Pq)l -t- qfI
riol + S

and this gives one of the inclusions of (3.3). From ps qr B, it follows that

pq + q/I q Bq
rI, + s s(rI + s)

for each function q in the unit ball of H. Now, since q/Is solves (,)’, one
gets the other inclusion of (3.3).
Now, let us consider the general case where wn 0 for some n. Take

A {n: wn 0} and let B be the Blaschke product with zeros {zn: n A}
and B2 B/B1. Thus, f solves (,) if and only if f Blf where fl is a
solution of the following Pick-Nevanlinna problem:

w(*)a Find f H, Ilflloo < 1, f(zn) nl(Zn)
for n A.

Therefore, from (3.1), one gets

ptp/B + qfB
{f e/-r: f solves ( )1) ,’,o +

Now, the first part of the proof shows that s is the leading coefficient of the
Pick-Nevanlinna problem:

(*)2 Find f e H, [[fl[oo _< 1, f(z,) E(1 -[s[-2)l/2(Zn) for n A.

Therefore, there exist analytic functions p*, q*, r* in D such that

[ p* + q*
solves ( )2} { r*q +s

and p*s q’r* B2. Moreover q*/s E(1 -Is]-2)1/2. As in the first part
of the proof, one only has to show

(3.5) {fH’fsolves(*)’}= {(p*B1)q+q* }(r*Bl)p + s t H, I[[l -< 1

Let f be a solution of (,)’. Since f solves (,)2, there exists a function q in
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the unit ball of H such that

Using p*s q’r* B2, one has

q* B2P(3.6) f s s(r* + s)"

Since f(zn) (q*/s)(zn) E(1 -Isl-2)x/2(z) for n 1,2,..., from (3.6)
one gets q(zn) ---0 for n A. Therefore q Blq for some function ql of
the unit ball of H=. Then,

(P*B1) + q*
(r*B1)tPl + s

and this gives one of the inclusions of (3.5). The other one is an easy
consequence of the fact that q*/s solves (,)’ and (p*B)s q*(r*B) B.

Let us now go into the proof of the theorem.
(ii) = (i). Applying Lemma 1, one can assume w. E(1 Isl-2)l/2(Zn) for

n 1, 2, Since s is the leading coefficient of (,), there exist analytic
functions p, q, r in D such that ps qr B and

+q
{fH:fsolves(,)} rq+s

Applying (2.2) and using q 0, it is easy to check that s-1 is a non-extreme
point of the unit ball of H. So, one only has to prove that the function

F(eit) (s(eit) q-B(eit)E(lsl2- 1)l/2(eit))
-2

is an exposed point of H1.

Claim 1. (s + r)-2 is an exposed point of H1.
Assume the claim holds and let us finish the proof. Applying (2.2), one gets

an inner function I such that

q IE(Isl 2 1)1/2.
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Since q/s IE(1 -Is[-2)1/2 solves (,), one gets I 1. By (2.2),

r B BE(Isl 2 1)
1/2

a.e.(dm) on T.

Therefore, the claim gives that the function

s + BE(Isl 1)
1/2 -2

is an exposed point ofH and this finishes the proof of (ii) (i).

Proof of Claim 1. (1) Assume r(0) 0. Using ps qr B, one gets

p+q pq+q B(1 q)
r + s rp + s (r + s)(r# + s)"

Therefore

(3.7) P + q pq + q B 1 q
r+s rq+s (r+s)(rq+s) a.e.(dm) onT.

Now, let us consider the coset

K= {f: f H solves (, )} { pC#rp +
q : H, [[[[ <_ 1}

and choose 3’ -Arg(s(0)-2) From (3.7), using r(0) 0, it follows that

(3.8) Refo2reivP + q
(eit)B(eit) dt sup{Ref:%ivg(eit) dt. g K)r+s

Now, following [2, p. 160], one can deduce that there exists a unique function
F HI, IIFII1 1, such that

(3.9) p+qB= F
r + s IF a.e.(dm) on aD.

Therefore F is an exposed point of H1. On the other hand, A. Stray ([5, p.
491]) has observed that the function (s + r)-2 is in H1. Using (2.2), one gets

-1
F---(s + +

and this gives the claim in the case r(0) 0.
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(2) Assume r(0) 0. From (2.3), one has Ir(z)l < Is(z)l, z D. Now,
taking a =-(r/s)(O) and 3’ 0 in (2.1), one gets analytic functions
p,,, q,,, r,, s, in D such that

{fHOO. fsolves(,)} ( p,,tp + q,
r,q + s q H’ I111 < 1

and ra(O) 0, pasa qara B.
The first case of the proof shows that the function (s, + ra)-2 is an

exposed point of H Now, formulas (2.1) give

(s + r) -2 c-((1 ,)s + (1 tZ)rl) -2

---c _2(1- )-2(Sl + 1-a )-21 rl

and applying Sarason’s result cited in section 2, one gets that (s + r)-2 is an
exposed point of H and this finishes the proof of the claim, ra

(i) =, (ii).
Consider F F[[F[[-1. Since s N+(D) and F H is outer, the func-

tion B(eit)E(Isl 2 1)1/2(eit) has an analytic extension to D that belongs to
the Smirnov class N/(D). An easy computation gives

F B + E(Isl 2 1)
1/2

(3.10) [FI[ BE(Is[ 2 1)
1’/2 +sB a.e.(dm) on OD,

and then

(3.11)
f E(Isl 2 1)

1/2
B

a.e.(dm) on OD.

The right hand term in (3.11) has a bounded analytic extension to D because
the denominator is in the Smirnov class and

BE(Isl2_ 1)
i/2

Is(ei’)l21 + s (eit)

>_ls(ei’)12(1-(1 1/2) 11
>"Is(eit)

a.e(dm) eit OD.
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From (3.11) it follows that the function Fl(eit)B(eit)/IFl(eit)l has a bounded
analytic extension to D, that we will still call FIB/IFll. Moreover, since s is
outer, (3.11) also gives

F1 B(zn) E(1 --tsl-2)1/2(IFI 1,2,

Now, take wn E(1- Isl-2)112(z,,), n 1,2,... and consider the Pick-
Nevanlinna problem in (,). Since E(1 -[sI-2)1/2 is a non-extreme point of
the unit ball of H that solves (,), the problem (,) has more than one
solution. Actually, the function

E(1 -Isl-2)1/2 + BE(1 (1

also solves (,). Now, let us show that s is a leading coefficient of (,).

Claim 2. Let q be a function of the unit ball of H=. Then, the function

B( eit)s( eit)q( eit) + E(Isl 1)1/2( eit)
B( e")E(Isl 2 1)x/Z(e")q(e") + s(

has an analytic extension to D that solves (,).

Proof of Claim 2. Applying (3.10), one gets that Bg has an analytic
extension to D belonging to the Smirnov class. Also,

Bls E(lsl 1)I/ZBE(Isl 2 1)
’/2

B a.e.(am) on 3D.

Now, it is easy to check that for each function q of the unit ball of H=,

Bgq + E(Isl 2 1)
1/2

E(Isl 2 1) Bq

BE(Isl2- 1)1/2q0 + S s(Be(Isl
a.e. on OD

and, since s is outer,

B,< + E(Isl2- 1)
1/2

BE(Isl 2 1)
x/2 (z.) E(1 -Isl-) n 1,2,
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Moreover,

Bq + E([sl- 1)
’/

BE([s]2 1)
1/2
q+s

N+(D)

because the denominator is an outer function. Now

B( eit)s( eit)q( eit) + E(Isl2 1)1/2( eit)

B(eit)E(lsl 2 1)/2(eit)cp( eit) + s(eit)
< 1 a.e.(dm)eit - OD

gives Claim 2. ra

Let us continue the proof of the theorem. Since F is an exposed point of
HI, the result of J. Garnett cited in Section 2, gives

{fH:fsolves(,)} B + Bh" h B + Bh < 1

(3.12) F1=B 11 +h’h H,
i-l + h _<1

F F1(1 X)(1 q) }B
IFll 1 Xo

q H’ I[olL _< 1

where

1 + X(z) 1 f:rre
it + Z ]Fl(eU)ldt"1 X(z) - eit Z

Taking

P BF11/2 F1 X F 1 BF/2[FIIBF/2( 1 X)
ql I[BF/2(1 X)

-X
(1 X) Ft/z

S
F/(1 X)

one can check

(3.13) {f e H: f solves ( * )} ( PlPrlq +"+" slql p e H, I111oo < 1}
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and

(3.14) PlSl qlr2 B, rl(0) 0.

Now, since

IFI 1/Isl 2__
1]1 + BE(Isl 1)1/2/s,

Re
1 BE([sl 2 1)/2/ )1 + BE(Isl E 1)1/2/8

__
[1 + BE(Isl 1)1/218

a.e.(dm) on OD,

one gets

(3.15) ]IFIII=Re(1-BE([s[2-1)I/2(O)/s(O))1 + BE(Isl- 1)/(0)/s(0)
1 [BE(I 12 1)1/(0)/S(0)
I1 + BE(Isl 1)1/2(0)/S(0)

Therefore, applying (3.15),

(3.16)

[Sl(O) 12 FI(O)
-a IF(O)l-llFlll Is(O)I2 -[BE(Isl 1)1/(0) I.

Now, looking at (2.1) it is natural to consider

BE(Is[ 2 1) (o).

Since a D, Claim 2 and (3.13) show that there exists a function q in the
unit ball of H such that

(3.17)
Bg + E(Isl 2 1)

1/2

BE(Isl2- 1)1/2a + S

Plq + ql

rltP + S
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Applying (2.2), from (3.17) one gets

1 -Ii2 1 -I12(3.18)
12 12 a.e.(dm) on OD.

s + BE(Is[2- 1)l/a [rlq + S1

Now, since s + BE(Is[ 2

gives
1)l/a is an outer function and rx(0)--0, (3.18)

Ig(1 Il)(o)l
IS(0) 12(1 --[BE(Is[ 2 1)1/2(0)/s(0)12) Is1(0) 12

Thus, (3.16) shows that IE(1 -112)(0)1-- 1 and therefore -= 0. So, (3.17)
and (3.18) give

q__A.1 a.e.(dm) on 0D(3.19)
Bga + E([sl 2 1)

1/2

BE(Isl 2 1)1/2a+S Sl

and

]2
(3.20)

1 -la 1
a.e.(dm) on OD.

IS + BE(Is[2- 1)1/20[2 [8112

s + BE{Isl2Since
such that

1)
1/2
a and s are outer functions, there exists ei 0D

1 -I1 e -i’

(s( z) + BE(Is[ 2 1)1/2(
2

z) (z) zD,

that is to say,

(3.21) s( BE(Is]2+ ) (z)a
Sl(Z) e -i//2

1"1/2"
(1 -I1)1/

zD.
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Now, (3.19) and (3.21) give

ql
ql ""Sl

e-iy/2

(1 [0[2)1/2
(Bot + E([$[ 2 a.e.(dm) on OD

and applying (2.2),

(3.22)

rl Bql
(1-lalZ)1/z sK + BE(lsl 1) a.e.(dm) on OD.

Since/91, ql, r, s are the coefficients of a parametrization of the solutions of
(.), from formulas (2.1) it follows that the function

ei3,/2

I, 1
(Sl- rote-i)

(1

(1 -I12)
s + nE(Isl 2

(1 -I12) (s + BE(Is 1)

(1 lal)-l( 1/20s + nE(Isl 1) -IczlZs BE(Isl 1)1/2) s

is the leading coefficient of (.) and this proves the theorem.

Remark 1. By an argument similar to this proof, one can show that if a
function s satisfies the conditions in (i), a sequence {w} will produce a
Pick-Nevanlinna problem with leading coefficient s if and only if there exists
an inner function I such that the following two conditions are satisfied,

1. wn I(zn)E(1 -[sl-2)1/2(z), n 1,2,...,

2. The function F(eit) (s(eit) + B(eit)i(eit)E(1 1S1-2)1/2( it )-2e ) is
an exposed point of H1.

4. Proof of Corollary 1

If A is a subspace of the Hardy space H2, we will denote by A +/- the
orthogonal complement of A. We will use the following result.
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LEMMA 2. If s (BH2) +/- + CB, the function

B(e")E(Isl 2 1)1/2(
has an analytic extension to D that belongs to the Hardy space H2.

Proof of Lemma 2. First, let us observe that it is sufficient to check

(4.1) E(isl2 1)/2 a
(BH2) +CB.

Indeed if (4.1) holds, since (BH2) +/- is the closure of the linear combinations
of the functions

{(1 Y-z) - }"n 1,2,...

there exist complex numbers A0, AkN such that

N

lim E AkN(1 Y-kZ) -1 + AoB(z) E(Isl 2

N-oo k=l
1)’/(

where the convergence is in H2. Therefore,

N eit
lim kN eitN k Zk

+ AoB(eit) E(Isl 2 1)/2(eit)

in L2(OD) and then

N eitB( eit ) + A--o B(eit)E(Isl 2 1)i/2(- eit)(4.2) lim Eh---kU eiN- k= Zk

in L2(OD). Now, since B(zk) 0, the functions appearing in the left side of
(4.2) extend analytically to a neighbourhood of D and this gives Lemma 2.

In order to prove (4.1) let us check that there exists a constant a e C such
that for all q e HE,

(4.3) (E(Is[ 2 1)
1/2 Bq) atp(0)

where (,) is the scalar product in H2. Then (4.1)will follow by duality.
Since E(ls[ 2 1)1/2 is an outer function, Beurling’s theorem (see [2, p. 84])

give that the subspace {E(Isl2- 1)1/2p: P polynomial} is dense in H2. So,
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there exist functions qn H2 such that

(4.4) tp lim E(Isl 1)
1/2

in H2. Therefore,

(4.5)
(E([s[2- 1)

1/2 Bq} lim (E([s[- 1)
1/2

BE(Is[2- 1)1/2qn)
n

n--,oolim f(ls(eit)l- 1)B(eit)tp(eit)dt.

Since, s (BH2) +/- +CB, there exist complex numbers/0, kN such that

N

lim E tZkN(1 keit) -1+ oB( e
Noo k=l

it) s( eit)

in H2. Then, for a fixed n, Cauchy’s theorem gives

(4.6)

f(ls(eit)[2 1)B(eit)on(eit) dt

n
f2zr 1 eit

lim E ]kNld’mNJ
0 1 keit e itN--->oo k,m=l Zm

B(eit)q( eit) at

n 1
-[- E bkN 1 -ke Iz B( e
k=l

it)B( eit)C,,( eit) dt

+ E reitk=l Zk
tzoB(eit)B( ei’)tp,,( eit) dt

+ ([/Xol 2 1)fB(eit)qn(eit) dt

N

lim E/zNOOn(O) + (1ol2- 1)B(O).(O)
N-oo k=l

( N )qn(O) 1Nimoo-oo , IXkN + (lit012 1)B(0) cqb,(0),
k=l
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where

N

c lim 00 E /ZkN + (I/z0l2- 1)B(0)
Noo k--1

oo(S(0) -/z0B(0)) + (I/Xol2- 1)B(0).

Now, applying (4.5) and (4.6), one gets

(E(,x, I)
’/

Btp lim (n(O)
n

and then

(E(Isl 2 1) 1/2, B) c (0) )E(Isl2- 1)1/2(0)
This proves (4.3) and finishes the proof of Lemma 2.

Let us go now into the proof of Corollary 1.
(ii) = (i). Applying (2.2) one can easily check that s-1 is a non-extreme

point of the unit ball of H. The fact that s Ms + CB can be found in
[3, p. 287].

(i) (ii). Since B is a finite Blaschke product, the function s extends
analytically to a neighbourhood of D. Now, applying the theorem, one only
has to check that the function

(s(eit) + B(eit)e(Isl2- 1)l12(ei’))
-2

is an exposed point of H1. Let r(z) be the function in H2 having boundary

values B(eit)E(Isl 2 1)1/2(eit) given by Lemma 2. Consider

F(z) =s(z) - 1 + (z) zeD.

Since s is outer and Re(1 + r/s(z)) > 0 for z e D, the function F also is
outer. Furthermore,

[F(eit)[ <_[s(eit)[-2(1- (1-[s(eit)[-2) 1/:)
-2

_< 41 s( e’)
a.e(dm) eit OD
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and then F H1. Moreover, F-1 (s + r)2 H and one gets that F is an
exposed point of H (see [4, p. 486]). This proves Corollary 1. rq

The same arguments of this proof give the following result.

COROLLARY 2. Let {z,,} be a Blaschke sequence ofpoints olD and let B be
the Blaschke product with zeros {zn}. Let s be an analytic function in D such
that s (BH 2)+/- + CB and s-1 is a non-extreme point of the unit ball of H.
Then, taking wn E(1 -[sl-E)l/E(zn) for n 1,2,..., the Pick-Nevanlinna
problem in (.) has the function s as leading coefficient.

Remark 2. By an argument similar to the proof of Corollary 1, one can
show that if a function s satisfies the conditions (i) of Corollary 1, a finite
sequence {w n 1,2,..., N} produce a Pick-Nevanlinna problem with
leading coefficient s if and only if there exist an inner function I such that
the following two conditions are satisfied,

1. w E(1 [sl-2)l/2(Zn), n 1, 2,..., N,
2. IE(1 -Isl-2)1/2 Ms + CB.

Remark 3. If B is a Blaschke product with infinite zeros {Zn}, let Ms be
the space of analytic functions in D that can be obtained as uniform limits on
compacts of D of finite linear combinations of the functions {(1 -z)-1"

n 1,2,... }. From Corollary 1, one could ask if the condition in the
theorem imposing that the function F is an exposed point of H1, could be
replaced by s Ms + CB. The answer is negative and, in fact, one can show
that there exists an analytic function s N+(D), s Ms + CB and s-1 is a
non-extreme point of the unit ball of H, in such a way that there exists no
sequence {w} such that the Pick-Nevanlinna problem in (.) has the function
s as leading coefficient.
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