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1. Introduction

Let 7/°° be the algebra of bounded analytic functions on the unit disc D of the
complex plane. A function in //°° is called inner if it has radial limits of modulus one,
almost everywhere on the unit circle. Given a sequence {zn} of points in D satisfying
the Blaschke condition £ B (1 — \zn\) < + oo and a real number y, the Blaschke product

B(z) = eV" FT T-^T f~-n for zeD

is an inner function. Given a positive measure a on the unit circle, singular to
Lebesgue measure, the singular function

e
i0 + z \

for zeD

is also inner. It is well known that any inner function can be factored into a Blaschke
product and a singular function.

Let / be an inner function and oceZ). It is clear that

- r S i tm'eD

is also inner. Actually, Frostman proved that for all aeZ), except possibly for a set
of logarithmic capacity zero, the function xJJ) is a Blaschke product.

See [4, Chapter II] for the proofs of these results.
A Blaschke product B is called indestructible if ia(2?) is a Blaschke product for all

<xeD, that is, if there is no exceptional set in Frostman's Theorem. As far as I know,
the problem of characterizing the indestructible Blaschke products in terms of the
distribution of their zeros remains open. In this paper we solve a conformal invariant
version of that problem.

A positive measure ft on D is a Carleson measure if there is a constant C = C(//)
such that fi(Q) < Cl{Q), for every sector

Q = {zeD: \-\z\ ^ h,\Argz-9\ ^ h), (1.1)
where l(Q) = h.

A sequence {zn} of points in D is called an interpolating sequence if, for every
bounded sequence {wn} of complex numbers, there exists / e / / 0 0 such that f[zn) = wn
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for « = 1,2,.... Carleson proved that {zn} is an interpolating sequence if and only if
i n f n / j ( z n - z j / ( l - z m z n ) | > Oand^/= £n(l- |zJ2)<5n is a Carleson measure, where
8n is the Dirac measure at zn. (See [4, Chapter VII].)

An interpolating Blaschke product is a Blaschke product whose zero set is an
interpolating sequence. It is known that a Blaschke product with zeros {zn} is a
finite product of interpolating Blaschke products if and only if the measure
fi = X]O — lzJ2)^n is a Carleson measure [6]. This last condition is the conformal
invariant version of the Blaschke condition; therefore the finite products of
interpolating Blaschke products can be thought of, in terms of their zeros, as
conformal invariant Blaschke products.

Our main result is a characterization of the Blaschke products B which are such
that ra(B) is a finite product of interpolating Blaschke products for all OLED. Given
a sector Q and N > 0, we denote by NQ the dilatation of Q with factor TV, that is, the
sector defined by the right-hand side of (1.1) with h replaced by Nh.

THEOREM. Let B be a finite product of interpolating Blaschke products. Let {zj be
the sequence of zeros of B, 8n the Dirac measure at zn and n = £ (1 —\zn\

2)8n.
The following are equivalent.
(i) For all ixeD, the function za(B) is a finite product of interpolating Blaschke

products.
(ii) For every M > 0, there exist positive numbers 8 = 8{M), e = e(M) such that if

Q is a sector satisfying l(Q) < 8 and fi{Q) > Ml(Q), then there exists another sector Q'
with eQ c Q' <z\e~lQ such that

KQ) KQ')
KQ) KQ')

Condition (ii) is, in some sense, opposite to Bishop's condition characterizing the
Blaschke products in the little Bloch space Bo (see [2]). Since Blaschke products in Bo

are very far away from being interpolating, this should be not surprising. Actually,
in the proof of (ii) => (i), we use some of Bishop's ideas.

We prove the Theorem in the next section. In Section 3, given a number m
satisfying 0 < m < 1, we construct an interpolating Blaschke product B = B{m) such
that ta(2?) is not a finite product of interpolating Blaschke products, for all aeD with
|a| ^ m. So there is no analogue of Frostman's Theorem for the class of finite
products of interpolating Blaschke products. We use this result in order to answer in
the negative a question in [10] about the Nevanlinna-Pick interpolation problem. The
last section contains some remarks.

I would like to thank Professor John Garnett for many helpful conversations.

2. Proof of the Theorem

Given a sector Q = {zeD: 1 -\z\ ^ h, |Arg(z)-0| < h], define zQ = (1 -h)ew. For
zeD and 0 < 8 < 1, let

H(z,8) = \weD:p(z,w) =
z — w

1 — wz
<8

be the pseudohyperbolic disc of centre z and radius 8. The following result follows
easily from [5, Lemmas 1 and 3].
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LEMMA 1 [5]. Let B be a Blaschke product with zeros {zn}. Then B is a finite
product of interpolating Blaschke products if and only if there exists a number m
satisfying 0 < m < 1 and a subsequence {cn} of {zn} such that the discs DH{cn, m) are
pairwise disjoint and

M{\B(z)\:zi{jDH(cn,m)}>0.

Now let us go into the proof of the Theorem.
(i) => (ii) Let B be a finite product of interpolating Blaschke products and assume

that (ii) fails. Then there exist M > 0, Ei tending to zero, and sectors Q} such that

tiQ,)>WQ,),

Consider a., = zQ}. Using the inequality log*"1 ^ 2 *(1 — x2) for 0 < x < 1, and the
identity

2 (\ _ | 7 |2V1 - I w l 2 )
- for z,weD,

one can get

l - z — w
1 — wz — zw\

^ o/ i |~ |\ ZJ V1 Iznl ) — 77 '/77T\ ' 8

Thus,

We claim that it is sufficient to show that for each m with 0 < m < 1, one has

sup{(\ —\z\)\B'(z)\: zeDH((x},m)} • 0. (2.2)

Assume that (2.2) holds. Taking a subsequence if necessary, one can assume that

Now using (2.2), for each 0 < r < 1 one has

7^00

Applying Lemma 1, one gets that ra(B) is not a finite product of interpolating
Blaschke products and this finishes the proof of (i) => (ii). Thus, it suffices to show
that (2.2) holds.

We shall omit the index;, writing Q = Qp a = OLP N = [e~1/2] and l(Q) -+0,N-+oo
wheny-> oo. Consider the collection {Q{k): k = \,...,N2} of sectors with pairwise
disjoint interiors lying inside NQ, with l{Q(k)) = N~ll{Q) and R = \JkQ

ik). If l(Q) is
sufficiently small, one has

KNQ\R) = 0. (2.3)
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Otherwise, there would exist zn e NQ\R, and taking

T={zeD: \-\Z\ < l-|zn|,|Argz-Argzn| < l-|zn|}

523

and Tlt T2 the disjoint sectors inside T with l(ty = 2-1/(r) for / = 1,2, it would follow
that

1 KTJ = , 1
1{TX) + 2 /(rx)J

and this would contradict (2.1). So (2.3) holds.
Applying (2.1), one gets

sup
KQ{k)) :/,*= !,..., •0 as/(0 (2.4)

Fix m such that 0 < m < 1. One can check that p{DH{<x,m),D\NQ) -> 1 as l(Q) -> 0,
iV-> oo. Also

Then (2.3) shows that

p(DH(<x,m),{zJ) >1 (2.6)

as KQ) -+0,N^KX). Applying Lemma 1, there exists a constant C > 0 such that

inf{|5(z)|: zeDH{<x,m)} ^ C > 0. (2.7)

Now, let us prove (2.2). Fixing zeDH(a,m), one has

B'(z)

B(z)

where

A =
zneNQ (z-zJO-z.z) (Z-ZB)(1-ZBZ)

Consider ||^||c = sup{//(0/(0 *: Q is a sector of the form (1.1)}. Applying (2.6)
and the fact that // is a Carleson measure, one gets

_ . . ^ (l-\z\)(\-\zJ2) . » „ 1-lzJ2

— ZnZ\ U-znz|

< 2 f M 2 0 <

as / ( 0 -+ 0, N -> oo, because 1 - |z|
On the other hand, (2.3) gives

(2.8)

-m) /(0.

A =
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Take (fc = zQ<*). Given zneQ{k), a computation and (2.5) show that

1 1
(z-zn)(l-znz) (z-<

Then, applying (2.7),

E E

4N~1l(Q) 87V

1

\6N-\\-m)-1 \ogiC-1).

Therefore

>

(l-\z\)KQ(k)) (2.9)

Applying (2.1) one gets

00.

Then, since 1{QW) ^ 2 ^ - ( ^ - i l for /c = l , . . . , iV 2 , one has

(l-\z\)(KQ{k))-KQa)))
E
k

TTSUp
KQa))

:k=l,...,N2\ .0 as/(0 >0,N-

(2.10)
because the last sum is a Riemann sum of the Poisson kernel. Also

is a Riemann sum of the integral

where T = {(eD: \Q = l-N-^XCeJVg}. Since

-Q(\-Cz) C
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as /«2)->0,iV-*oo, and

(l-\z\)dC
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{ICI-i-;

one gets

= 0,

-0 as l(Q) >0,N >oo. (2.11)

Now, (2.9), (2.10) and (2.11) give that A -•() as l(Q)->0,N^> oo. This shows that
(2.2) holds and finishes the proof that (i) => (ii). (Recently, in a private communication,
K. Oyma showed me a different proof of this implication, where he studies \B(z)\ using
harmonic measure techniques.)

(ii) => (i) If (i) fails, there exists a e D with a # 0, such that ta(B) is not a finite
product of interpolating Blaschke products. By Lemma 1, there exist aye£> with
|a |̂ -• 1, and m} satisfying 0 < m, -• 1, such that

0 asy .oo.

We shall show that for each 0 < t < 1 one has

as 7 oo,

(2.12)

(2.13)

where Qz = {zsD: \-\z\ ^ 1 — |C|,IArgz — ArgCl ^ 1 — ICQ- Since (2.13) contradicts
(ii), this will finish the proof of the theorem.

Fix / with 0 < t < 1, C^DH{ixp t) and Q = 0C. Take s, with 0 ^ s}-> 1 such that
(1 — s})(l —tri))'1 -*• 00, and e} with 0 < ej -> 0 such that e/1 — s^)'1 -*• 00. Consider

R = : \-\Z\

From (2.12) it follows that B has no zeros in DH{<xpm^. The choice of the
constants and a computation with the pseudohyperbolic distance, gives that for j
sufficiently large, Q\R c DH(ap m^. Thus

inf{/>(z,{zn}):zeL = L / asy >oo.

(2.14)

(2.15)

Now using (2.15) and the facts that ê (l — s^'1 -*• 00 and n is a Carleson measure, one
can see, as in (2.8), that

inf{|5^fi(z)|:zeL} »1 asy >-oo,

where BDXR is the Blaschke product with zeros {zn: zn€D\R). Then, using (2.15) and
the fact that (1 -x2)"Mogx"2 -> 1 as x -*• 1, one gets

sup 0 asy • (» ,

where Pz(w) = (1 - |z |2) | l -wz\~2. Since L c DH(oLpmj) for j sufficiently large, (2.12)
shows that

sup 2 log l o t 1 - Pz(w)dfi(w) : ZEL •0 asy >oo.
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Now, parametrizing L by z = reie, where 1 — r = (1 —^)(1 — |C|), and integrating, one
gets

2 | L | l o g | a r - I I Preio(w)d6dfi(w) >0 a s ; >oo, (2.16)
J RJ L

where \L\ is the Euclidian length of L. If w is a zero of B satisfying we(l— ejl2)Q, one
can check that

asr • !, (2.17)

because (2.14) and (2.15) show that the zeros of B in Q are much closer to the circle
than the points of L are. Also, since n is a Carleson measure,

f f PrAw)d6dfi(w) ^2nfi(R\(\-EJl2)Q) • () a s ; >oo.(2.18)
1-£J/J) Q J L

Now, introducing (2.17) and (2.18) in (2.16), one gets

12|L| log lal"1-2^(^)1 >0 as 7 >oo.

By (2.14), fi{R) = fi(Q) and \L\ = (1 -e,) l(Q). Therefore

AQ) •0 a s ; •00 .
KQ)

This proves (2.13) and finishes the proof of the theorem.

3. An example

Let B be a Blaschke product. It follows from Lemma 1, that the set

{a e D: rJiB) is not a finite product of interpolating Blaschke products}

is closed. Let us remark that the exceptional set appearing in Frostman's Theorem is
not, in general, closed. In fact, it can even be dense on the unit disc (see [8, p. 714]).

In this section we shall show that there is no analogue of Frostman's Theorem for
the finite products of interpolating Blaschke products.

PROPOSITION. For each m with 0 < m < 1, there exists an interpolating Blaschke
product B = Bm, such that Ta(B) is not a finite product of interpolating Blaschke
products, for all OLED and |a| ^ m.

For the proof of the Proposition, we need the following results. Let/G H™(D) and
eieedD, then the radial cluster set of/at eie is the set of complex numbers w such that
there exists rke

ie with 1 > rk -> 1, such iha\j{rke
ie) -*• w.

LEMMA 2. There exists an interpolating Blaschke product whose radial cluster set
at the point 1 contains the unit circle.

LEMMA 3. Let/GH^iD), zkeD and tk satisfying 0 < tk < 1, tk -> 1 be such that

s\ip{\\J{z)\-<x\:zeDH(zk,tk)} >0 ask •oo.

Then there exist lk with 0 < lk < \,lk • 1, such that

sup Mz) -f[zk)\: z G DH(zk, lk)} > 0 ask > oo.
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Proof of Lemma 2. Let {eie'c} be a dense sequence in the unit circle. We shall
choose the zeros {zn} of the Blaschke product by induction and we shall denote by BN

the Blaschke product with zeros z1,...,zN.
Choose rl and z1 with 0 < r1 < 1 and p{zx, rj = 2"1 such that

Assume tha t we have defined rl,...,rk with 1 —rf+1 ^ 2~3}(\ —rf) a n d zl,...,zk wi th
p(zpr}) = 1 — 2~} for j = l,...,k, such tha t

Then , choose rfc+1 < 1 wi th 1 -r*k+1 < 2~3fc(l -rl) such tha t

and zk+x with p(zk+1, rk+1) = 1 — 2 k 1 such that

" I*-1-1 ' l«_i_1 ^ ^ ^

Zk+1 rk \Bk(rk+1)\
Now,

— g%+i ^^rfc±jj
Zfc'fc+l x ^fc+l'fc+l l-"fcV'fc-

Since /?(zisr() = 1—2"' and 1 — r2
k+1 ^ 2"3fc(l — ^ ) , using the inequality

for X.

(see [4, p. 4]), one gets

1+0-2-*)^
2/1 _ |

V 1 l

This shows that {zn} is an interpolating sequence. Let B be the Blaschke product with
zeros {zn}. One has

B(rk) - 1

<2_fc+l , y 1 - 1 ^ ^

^=fc+l l rk

+ 4 \ _i_ g

Since {ei9k} is dense in the unit circle, the radial cluster set of B at the point 1 contains
the unit circle.
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Proof of Lemma 3. Assume that the conclusion fails. Then taking a subsequence
if necessary, there exist / with 0 < / < 1 and points cksDH(zk,l) such that
|/(cfc)-/(zfc)|^<5>0. Since

\fM\d\w\,

there exist C,keDH(zk, 1) and a constant c = c{l) > 0, such that

Applying Bloch's Theorem [3, p. 295] to the function

one gets

ADHgk,2-1)) = W(C*),(72)-12-1(1 -|Ctl
2)l/'(Cfc)l)

and this contradicts the hypothesis of Lemma 3.

Proof of the Proposition. Let 5X be an interpolating Blaschke product satisfying
the conditions of Lemma 2. Choose rk with 0 < rk < 1, rk -• 1, such that

{^(rf c):/:=l,2,. . .}

is dense on the unit circle and

^ ^ 2 - 2 f c for k = 1,2,.... (3.1)

Take <xk with m < <xk < 1 — fc~\ such that {^B^r^: k = 1,2,...} is dense in

{z:m<\z\<\}.

We shall construct an interpolating Blaschke product B2 such that B1B2 is
interpolating and for all k = 1,2,..., the function

\-<xkBx(rk)BxB2(z)

is not a finite product of interpolating Blaschke products. Then, the observation of
the beginning of this section will give the proof of the Proposition.

Consider Qk = {zeD: \-\z\ ^ l-rfc,|Argz| ^ l-rfc}, then

where ak = k(\-rk). Define tk by 1 — tk = k~l{\-rk) and 5fc with 0 < sk < n by
|cxp(ist)-l| = 27r(l-g(log|aJ-1)-1, and put

zf = tk exp (isk n) for n = - [ak s^1],..., 0, . . . , [ak j " 1 ] .
Thus,

I4f c ) -^!l = tk2*V -OdoglaJ-1)-1 = tk(\ -|zjf>|)27t0og|aj-1)-1. (3.2)

If Q is a sector in the unit disc, one has

£ (1 -|z<fc>|) ^ 2(27r)-1log|aJ-1/(0 ^ 2(2nr logm'^Q). (3.3)
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Let Ik be the Blaschke product with zeros {z™\ n = — [aksk
1],...,[aksk

1]}. Let Z(B)
denote the zero set of the Blaschke product B. One can choose rk in such a way that

Let ak ~ bk mean that \ak — bk\ -> 0, as k -> oo. Using (3.2), for each M < 1, one has

sup {|log | 4 (z ) r - log |a f c n : z e DH(rk, M)}

1-1
fcl1 i-d II T(*) TI2

Z n I 1 " " Z n Z\
| - ( * ) _ - ( * ) ! / • 1 _1 rn+1 zn Iv1

sup{ I (27r)-1(log|aJ-1) £ -"+1 ' " . y '" '-\ogW
\v—ZnZ\

(3-4)

as A; -> oo, because the last sum is a Riemann sum of the integral of the Poisson kernel
at the point z along the snc{tke

xe: —afc < 0 ^ ak). Since the points {z(*}} are symmetric
with respe;t to the real axis, one has Ik(rk) > 0. So (3.4) and Lemma 3 give that

sup {|/fc(z) - <xk\: ze DH(rk, M)} • 0 as A: > oo (3.5)

for each M with 0 < M < 1. Consider B2 = n * h- Using (3.1) and (3.3) one can easily
show that B2 is an interpolating Blaschke product. Since p(Z(B2), Z(BJ) ^ 2"1, it
follows that B1B2 is an interpolating Blaschke product. Also, using (3.1) and the
symmetry of {z^fc)}, one can check that

So, from (3.5) and Schwarz's Lemma, it follows that

sup{\B2(z)-<xk\:zeDH(rk,M)} •() a s k •oo (3.6)

for each M with 0 < M < 1. Since \Bx{rk)\ -*• 1 as k-> oo, another application of
Schwarz's Lemma gives that

sav{\Bx{z)-Bx{r^\'.zeD^rkiM)) >0 as K .oo (3.7)
for each 0 < M < 1. Now for fixed a = <xk Bx{rk), (3.6) and (3.7) imply that there exists
a subsequence {pk} of {rk} such that

BxBt{z)-a

for each M with 0 < M < 1, and Lemma 1 shows that the function

\-aBxB2{z)

is not a finite product of interpolating Blaschke products. This finishes the proof of
the Proposition.

Now, we use the Proposition in order to answer in the negative a question in [10,
p. 515]. First, we recall some results.

Give two sequences of points {zn}, {wn} in D, the Nevanlinna-Pick interpolation
problem consists in finding analytic functions/ei/°° satisfying

II/IL = sup{|Xz)|: zeZ>} < 1 and /(zn) = wn for n = 1,2,... .
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We shall denote it by
(•) Find/£//<», H/IL < \,f[zn) = wn,n = 1,2,... .

Pick and Nevanlinna found necessary and sufficient conditions in order that the
problem (*) has a solution. Let G be the set of all solutions of the problem (*).
Nevanlinna showed that if G consists of more than one element, there is a
parametrization of the form

where p,q,r,s are certain analytic functions in D, depending on {zn},{wn} and
satisfying ps — qr = B, the Blaschke product with zeros {zn}.

Later, Nevanlinna showed that for each unimodular constant eie, the function

_peie

is inner. Therefore, if the problem (*) has more than one solution, then there are inner
functions solving it. See [4, pp. 6, 165] for the proofs of these results.

Recently, A. Stray [9] has proved that, in fact, for all unimodular constants e10

except possibly for a set of zero logarithmic capacity, the function Ie is a Blaschke
product. Also [10, Theorem 3], if {zj is an interpolating sequence, then there exists
a number r > 0 depending only on {zn}, such that if

inf{ | | /L: /6<7Kr,

then the function Ig is a finite product of interpolating Blaschke products for all
unimodular constants ei0.

In [10, p. 515], the question is asked if the same result is valid with some numerical
constant r independent of {zn}. We now answer this question in the negative.

For each m with 0 < m < 1, let B = Bm be the interpolating Blaschke product
given by the Proposition. Let {zn} be the sequence of zeros of B. Now, choose
a = am G D with |a| = m, and consider the following Nevanlinna-Pick problem.

(*)m F i n d / e t f 0 0 , I l / L ^ \ , A z n ) = - a , n = 1 , 2 , . . . .

Let Gm be the set of all solutions of (*)TO. It is clear that

inf{||/IL:/eGJ =

Now the Proposition gives that the function

. Beie-a

is not a finite product of interpolating Blaschke products, for all #e[0,2n]. Since one
can choose m with 0 < m < 1 to be arbitrarily small, this shows that the constant r
cannot be chosen independently of {zn}.
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4. Remarks

Let / be an inner function. A computation shows that / is a finite product of
interpolating Blaschke products if and only if there exists r with 0 < r < 1 such that

M<

f2*
o

sup log d6<+ oo.

This could be understood as the conformal invariant version of Frostman's condition
characterizing Blaschke products among inner functions (see [4, p. 56]).

Using the techniques of [1], one can show that conditions (i) or (ii) in the Theorem
are also equivalent to any of the following.

(iii) For each m with 0 < m < 1, there exists r with 0 < r < 1 such that

inn \B'{w)\2dm{w): \B{z)\ ^ m > 0.
VjDH(z,r) J

(iv) For each m with 0 < m < 1, there exists r with 0 < r < 1 such that

infldiameterCetD^z,/-))): \B(z)\ ^ m} > 0.

(v) For each m with 0 < m < 1, there exists r with 0 < r < 1 such that

znv f \B(w)-B(zTdm(W): \B(z)\ < ml > 0.
\Z\) J DH(z,r) )

H. Morse [7] constructed a destructible Blaschke product which becomes
indestructible when a single point is deleted from its zero-set. So no asymptotic
condition on the measure ft can characterize indestructible Blaschke products.
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