
A CHARACTERIZATION OF ONE-COMPONENT INNER FUNCTIONS

ARTUR NICOLAU AND ATTE REIJONEN

Abstract. We present a characterization of one-component inner functions in terms of the
location of their zeros and their associated singular measure. As consequence we answer
several questions posed by J. Cima and R. Mortini. In particular we prove that for any inner
function Θ whose singular set has measure zero, one can find a Blaschke product B such
that BΘ is one-component. We also obtain a characterization of one-component singular
inner functions which is used to produce examples of discrete and continuous one-component
singular inner functions.

1. Introduction and main results

Let D be the open unit disc of the complex plane and let BD be the unit circle. An inner
function is a bounded analytic function in D having unimodular radial limits almost everywhere
on BD. It is a classical result that any inner function can be factorized as the product of a
Blaschke product, a singular inner function and unimodular constant ([14]). Recall that, for
a given sequence tznu Ă D satisfying

ř

np1´ |zn|q ă 8, the Blaschke product with zeros tznu
is defined by

Bpzq “
ź

n

|zn|

zn

zn ´ z

1´ znz
, z P D.

Here each zero is repeated according to its multiplicity and the convention |zn|{zn “ 1 is used
when zn “ 0. A singular inner function is an inner function of the form

Spzq “ exp

ˆ
ż

BD

z ` ξ

z ´ ξ
dσpξq

˙

, z P D,

where σ is a positive measure on BD, singular with respect to the Lebesgue measure. The
singular set of an inner function Θ, which will be denoted by sing Θ, consists of all points
on BD in which Θ does not have an analytic continuation. If Θ factors as Θ “ λBS, where
|λ| “ 1, B is a Blaschke product and S is the singular inner function associated to the singular
measure σ, then sing Θ is precisely the union of the accumulation points of zeros of Θ and the
closed support of the measure σ. See Chapter II of [14].

We focus on so-called one-component inner functions introduced by B. Cohn in [12], which
are inner functions Θ whose level set tz P D : |Θpzq| ă εu is connected for some 0 ă ε ă 1. For
simplicity, we denote by Ic the set of all one-component inner functions. The main motivation
to study Ic comes from the theory of model spaces Kp

Θ “ Hp X zΘHp, 1 ă p ă 8, generated
by the inner function Θ. For instance, B. Cohn characterized Carleson measures for K2

Θ when
Θ P Ic in terms of their action on reproducing kernels ([12]), and then S. Treil and A. Volberg
generalized Cohn’s result to all p P p1,8q ([25]). It is also worth mentioning that N. Nazarov
and A. Volberg proved that Cohn’s result does not hold for arbitrary inner functions. See [20].
The class Ic also appears naturally in several recent results in the context of operator theory
in K2

Θ [5, 6, 7, 8].
A. Aleksandrov obtained a series of nice descriptions of inner functions in Ic in terms of

the behaviour of their derivatives ([3]). As a byproduct he proved also a strong form of the
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Schwarz-Pick lemma for inner functions in Ic. Using Aleksandrov’s descriptions, J. Cima,
R. Mortini and the second author constructed some concrete examples of one-component
inner functions [10, 11, 23]. In particular singular inner functions associated to a finite sum
of weighted Dirac masses are one-component and thin Blaschke products are not in Ic. A
Blaschke product B whose zeros tznu

8
n“1 (ordered by non-decreasing moduli) lie in a Stolz

angle is one-component if

lim inf
nÑ8

ř

|zj |ą|zn|
p1´ |zj |q

1´ |zn|
ą 0.

The main motivation of our work is to give descriptions and examples of one-component inner
functions in terms of the location of their zeros and their associated singular measures. As
it will be explained, our results provide answers to several questions posed by J. Cima and
R. Mortini.

Let Θ be an inner function which factors as Θ “ λBS, where |λ| “ 1, B is a Blaschke
product with zeros tznu and S is the singular inner function associated to the singular measure
σ. Consider the measure µpΘq on D defined as

µpΘq “
ÿ

n

p1´ |zn|qδzn ` σ.

Here δz denotes the Dirac point measure at the point z. We will describe one-component inner
functions Θ in terms of the mass given by µpΘq to Carleson squares defined as

Qpzq “ tw P D : | arg z ´ argw| ď p1´ |z|q{2, |w| ě |z|u, z P D.
This idea originates in [9] where C. Bishop described inner functions Θ in the little Bloch
space in terms of the behaviour of the corresponding measure µpΘq. Similar ideas have been
used in [21] and [19].

Theorem 1. Let Θ be an inner function. Then Θ P Ic if and only if there exists a constant
C “ CpΘq with 0 ă C ă 1 such that µpΘqpQpzqq “ 0 when |Θpzq| ě C.

This result can be proved applying [3, Theorem 1.2] by A. Aleksandrov but in Section 2, we
present a self-contained proof relying on Hall’s lemma and a stopping time argument. Let us
say that an inner function is finite-component if it has a finitely connected level set. Applying
the proof of Theorem 1, we show in Section 2 that all finite-component inner functions belong
to Ic.

Corollary 2. Let Θ be an inner function. If there exists a constant C with 0 ă C ă 1 such
that tz P D : |Θpzq| ă Cu is finitely connected, then Θ P Ic.

For 1 ă α ă 8, let Γαpe
iθq “

 

z P D : |z ´ eiθ| ă αp1´ |z|q
(

denote the Stolz angle with

vertex at eiθ P BD. As another consequence of Theorem 1, in Section 2, we characterize
one-component Blaschke products whose zeros are contained in a Stolz angle.

Corollary 3. Let 1 ă α ă 8 and let B be a Blaschke product with infinitely many zeros.
Assume that the zeros of B are contained in a Stolz angle with vertex at eiθ P BD. Then B P Ic
if and only if lim suprÑ1´ |Bpre

iθq| ă 1.

A sequence of points tznu Ă D is called uniformly separated if

inf
nPN

ź

k‰n

ˇ

ˇ

ˇ

ˇ

zk ´ zn
1´ zkzn

ˇ

ˇ

ˇ

ˇ

ą 0.

A celebrated result by L. Carleson says that interpolating sequences for the algebra of bounded
analytic functions in D are precisely the uniformly separated sequences. A Blaschke product
with uniformly separated zeros is called an interpolating Blaschke product. Given a measurable
set E Ă BD let |E| denote its Lebesgue measure.

One-component inner functions have many special properties. For instance the singular set
of an inner function in Ic has Lebesgue measure zero. See [4]. Theorem 4 below gives an
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affirmative answer to the following question posed in [10] by J. Cima and R. Mortini: Can
every inner function Θ with | sing Θ| “ 0 be multiplied by a one-component inner function B
into Ic? In addition, we show that B can be chosen to be an interpolating Blaschke product.

Theorem 4. Let Θ be an inner function whose singular set has Lebesgue measure zero. Then
there exists an interpolating Blaschke product B P Ic such that BΘ P Ic.

Theorem 4 implies also a negative answer to the following question posed in [11] by J. Cima
and R. Mortini: Is the singular set of any inner function in Ic necessarily countable?

The main effort in the proof of Theorem 4 is to find a suitable Blaschke product B. Once
the zeros of B are well located, the assertion can be proved quite easily by using Theorem 1.
Roughly speaking, B is chosen such that singB “ sing Θ, zeros of B are close enough to BD
(depending on Θ) and form a chain where the pseudohyperbolic distance of adjacent points is
fixed. The detailed proof is presented in Section 3.

Recall that an analytic function f in D belongs to the Nevanlinna class N if

sup
0ără1

ż 2π

0
log` |fpreiθq| dθ ă 8,

where log` 0 “ 0 and log` x “ maxt0, log xu for 0 ă x ă 8. Deep results on inner functions
whose derivative is in the Nevanlinna class have been recently obtained by O. Ivrii. See [16]
and [17]. Applying Theorem 4, we deduce that some one-component inner functions might be
bad-behaving in several ways. As an example, we show in Section 3 that Ic is not contained
in tf : f 1 P N u.
Corollary 5. There exists Θ P Ic such that Θ1 R N .

In Section 4 we study one-component singular inner functions. As another application of
Theorem 1, we present the following characterization of one-component singular inner func-
tions.

Theorem 6. Let S be a singular inner function associated with a non-trivial singular mea-
sure σ. Consider the set Ω “ tz P D : 1´ |z| ě 2 distpz{|z|, suppσqu. Then S P Ic if and only
if lim supzPΩ,|z|Ñ1´ |Spzq| ă 1.

Note that the set Ω in the statement is a sawtooth region, as the following figure shows.

Figure 1. The region DzΩ, painted in grey, consists of a union of tents whose
bottoms are the complementary arcs of suppσ in BD. Each tent has the same
shape, but size depends on the length of the complementary arc.

Using Theorem 6, we show that any singular inner function associated to a Cantor measure
in a symmetric Cantor set is one-component. On the other hand, also as an application of
Theorem 6, we construct discrete measures whose associated singular inner functions are not
one-component. Theorem 6 also implies the following result which provides an affirmative
answer to another question of J. Cima and R. Mortini (Question 4.4 i) in [11]).

Corollary 7. Let E be a closed countable set of the unit circle. Let σ be a positive singular
measure supported on E such that σptξuq ą 0 for any ξ P E. Then the singular inner function
associated to σ is one-component.

We finish the paper in Section 4 with an open question.
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2. Proofs of Theorem 1, Corollaries 2 and 3

We first fix some notation. Consider the pseudohyperbolic distance ρpz, wq between the
points z, w P D given by ρpz, wq “ |pz´wq{p1´ zwq|. A sequence of points tznu Ă D is called
separated if there exists δ “ δptznuq P p0, 1q such that ρpzj , zkq ą δ for all distinct j and k.
Moreover, we write f À g if there exists an absolute constant C ą 0 such that f ď Cg, while
f Á g is understood analogously. If g À f À g, then the notation f — g is used.

Proof of Theorem 1. Let us first prove the necessity. Assume contrary that there exists a
sequence of points tznu

8
n“1 Ă D such that µpΘqpQpznqq ą 0 and |Θpznq| Ñ 1´ as n Ñ 8.

Since Θ P Ic, we find C P p0, 1q such that the level set Ω “ tz P D : |Θpzq| ď Cu is connected.
Given a domain A Ă C and a subset E Ă BA, let ωpz, E,Aq be the harmonic measure of E in
the domain A, that is, the harmonic function in A whose boundary values are identically 1 on
E and identically zero on BAzE. Since Θ is inner, the subharmonicity of log |Θpzq| gives that
log |Θpzq| ď plogCqωpz, BΩ,DzΩq for any z P DzΩ. Then by Hall’s lemma (see [13, Chap. 12,
Lemma 4]), there exists an absolute constant C1 ą 0 such that

log |Θpzq| ď C1plogCqωpz, pBΩq˚,Dq, z P DzΩ, (2.1)

where pBΩq˚ “ tz{|z| : z P BΩu is the radial projection of BΩ. Since µpΘqpQpznqq ą 0 and
the diameter of the connected set Ω depends only on Θ and C, we find N P N such that
|pBΩq˚ X 2Qpznq| ě p1´ |zn|q{2 for n ě N . Consequently,

ωpzn, pBΩq
˚,Dq “

ż

pBΩq˚

1´ |zn|
2

|eiθ ´ zn|2
dθ

2π
ě

ż

pBΩq˚X2Qpznq

1´ |zn|
2

|eiθ ´ zn|2
dθ

2π

—
|pBΩq˚ X 2Qpznq|

1´ |zn|
ě

1

2
, n ě N.

(2.2)

Combining estimates (2.1) and (2.2), we deduce that there exists a positive constant D ă 1
such that |Θpznq| ď D for all n ě N . This contradiction finishes the proof of the necessity.

Next we prove the sufficiency. Pick a constant C1 P p0, 1q such that p1´C1q{p1´Cq is very
small. In particular, we assume C1 ą pC ` 9{10q{p1` 9C{10q. Consider the decomposition of
D into dyadic Carleson squares

Qn,k “
!

reiθ : 1´ π2´n ď r ă 1, 2πk2´n ď θ ă 2πpk ` 1q2´n
)

,

where n ě 2 and 0 ď k ă 2n. Let T pQn,kq “ tz P Qn,k : |z| ď 1 ´ π2´n´1u denote the top
half of Qn,k. Let G “ tQju be the collection of maximal dyadic Carleson squares such that
supzPT pQjq |Θpzq| ě C1. If w P D satisfies ρpw, T pQjqq ď 9{10 for some j, then |Θpwq| ě C.
This is easy to deduce from the estimate

ρpw, T pQjqq ě inf
zPQj

ˇ

ˇ

ˇ

ˇ

Θpzq ´Θpwq

1´ΘpzqΘpwq

ˇ

ˇ

ˇ

ˇ

ě inf
zPQj

|Θpzq| ´ |Θpwq|

1´ |Θpzq||Θpwq|
,

where the first inequality is due to the Schwarz-Pick lemma. Thus our hypothesis implies
µpΘqpQpwqq “ 0 when w is as above. In particular, µpΘqp2Qjq “ 0 for all j.

Let zj be the center of T pQjq. By the Schwarz-Pick lemma, we find C2 “ C2pC1q P p0, 1q
with C2 “ C2pC1q Ñ 1´ as C1 Ñ 1´, such that |Θpzjq| ě C2 for all j. Next we show that
there exists a universal constant C3 ą 0 such that

|Θpzq| ě |Θpzjq|
C3 ě CC3

2 , z P Qj . (2.3)
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Applying the fact that µpΘqp2Qjq “ 0 for all j, we obtain

log |Θpzq|´1 —

ż

D

1´ |z|2

|1´ wz|2
dµpΘqpwq “

ż

Dz2Qj

1´ |z|2

|1´ wz|2
dµpΘqpwq

—
1´ |z|2

1´ |zj |2

ż

Dz2Qj

1´ |zj |
2

|1´ wzj |2
dµpΘqpwq

—
1´ |z|

1´ |zj |
log |Θpzjq|

´1, z P Qj .

Since 1´ |z| À 1´ |zj |, estimate (2.3) holds.
Set Ω1 “ tz P D : |Θpzq| ă C1u. We show that Ω1 is connected arguing by contradiction.

Let G be the union of all Carleson squares in the family G. First we note that DzG Ă Ω1

by the construction of G. Since DzG is connected, we find a connected component Ω2 of Ω1

with DzG Ă Ω2. Assume that Ω3 is a connected component of Ω1 satisfying Ω2XΩ3 “ H. In
particular, Ω3 Ă G. Hence estimate (2.3) gives

Ω3 Ă tz P D : |Θpzq| ě CC3
2 u. (2.4)

By the maximum principle Ω3 is simply connected and we can consider a conformal mapping
ϕ : DÑ Ω3. Then g “ C´1

1 Θ ˝ϕ is an inner function. This fact was noted in the proof of [12,
Corollary 1.2] and it follows essentially from [24, Theorem VIII. 31]. Now (2.4) implies g ” 1,
which is a contradiction. Thus Ω1 is connected and the proof is complete. l

Next we prove Corollaries 2 and 3.

Proof of Corollary 2. Assume contrary that Θ is not a one-component inner function. By
Theorem 1, there exists a sequence tzju

8
j“1 Ă D such that µpΘqpQpznqq ą 0 for every n and

|Θpzjq| Ñ 1´ as j Ñ 8. By the assumption we have tz P D : |Θpzq| ă Cu “
ŤN
n“1 Ωn where

Ωn Ă D are connected sets. Then Qpzjq X Ωk ‰ H for some k P t1, . . . , Nu and all j P N.
Applying Hall’s lemma, we obtain

log |Θpzq| ď logC ωpz, BΩ,DzΩkq ď logC ωpz, pBΩkq
˚,Dq, z P DzΩk,

where the notation is same as in (2.1). Again arguing as in the proof of Theorem 1, one
can find a constant D ă 1 such that |Θpzjq| ď D for all j sufficiently large. Since this is a
contradiction, the assertion is proved. l

Proof of Corollary 3. We can assume eiθ “ 1. Let 0 ă β ă π{2 and let Γβ be a cone in D
with aperture 2β and vertex at 1. Assume without loss of generality that the zeros of B are
contained in Γβ.

Let us first prove the necessity. Assume contrary that exists a sequence trnu
8
n“1 Ă p0, 1q

such that |Bprnq| Ñ 1´ as nÑ 8. Since µpBqpQprnqq ą 0 for any n P N, Theorem 1 implies
B R Ic. This is a contradiction and the necessity is proved.

Next we prove the sufficiency. Let us define Γγ in a similar way as Γβ, and choose γ “ γpβq,

β ă γ ă π{2, such that Qpzq is contained in DzΓβ when z P DzΓγ .

Figure 2. The picture shows the cone Γβ and the Carleson square Qpzq.
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Using the Schwarz-Pick lemma together with the assumption lim suprÑ1´ |Bprq| ă 1, we find
a constant C “ Cpγq ă 1 such that lim supzPΓγ ,zÑ1´ |Bpzq| ď C. By Theorem 1 it suffices to

show that µpBqpQpzqq “ 0 for z P DzΓγ . Since this follows from the choice of γ, the proof is
complete. l

3. Proofs of Theorem 4 and Corollary 5

We go directly to the proofs.

Proof of Theorem 4. We first consider a Whitney type decomposition of the open set BDz sing Θ “
Ť8
n“1 In, where each In is a closed arc on BD satisfying |In| — distpIn, sing Θq.
Next we construct the Blaschke product B. Fix a sequence tεnu Ă p0, 1q with limnÑ8 εn “

0. Let us choose rn P p0, 1q such that, if |z| ě rn and ei arg z P In, then |Θpzq| ě 1 ´ εn.
Let Γ be the curve containing

Ť8
n“1trnξ : ξ P Inu and the radial segments connecting arcs

trnξ : ξ P Inu in the natural way. Now locate the zeros ZpBq “ tzju8j“1 of B on the curve Γ

such that, for each zj , there exist distinct zeros zm, zl satisfying ρpzj , zmq “ ρpzj , zlq “ 1{10,
while other zeros are further away from zj . In other words, place the zeros of B in the curve
Γ at each 1{10 pseudohyperbolic units.

Figure 3. The picture shows the curve Γ where the zeros of B, represented
by points, are located.

Let us recall that a sequence tzju is uniformly separated if and only if tzju is separated and
ř

zjPQpzq
p1´ |zj |q À 1´ |z| for all z P D (see [14, Chap. VII, Theorem 1.1]). Using this result

together with the fact that the pseudohyperbolic distance of adjacent points in ZpBq is 1{10,
one checks that B is an interpolating Blaschke product.

Let 0 ă C ă 1 be a constant close to 1 to be fixed later. Since we will prove the assertion
by Theorem 1, points z where |Bpzq| ď C are not relevant. In particular, this is the case in
Ω “

Ť8
n“1trξ : r ď rn, ξ P Inu, as the following argument shows. Fix z P Ω. If ρpz,ZpBqq ď

1{2, then |Bpzq| ď ρpz,ZpBqq ď 1{2 by Schwarz’s Lemma. Hence we may assume that z P Ω
satisfies ρpz,ZpBqq ą 1{2. Then standard estimates give

log |Bpzq|´1 “

8
ÿ

j“1

log ρpz, zjq
´1 —

8
ÿ

j“1

`

1´ ρpz, zjq
2
˘

“

8
ÿ

j“1

p1´ |z|2qp1´ |zj |
2q

|1´ zjz|2

Á
ÿ

tj:|zj´z|ď2p1´|z|qu

1´ |zj |

1´ |z|
Á 1,

where the last inequality is due to the location of zeros zj . Consequently, there exists a
constant C ă 1 such that |Bpzq| ď C for any z P Ω.

Let z P DzΩ and assume |Bpzq| ą 12{21. If w P Γ, then the pseudohyperbolic triangle
inequality, the Schwarz-Pick lemma and the location of zeros give

ρpz, wq ě inf
vPZpBq

ρpz, vq ´ ρpv, wq

1´ ρpz, vqρpv, wq
ě
|Bpzq| ´ 1{10

1´ |Bpzq|{10
ą

1

2
.
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It is easy to check that w satisfies 2|z ´ w| ą 1 ´ |z| if ρpw, zq ą 1{2. This implies that
µpBqpQpzqq “ 0 when |Bpzq| ą 12{21. Hence B belongs to Ic by Theorem 1.

By the choice of Γ, it is obvious that possible zeros of Θ are in Ω. Hence the previous
argument also applies to BΘ and again by Theorem 1, BΘ is a one-component inner function.
This completes the proof. l

Proof of Corollary 5. Let Θ be a Blaschke product whose singular set has measure zero such
that Θ1 R N . See [22, Theorem 4]. By our Theorem 4, we can find a Blaschke product B
such that | singB| “ 0 and BΘ P Ic. Now it suffices to deduce pBΘq1 R N by applying the
following consequence of [2, Theorem 2 and Corollary 4]: The derivative of a Blaschke product
φ belongs to N if and only if | sing φ| “ 0 and

ż 2π

0
log`

˜

ÿ

n

1´ |zn|
2

|eiθ ´ zn|2

¸

dθ ă 8,

where tznu is the zero-sequence of φ. l

For 0 ă p ă 8 and ´1 ă α ă 8, the Bergman space Apα consists of those analytic functions
in D such that

}f}p
Apα
“

ż

D
|fpzq|pp1´ |z|qα dmpzq ă 8,

where dmpzq is the Lebesgue area measure on D. Note that [23, Theorem 10] implies the
inclusion

#

Θ P Ic : Θ1 P
ď

´1ăαă8

ď

α`1ăpă8

Apα

+

Ă
 

Θ P Ic : Θ1 P N
(

.

Hence using Corollary 5 one can construct one-component inner functions whose derivative
does not belong to certain Bergman spaces.

4. One-component singular inner functions

We begin with another consequence of Theorem 1, which is a slight more general version of
Theorem 6 stated in the Introduction.

Corollary 8. Let Θ “ BS, where B is a Blaschke product with zeros tznu and S is a singular
inner function associated with a non-trivial singular measure σ. Assume that tznu Ă Ω :“
tz P D : 1´|z| ě 2 distpz{|z|, suppσqu. Then Θ P Ic if and only if lim supzPΩ,|z|Ñ1´ |Θpzq| ă 1.

Proof. The necessity follows from Theorem 1 since Qpzq X suppσ is non-empty when z P Ω.
Hence we only need to prove the sufficiency. By the assumption, there exists a constant C ă 1
such that |Θpzq| ď C for z P Ω. Set K “ tz P D : distpz,Ωq ď p1 ´ |z|q{2u. Applying the
Schwarz-Pick lemma, we find a constant D ă 1 such that |Θpzq| ď D for z P K. Next we
show that Θ is one-component applying Theorem 1. Assume that |Θpzq| ě D. Then z P DzK,
and it follows that Qpzq X Ω “ H, which implies µpΘqpQpzqq “ 0. Consequently, Θ is a
one-component inner function. �

Note that the necessity in Corollary 3 or 8 follows also from [4, Lemma 6.1] by A. Aleksan-
drov, and this Aleksandrov’s result originates from the proof of [25, Theorem 3] by S. Treil
and A. Volberg.

Proof of Corollary 7. Let E “ tξn : n “ 1, 2, . . .u. Then σ “
ř8
n“1 αnδξn , where an ą 0.

Corollary 8 and [14, Chap. II, Theorem 6.2] show that the singular inner function associated
to σ is one-component. l

The following example shows that even quite basic singular inner functions may lie out of
Ic.
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Example 9. Let tθnu
8
n“1 and tαnu

8
n“1 be sequences of distinct points on p0, 1q satisfying

limnÑ8 θn “ 0 and
ř8
n“1 αnθ

´2
n ă 8. Set S be the singular inner functions associated with

the measure σ “
ř8
n“1 αnδeiθn . Since

|Sprq| “ exp

˜

´

8
ÿ

n“1

αn
1´ r2

|eiθn ´ r|2

¸

ě exp

˜

´3p1´ r2q

8
ÿ

n“1

αnθ
´2
n

¸

ÝÑ 1´, r Ñ 1´,

the function S does not belong to Ic by Corollary 8.

Next we will show that the singular inner function associated to the Cantor measure on a
symmetric Cantor set, is one-component. Let us recall the construction of symmetric Cantor
measures σ associated with a sequence tδnu, which were studied for instance in [1] by P. Ahern.

‚ Let tδnu
8
n“0 be a strictly decreasing sequence such that δ0 “ 2π and limnÑ8 δn “ 0.

‚ Set E0 “ r0, 2πs and n P N. Define En inductively as follows: En consists of 2n

pairwise disjoint intervals each of length 2´nδn and En`1 is obtained (from En) by
removing a segment from each interval of En. Write E “

Ş8
n“0En.

‚ Define the non-decreasing function ϕ : r0, 2πs Ñ r0, 1s as follows: ϕp0q “ 0, ϕp2πq “ 1,
ϕ is a constant on each interval of r0, 2πszE and ϕ increases by an amount of 2´n on
each intervals of En.

‚ For 0 ď a ď b ď 2π, define the measure σ by σppa, bqq “ ϕpbq ´ ϕpaq.

For instance E is the Cantor middle third set if δn “ 2πp2{3qn for all n P N.

Corollary 10. If S is a singular inner function associated with a symmetric Cantor measure,
then S P Ic.
Proof. Let tδnu be the sequence associated with the symmetric Cantor measure σ that induces

S, and let Ω be as in Corollary 8. Assume that z P Ω and 2´nδn ď 1´ |z| ď 2´pn´1qδn´1 for
some n P Nzt1, 2u. Then 4Qpzq contains an interval of En from the construction of σ. Hence

P rσspzq “

ż 2π

0

1´ |z|2

|z ´ eiθ|2
dσpθq ě

ż

eiθP4Qpzq

1´ |z|2

|z ´ eiθ|2
dσpθq

Á
σp4Qpzq X BDq

1´ |z|
ě p2δn´1q

´1 ÝÑ 8, nÑ8.

Consequently, we obtain

lim
zPΩ,|z|Ñ1´

|Spzq| “ lim
zPΩ,|z|Ñ1´

exp p´P rσspzqq “ 0,

and the assertion follows from Corollary 8. l �

Next we present another consequence of Corollary 8.

Corollary 11. Let σ be a positive singular measure in the unit circle and let S be the corre-
sponding singular inner function. Assume that there exists a constant δ ą 0 such that for any
point ξ in the closed support of σ we have

lim inf
hÑ0`

σptψ P BD : |ψ ´ ξ| ă huq

h
ą δ.

Then S is a one-component inner function.

Proof. Given a point z P Dzt0u let Ipzq be the arc centered at z{|z| of length 1 ´ |z|. Note
that there exists an absolute constant C ą 0 such that for any z P Dzt0u, we have

ż 2π

0

1´ |z|2

|z ´ eiθ|2
dσpθq ě C

σpIpzqq

1´ |z|
.

Hence the assumption implies that for any point ξ in the support of σ we have

lim inf
rÑ1´

ż 2π

0

1´ |r|2

|rξ ´ eiθ|2
dσpθq ě Cδ.

Since the previous integral is ´ log |Sprξq|, Corollary 8 implies that S is one-component. �
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We finish the paper with an open question. Level sets of bounded analytic functions are
related to the original proof of the Corona Theorem. It is well known that there exists a
bounded analytic function having all level sets of infinite length. More concretely P. Jones
constructed an analytic function Θ from the unit disc into itself such that for any 0 ă c ă 1,
the level set tz P D : |Θpzq| “ cu has infinite length. See [18]. We say that an inner function
Θ has property pAq if there exist an inner function B and a constant 0 ă c ă 1 such that arc
length on the level set tz P D : |ΘpzqBpzq| “ cu is a Carleson measure. Roughly speaking, an
inner function has property pAq if by adding more zeros, one can produce a nice level set.

Question. Does property pAq hold for any inner function?

B. Cohn proved that for any one-component inner function Θ, there exists 0 ă c ă 1 such
that the arc length of the level set tz P D : |Θpzq| “ cu is a Carleson measure ([12]). Hence our
Theorem 4 gives that any inner function whose singular set has measure zero, has property
pAq. It is likely that using the techniques in [15] one could factor any inner function Θ into a
finite number of inner functions Θi having property pAq.
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