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SYMMETRIC AND ZYGMUND MEASURES
IN SEVERAL VARIABLES

by E. DOUBTSOV and A. NICOLAU

1. Introduction.

A (signed) finite Borel measure J-l on the unit circle T is called a

Zygmund measure if there exists a constant C = C(p) &#x3E; 0 such that

for any pair of adjacent arcs I+, I- of the same length - 11_1. If
the constant C can be taken arbitrarily small as 11+1 tends to 0, p is called
a small Zygmund measure.

Corresponding to the Zygmund measures, there are the Bloch func-
tions, that is, analytic functions f in the unit disc for which there exists a
positive constant C = C( f ) &#x3E; 0 such that

The little Bloch space consists of those Bloch functions f satisfying

P. Duren, H. Shapiro and A. Shields proved the following result.

The second author is supported in part by the DGICYT grant PB98-0872 and CIRIT
grant 2000 SGR00059.
Keywords: Doubling measures - Zygmund measures - Harmonic extensions - Quadratic
condition.
Math. classification: 28A15 - 31B10.



154

THEOREM A ([9]). - Let p be a finite measure on the unit circle and
let H (p) be its Herglotz transform,

Then it is a (small) Zygmund measure if and only is a (little) Bloch
function.

A finite positive measure p on the unit circle is called doubling if
there exists a positive constant C = &#x3E; 0 such that

for any pair of adjacent arcs of equal length. Symmetric measures are those
doubling measures satisfying

A classical result of Beurling and Ahlfors says that a homeomorphism from
the unit circle onto itself extends quasiconformally to the whole complex
plane if and only if its distributional derivative is a measure satisfying
the doubling condition (1.2). Also, symmetric measures correspond to
quasiconformal extensions whose conformal distortion tends to 0 at the
unit circle ([11]).

The connection with the previous setting is that (1.2) is the "multi-
plicative" version of the "additive" condition (1.1), see [10].

In the spirit of Theorem A, the following description of symmetric
measures has been obtained.

THEOREM B ([l]). - Let it be a positive measure in T and let 
be its Herglotz transform,

Then IL is symmetric if and only if

The nature of Theorems A and B is purely real but complex analysis
techniques are used at certain steps of the corresponding proofs. The main
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aim of this note is to study symmetric and Zygmund measures in the
Euclidean space.

We now fix some notations which will be used throughout the paper.
The symbol m denotes Lebesgue measure. Given a set E C lEI -

m(E). The upper-half space will be denoted by 
R’, y &#x3E; 0}. Also, Q+ and Q- denote two adjacent cubes in R~ of equal
volume. More precisely, Q+ = 11 x ... x In, Q_ == Ji x ’" x Jn where
Ii, Jk are intervals of equal length f(Q+) == ~(Q-) and Ii = Ji for any i,
1  i x n, except for exactly one index s, 1  s  n, for which IS and Js
are adjacent. A regular gauge function will be a positive non-decreasing,
bounded function w : (0, oo) ~ (0, oo) such that for some positive number
c &#x3E; 0, the function w(t)/t1-E: is decreasing. Observe that a regular gauge
function w satisfies that w(t) /w(s) is uniformly bounded if 1/2  tls  2

and that limt-o = 00.

Given a finite measure tc in let u be its harmonic extension, that is,

where P(x, y) is the Poisson kernel of the upper-half space,

where Cn is chosen so that J~ P(x, y)drrt(x) = 1.
Let w be a regular gauge function. A (signed) Borel measure it in R~

is called w-Zygmund if there exists a positive constant C such that

for any pair Q+, Q_ C R~ of adjacent cubes. Our first result is an Euclidean
version of the Duren-Shapiro-Shields characterization.

THEOREM 1.1. - Let 1L be a (signed) finite Borel measure in I1~~ and
be a regular gauge function. Let u be the harmonic extension of A.

The following properties are equivalent:

(a) p is an w-Zygmund measure.

(b) There exists a positive constant C &#x3E; 0 such that

for any point
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A positive Borel measure p in R’ is called doubling if there exists a
constant C &#x3E; 0 such that

for any pair Q+, Q- C R’ of adjacent cubes. Clearly a doubling measure
can not be finite. Similarly, a finite positive measure ti is called w-symmetric
if there exists a positive constant C &#x3E; 0 such that

for any pair of adjacent cubes Q+, Q_ with .~(Q+)  1. So a w-symmetric
measure satisfies the doubling condition for cubes of sidelength smaller
than 1.

Let u be a positive harmonic function in ~¡+1. Harnack’s inequality
asserts that

for any point (x, y) E ]R~+1. This inequality is best possible as one can
easily see by taking p a Delta mass. Actually, if P denotes the Poisson

kernel, one has y8yP(0, y) = -nP(O, y).
The analogue of Theorem B is the following result.

THEOREM 1.2. - Let w be a regular gauge function, w(0+) = 0. Let
p be a finite, positive measure in and let u be its harmonic extension.

Then the following conditions are equivalent:

(a) p is w-symmetric.

(b) There exists a constant C = &#x3E; 0 such that

for any point (x, y) e Il~+ 1.
The situation for doubling measures is not so nice.

THEOREM 1.3. - Let p be a positive measure in R~. Assume that
+  oo and let u be its harmonic extension.

(a) If p is doubling, then there exists a constant p  n such that

for any
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(b) If there exists a constant p  1, such that

for any (x, y) E IR~+ 1, then p is doubling.

Remark. It is convenient to mention the following phenomena in
dimension one. Let p be a positive measure in the real line and let u be its
harmonic extension.

1. Assume that p is a doubling measure and its doubling constant is
sufficiently close to 1, that is, assume that there exists E &#x3E; 0 such that

for all intervals I of the real line, then there exists a constant p =  1

if E is sufficiently small, such that

for any

2. On the other hand, as part (b) of Theorem 1.3 asserts, if

for any

then p is doubling.

The proofs of Theorems 1.1, 1.2 and 1.3 are given in Section 2, but
the main idea can be explained as follows. Integrating by parts, one may
relate the size of y) with cancellation properties of the measure p,
namely with the size of where L+, L- C R~ are adjacent
parallelepipeds. In the one-dimensional case, L+ and L- are intervals

and one uses directly the doubling condition (1.2) or the condition (1.1).
However when n &#x3E; 1, we need to transfer the information we have in cubes
to parallelepipeds. This is the main technical difficulty in the paper. The
idea is to consider partitions of L+ and L- into pairwise disjoint dyadic
cubes, L+ - UQt, L- == UQ~ , where Q+ and Qk are symmetric with
respect the common side of L+ and L-. Hence, Q+ and Q~ are not adjacent
and to estimate (Q) 2013u(Q | we need to take into account the distance
from Q+ to Q~ . This leads to some technical difficulties which require a
detailed analysis of the Zygmund and the doubling conditions. A precise
statement is proved in Section 4.
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Classical constructions provide examples of positive singular symmet-
ric (small Zygmund) measures. See [5], [9], [12], [15], [16]. It is also well

known that in the one-dimensional case, the quadratic condition

governs the existence of singular w-Zygmund (w-symmetric) measures. See
[5], [17].

Our next results tell that the quadratic condition (1.3) also governs
the situation in higher dimensions.

THEOREM 1.4. - Let w be a regular gauge function.

(a) Assume that

Then any w-Zygmund measure ~c is absolutely continuous, that is, p = f dm.
Moreover for any cube Q C R~ and any A &#x3E; 0, one has

(b) Assume that

then there exists a positive, finite, singular w-Zygmund measure on R’.

The corresponding result for symmetric measures is the following.

THEOREM 1.5. - Let w be a regular gauge function, w(O+) = 0.

(a) Assume that

Then any w-symmetric measure is absolutely continuous, that is, /-i =

f dm. Moreover for any cube Q in R~ and any A &#x3E; 0, one has
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(b) Assume that

then there exists a positive, finite, singular w-symmetric measure on lRn.

The proof of these results is given in Section 3. In both cases, part
(b) follows easily from the one-dimensional constructions. In part (a) of
Theorem 1.4, to show that I-L is absolutely continuous, one considers its
harmonic extension u. As it is well known, Green’s formula relates the

measure /i with a truncated version of the area function of u, which can be

estimated using Theorem 1.1 and the integral condition in the assumption.
Similar considerations applied to log u, also give the absolute continuity of
the measure p in the part (a) of Theorem 1.5. In both results, the statement
on the integrability of the density of the measure p is deeper and uses

martingale techniques. Namely, let 0k be the cr-algebra generated by the
dyadic cubes of sidelenght 2-~, 1~ &#x3E; 0. In Theorem 1.4, one considers the
dyadic martingale M = corresponding to the measure p = f dm
defined as where Q is a dyadic cube of 0.

Also, consider the martingale difference function Mk - 
and the quadratic variation of the martingale, SM = I:~=1 (AMk)2 . The
fact that p is a w-Zygmund measure and the integral condition in the
assumption tell that the quadratic variation SM is uniformly bounded and
our result follows from a Theorem of Chang, Wilson and Wolff ([7]). Part
(a) of Theorem 1.5 is proved by applying similar considerations to the
logarithmic transform {N k} of the martingale {M k }. A similar idea was
used in [Br]. It turns out that p be w-symmetric translates to have

increments bounded by w and the considerations above can be applied to
this martingale.

The letter C will denote an absolute constant which may depend on
the dimension whose value may change from line to line. Also, C(a) will
denote a constant depending on the parameter a.

2. Harmonic extensions.

In many different situations, the normal derivative 8yu of a harmonic
function u in the upper-half space controls the whole gradient of u. See for
instance Chapter V of [17]. In our case, we have the following result.
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LEMMA 2.1. - Let w be a regular gauge function. Let u be a harmonic
function in the upper-half space Assume

(a) The following two conditions are equivalent.

(a.l) There exists a constant C1 &#x3E; 0 such that

for any

(a.2) There exists a constant C2 &#x3E; 0 such that

for any

(b) Assume u is positive and there exists a constant C3 &#x3E; 0 such that

for any Then there exists a constant C4 &#x3E; 0 such that

for any

Proof. Recall that the letter C denotes an absolute constant which

may depend on the dimension whose value may change from line to line.
Observe that the mean value property gives that for any x E R~ and

y &#x3E; 3/2 one has

So in the proof of (a) we may assume that 0  y  3/2. By Harnack’s
inequality we may also assume 0  y  3/2 in the proof of (b).

Assume (a.l) holds. Fixed i = 1,..., n and 0  y  3/2, one has
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Let B be the ball centered at (x, t) of radius 2-1 t, the mean value property
and the fact that w is regular give

Thus, for 0  y  3/2, one has

Since is decreasing, one has

and (a.2) holds because limy-o w(y)/y = 00.

Conversely, assume (a.2) holds. Let B C be the ball centered at

(x, t) of radius t/2. The mean value property and the fact that w is regular
give

Thus, the harmonicity of u yields

As before, we deduce that for 0  y  3/2, one has

The proof of (b) is along the same lines and we only sketch it. One
may assume c,~(0+) = 0, since otherwise, one applies Harnack’s inequality.
Hence, given c &#x3E; 0, one has

Indeed, choose q &#x3E; 0 such that 2~ ( 1 - q) &#x3E; 1. Since w(0+) = 0, one
has u(x, y/2) &#x3E; (1 - y) for all y &#x3E; 0 small enough. Therefore

u(x, y/2)(y/2)-£ &#x3E; 2~ (1 - 71)u(x, y)y-£ and iterating this inequality one
obtains (2.1).
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As in the Zygmund case, the mean value property gives

where D2 denotes any second derivative of u. By (2.1), w (y) u (x, y) -&#x3E; Cy if
0  y  2, so to prove (b) it is sufficient to show the following estimate:

We bound the integral by a fixed multiple of

Now, one only has to observe that

and since w(0+) = 0, one may assume

when 2 ky is sufficiently small. To estimate the rest of the sum, one uses
that cv(y)u(x, y)/y is bounded below when y is small. 0

One can also write estimates equivalent to (a.l) and (a.2) using
derivatives of higher order. For instance, under the hypothesis of Lemma
2.1, let k &#x3E; 1, the estimate

for any point is equivalent to (a.l) and (a.2). Similarly,

for any point (X, Y) E JR¡+ 1, is equivalent to the condition in (b).
In the proof of Theorems 1.1 and 1.2 an integration by parts argument

is used. For convenience, it is collected in the following result.

For x E E (xi, Xl +t1) x ... x (Xn, Xn + tn)
(with obvious modifications for arbitrary t E We say that Lt(x) is a
parallelepiped. Usually we write Lt in place of Lt (0) .
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LEMMA 2.2. - Let J1 be a signed measure on R~ With fJR.n (1 +
 oo. Assume ~c(aL) - 0 for any parallelepiped L C 

Let u be the harmonic extension of li. Then for any point (x, y) E II~+ 1,
one has

and

Proof. The two formulas are proved in a similar way. So we only
show the first one. One only has to show that

because the formula will follow after a change of variables.

To simplify the notation, assume x - 0. Fix a &#x3E; 0 and put
f (t) = f.~,, (t) = u(t, a), t E R". We use the notation t - (ti, t’), where
tj E and t’ E R We have f(., t’) E for all t’ E JRn-1 and

0 as It 1 I ~ oo. Hence, integration by parts gives

Since f E we may apply Fubini’s theorem and repeat the
integration by parts. Repeating it n times we get

Now, we claim that the lemma follows as 0. Indeed dp
weakly* as 0, so the convergence for the left hand sides holds. On the
other hand, if z E Lt (z V Lt), then fLt z) dm(T) / 1 (respectively
B 0) as 0. Hence 

since = 0. Now, we apply Lebesgue’s theorem. 0
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Remark. - If ft is symmetric or Zygmund, then J-l( 8L) == 0 for any
parallelepiped L.

When applying Lemma 2.2, one needs to understand the cancellation
properties of the measure on parallelepipeds.

LEMMA 2.3. and

Put t

(a) Assume that p is an w-Zygmund measure on Then

(b) Assume that p is an w-symmetric measure on JRn. Then,

The proof of Lemma 2.3 is very technical and is given in Section 4.

Proof of Theorem 1.1

(a) - (b). By Lemma 2.2, we have

where (I) is the last integral over the ball Qy (0) = ~t E R’ :  ~/} and
(II) is the integral over R’ B Qy(0). The estimate

and Lemma 2.3 yield

On the other hand, w(t)tc-1 is decreasing, thus 

Therefore, the estimate
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and Lemma 2.3 give

In other words, we obtain

and Lemma 2.1 finishes the proof.

(b) F (a). This implication is essentially known (compare with [13],
where a similar problem for general Lipschitz domains is investigated).
Indeed, fix &#x3E; 0 and consider adjacent cubes Q± C R’ of sidelength f and
with centers x± c R’. Put xo - 
Then, Green’s formula on Q± x [E, .~~ applied to the functions v and y and
the estimate (b) yield

Since v (x, .~) ~  Cw (f) if x E Q±, the estimate (b) gives that

since w is increasing. Hence, the triangular inequality gives

The latter estimate yields J-l( 8Q) == 0 for all cubes Q. Therefore, tending
E - 0, we obtain

Proof of Theorem 1.2. - Assume that (a) holds. As in the proof of
Theorem 1.1, one uses Lemma 2.2 to write
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Using Lemma 2.3 and (2.2) one can estimate the integral over

It (z- Rn : by

where the last inequality follows from the estimate

I itl  y. Using the estimate
if

and Lemma 2.3, one bounds the integral over by

where , Since

and

one deduces

Lemma 2.1 finishes the argument.

Conversely, assume that (b) holds with C = 1.

First, as in the Zygmund case, we apply Green’s formula to the
functions u and y. Namely, let &#x3E; 0 and Q± C R~ be adjacent cubes
of sidelength é with centers X:f: E R~. Then

where dais surface measure. Secondly, for x E Q± and 0  y  .~, we have
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Put xo - (x+ + ~-)/2. Note that Harnack’s inequality gives that
there exists a constant C &#x3E; 0 such that for all x E Q± -
When checking the symmnetry condition on the cubes Q~ we may assume
that is so small that 1/2. Then

Hence

Therefore, we obtain

Also

and

So, tending E -~ 0 in (2.5), one gets

and we deduce Clearly (b) implies that

and hence
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Proof of Theorem 1.3.

(a) By Harnack’s inequality we may assume n &#x3E; 2. A simple calcula-
tion shows

Denote by

Observe that n and + c2)} at any point t C R n
Since the doubling condition (1.2) holds, the measure

iL can not be too concentrated in ~ t E tll  Actually,

Hence,

where p  n depends on the doubling constant of p.

(b) We first observe that given N &#x3E; No(n,p) there exists a constant
C = C(N, p) &#x3E; 0 such that

for any point (x, y) E II~+ 1. Here NQy(x) denotes the ball It E 
lit - N y ~ . Indeed, since n, one has

Given c &#x3E; 0, there exists N = N(e) such that K(x, t, y) &#x3E; 1 - ~ for any
t E NQy (x). Hence, if (2.6) does not hold, one would deduce that for
any c &#x3E; 0 there exist points (x, y) E such that
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So (2.6) is proved. Now, an easy estimate of the Poisson kernel and (2.6)
give that

So,

for any point (x, y) E Il~+ ~, where C is a constant depending on N. Now
Harnack’s inequality gives

and one deduces that p is doubling. D

It is convenient to mention that the bound p  1 in part (b) can not
be replaced by p  n if n &#x3E; 2. Actually let a be a doubling measure and let
p be its restriction to ~x E Ilxll &#x3E; 1}. So, p is not doubling. Observe
that for any point (X, y) E and any E &#x3E; 0 one has

Let u be the harmonic extension of M. Arguing as in (a), one deduces

for any (x, y) E ~¡+1, where p  n is a constant only depending on the
doubling constant of a.

3. Best decays.

This section is devoted to the proofs of Theorems 1.4 and 1.5.

Proof of Theorem 1.4. - Part (b). Assume (1.3) does not hold. Let
v E M(R) be an w-Zygmund positive singular measure with compact
support (see e.g. [12]). Fix a compactly supported Holder continuous
function h E and consider the measure p = v x We

now check that p is w-Zygmund. The only non-trivial case arises when
Q± = I x J± C are adjacent cubes of side f  1 (i.e., I C R is an
interval, 111 - é, and J± C IEgn-1 are adjacent cubes). Then there exists
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x~ E J± such that ~~c(Q+) - p(Q_) I = CV(I)fn
since tt E LiP1. Now, applying the Zygmund condition one can check that
v(I) x 111-1. Thus C1w(f), because w(t)/t1-E
decreases.

Part (a). We assume that ca satisfies (1.3). Let p be a w-Zygmund
measure. We claim that p is absolutely continuous. Indeed, fix a cube

Q C 1. Since A (~c2) = 2 ~V~~, Green’s formula yields

where da is surface measure. First, by Theorem 1.1, 
hence

Secondly, by Theorem 1.1 and Fubini, for y E (0, f], we have

Finally, for y E .~~, choose t(y) E [y, f) such that

Note that

ing. Thus
since w(t)lt is decreas-

Therefore, (3.1 ) provides

Recall that weakly* as E - 0, so the latter estimate
gives = with f E L2(Q).
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Now we investigate the local integrability properties of f. As in [7],
[13] and [14], we consider dyadic martingales on a cube Qo = [0, C R n,
l E (o,1J . Namely, let be the o,-algebra generated by the dyadic
subcubes of Qo of sidelenght 2"~, ~ ~ 0. The martingale M = (Mk, 
corresponding to the measure 1L = fdm, is defined as Mk 
where Qk is a dyadic cube of rank k, k &#x3E; 0.

Define AMk = and (the martingale
difference functions and the square function of the martingale). It A is an

w-Zygmund measure, then

Put limk-+oo Recall that it = f dm, so Lebesgue’s
differentiation theorem yields f (x) at m-almost every point
x E R~ . On the other hand, (3.2) gives

So put Nk = Mk - and apply the following result of

Chang, Wilson and Wolff (see [7]) :

THEOREM C. Let be a real dyadic martingale on Qo,
No - 0, and  (2A)-1  oo. Then exists a.e. and

Proof of Theorem 1.5. - Part (a). Assume w does not satisfy (1.3)
and consider a singular w-symmetric measure p on T (see e.g. [1]). Identify p
and its "periodic" counterpart on R. Then e-Itl dp(t) is a finite w-symmetric
measure on R. Now, it is sufficient to observe that pi x A2 is w-symmetric
on R 2 if J-l1 and p2 are w-symmetric on R.

Part (b). Assume c,~ satisfies (1.3). Fix a cube Q C R~ with center
xo, 1. The identity and Green’s formula

give

Then Theorem 1.2 yields
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On the other hand, we have

Therefore

where o (A) denotes a quantity such that o (A) /A tends to 0 when Q ~ tends
to 0. Observe that for all x E Q. Thus

The property

is established in the proof of Theorem 1.2 (part (b) F (a)). Hence

It is well-known (see e.g. [8], Chapter 4) that the latter estimate
provides the following "local" Aoo-property: There exist absolute constants
6 &#x3E; 0, C &#x3E; 0 independent of E such that

for any measurable subset E of a cube Q C R’~, é(Q) x 1. Now it follows
easily that p is absolutely continuous, /-t = f drrz. See for instance [8],
Chapter 4 .

To investigate the integrals over cubes, we apply an argument from

[14], p. 34. So we consider dyadic martingales on a cube Qo - [0, 
(0,1 . Namely, put

where Qk C Qo is a dyadic cube of sidelenght 2-~.~, 1~ &#x3E; 0. Since A
is w-symmetric, we have Now we consider the
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logarithmic transform Mk of the martingale Zk. The identities Mo ==
log Zo = 0 and AMk = arth 1, define the corresponding realZk-1 )I
martingale with uniformly bounded differences. More precisely, 

Therefore, as in the Zygmund case, since  oo, given
A &#x3E; 0, we obtain J~ exp exp

oo since exp (Mk - lj2Sk(M)). The definition of Zk and Lebesgue’s
differentiation theorem give the equality m-a.e.

In other words, we have

4. Cubes and parallelepipeds.

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. - We represent the parallelepiped L+ as a union
of dyadic cubes. More precisely, let Ul be the collection of dyadic cubes of

length f /2 which are contained in L+. On the step we choose the cubes
"of generation k"

which are contained in L+ B Uk-1 (here is the union of the cubes

selected on the previous steps).

Let p be a w-Zygmund measure with constant C = 1. By induction,
we will compare dyadic cubes contained in L~ . In what follows, we use the
"=b" notation for the dyadic sets symmetric with respect to the origin. In
particular, Q+ = (0, R)n and Q- - (-R, 0)’. We will show by induction
that

for any dyadic cube
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Step 1. Let Ql C Q~ be dyadic cubes of generation 1. Without loss of
generality, we assume that C~i = (0, f/2)n. Put L+ = (0, x (0, t/2)n-i
0jn.Thus

hence

On the other hand, therefore

Step k -f- 1. Repeating the argument in step 1 we have

Hence

Therefore, by induction (4.1) holds.

Finally, observe that there are at most n2 k(n-1) cubes of generation
1~ in the decomposition of L+. Thus (4.1) gives

The proof is completed in the Zygmund case. Now, we consider sym-
metric measures. Let p be a w-symmetric measure and L a parallelepiped
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with  1. For l~ = 1, 2, ..., let Qk denote a cube of the family Uk. We will
show

and

Let us prove them for k = 0. We have

Hence We deduce

So adding the chain of estimates above we get

Therefore

Note also that

So, we have proved (4.2) and (4.3) for k = 0. When 1~ &#x3E; 0, the proof
proceeds by induction using the same idea.

Finally, we have

Using (4.3), we proceed recurrently and estimate the latter double sum.
Namely, let Ak be the first term in the right half side of (4.3), that is
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Fix k + 1 E N. First of all, there exist at most n2 (k+l)(n- ’) different
cubes Q +1 C L+ of generation + 1. Respectively, the coefficient which
corresponds to and "originates" on the step k + m + 1, nt e N, is at
most i Hence

To finish the argument, one only has to prove

Indeed, N so large that

Then, by (4.2)

This yields the estimate in question and ends the proof of the
lemma. D
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