
INNER FUNCTIONS, MÖBIUS DISTORTION AND ANGULAR

DERIVATIVES

KONSTANTINOS BAMPOURAS AND ARTUR NICOLAU

Abstract. We prove that an inner function has finite L(p)-entropy if and

only if its accumulated Möbius distortion is in Lp, 0 < p < ∞. We also study
the support of the positive singular measures such that their corresponding

singular inner functions have finite L(p)-entropy.

1. Introduction

Let D be the open unit disc in the complex plane and let dh(z, w) denote the
hyperbolic distance between the points z, w ∈ D given by

dh(z, w) = inf
γ

∫
γ

2|dζ|
1− |ζ|2

= log
1 + ρ(z, w)

1− ρ(z, w)
,

where the infimum is taken over all curves γ contained in D joining z and w and
ρ(z, w) = |z − w|/|1 − wz|, z, w ∈ D. The Schwarz lemma says that any analytic
self-mapping f of the unit disc is a contraction in the hyperbolic metric, that
is, dh(f(z), f(w)) ≤ dh(z, w) for any z, w ∈ D, or equivalently, the hyperbolic
derivative of f , denoted by Dhf , satisfies

(1) Dhf(z) =
(1− |z|2)|f ′(z)|

1− |f(z)|2
≤ 1, z ∈ D.

Moreover, equality at a single point implies equality at every point in the unit disc
and that f is an automorphism of D.

An analytic self-mapping f of the unit disc is said to have a finite angular
derivative (in the sense of Carathéodory) at a point ξ ∈ T if limr→1 f(rξ) exists
and belongs to the unit circle and limr→1 f

′(rξ) exists. In this case, we write
|f ′(ξ)| = limr→1 |f ′(rξ)|. It is well known that f has a finite angular derivative at
a point ξ ∈ T if and only if

(2) lim inf
z→ξ

1− |f(z)|
1− |z|

< ∞.
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If f does not have a finite angular derivative at ξ, it is customary to set |f ′(ξ)| := ∞.
With these notations it is well known that

|f ′(ξ)| = lim
1− |f(z)|
1− |z|

, ξ ∈ T,

where the limit is taken as z ∈ D tends non-tangentially to ξ. See for instance [6]
or Chapter IV of [18].

Let m be the normalized Lebesgue measure on the unit circle T. Inner func-
tions are analytic self-mappings f of the unit disc such that their radial limits
limr→1 f(rξ) have modulus one at m-almost every point ξ ∈ T. Fix 0 < p < ∞.
An inner function f has finite L(p)-entropy if its angular derivative |f ′(ξ)| is finite
at m-almost every point ξ ∈ T and log |f ′(ξ)| ∈ Lp(T). Note that when p = 1
these are the inner functions f with finite entropy, or equivalently, inner functions
whose derivative is in the Nevanlinna class, which were first studied in [4] and have
recently attracted some attention [9, 10,12,13].

Let f be an analytic self-mapping of the unit disc. Define the Möbius distortion
of f as

µ(f)(z) = 1−Dh(f)(z), z ∈ D.
The Möbius distortion µ(f)(z) measures how much f deviates from an automor-
phism of D near z ∈ D. Several natural classes of inner functions can be described
using the Möbius distortion. For instance, M. Heins proved in [8] that µ(f)(z) → 0
as |z| → 1 if and only if f is a finite Blaschke product. Local versions of this result
can be found in [15]. In [14] D. Kraus proved that f has a finite angular derivative
at almost every point of the unit circle if and only if for almost every point ξ ∈ T
we have µ(f)(z) → 0 as z tends non-tangentially to ξ.

Consider the accumulated Möbius distortion defined as

(3) A(f)(ξ) =

∫ 1

0

µ(f)(rξ)
2dr

1− r2
, ξ ∈ T.

The following pointwise estimate has been recently proved in [7] and [13] (see also
[11]): for every analytic self-mapping f of the unit disc that fixes the origin, we
have

(4) A(f)(ξ) ≤ log |f ′(ξ)|, ξ ∈ T.

It is worth mentioning that a converse estimate of the form log |f ′(ξ)| ≤ C1A(f)(ξ)+
C2 where C1, C2 are absolute constants, can not hold. This can be seen by taking
f(z) = z(z − a)/(1 − az) where 0 < a < 1 for which f ′(1) = 2/(1 − a) and
A(f)(1) = log(1 + a) + log 2. However recently, P. Gumenyuk, M. Kourou, A.
Moucha and O. Roth and independently O. Ivrii and M. Urbanski, have proved
that for any analytic mapping f : D → D and any point ξ ∈ T, the angular
derivative |f ′(ξ)| is finite if and only if A(f)(ξ) < ∞. See [7] and Theorem B.1
of [13]. The main purpose of this note is to show that even if log |f ′| and A(f) are
not pointwise comparable, they still belong to the same Lp(T) spaces, 0 < p < ∞.

Theorem 1.1. Fix 0 < p < ∞. Let f : D → D be an inner function. Then f has
finite L(p)-entropy, that is log |f ′| ∈ Lp(T), if and only if A(f) ∈ Lp(T).

When p = 1 the result follows easily from Green’s Formula and the identity

(5) ∆

(
log

1− |f(z)|2

1− |z|2

)
=

4(1−Dh(f)(z)
2)

(1− |z|2)2
, z ∈ D,
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which one can check by direct calculation. The general case p ̸= 1 is harder and
follows from the following good-λ inequality.

Theorem 1.2. Given 0 < η < 1 and M > 2 there exist constants 0 < ϵ < 1 and
λ0 > 0 such that for any λ > λ0 and any inner function f : D → D with f(0) = 0,
we have that

m({ξ ∈ T : log |f ′(ξ)| ≥ Mλ and A(f)(ξ) ≤ ϵλ}) ≤ ηm({ξ ∈ T : log |f ′(ξ)| ≥ λ}).

Roughly speaking, Theorem 1.2 says in a quantitative way that, even though
log |f ′| and A(f) are not pointwise comparable, the set of points ξ ∈ T where
log |f ′(ξ)| is large and A(f)(ξ) is small, has a small measure. Our result is inspired
by the classical good λ-inequalities of Fefferman and Stein which relate the size of
the non-tangential maximal function of a harmonic function and the size of its Lusin
area function. See [5]. These estimates have been complemented and extended to
different contexts. See for instance [2]. The proof of Theorem 1.2 uses stopping
time arguments, Green’s Formula and the identity (5) and it is the most technical
part of the paper.

Recall that any inner function f factors as f = BSµ where B is a Blaschke
product and Sµ is a singular inner function defined as

(6) Sµ(z) = exp

(
−
∫
T

ξ + z

ξ − z
dµ(ξ)

)
, z ∈ D,

where µ is a finite positive Borel measure on T singular with respect to the Lebesgue
measure m. Given a closed set E ⊂ T let dist (ξ, E) denote the distance from ξ to
E. Fix 0 < p < ∞. A closed subset E ⊂ T of Lebesgue measure zero will be called
a C(p)-Beurling–Carleson set if∫

T
| log dist (ξ, E) |pdm(ξ) < ∞.

Note that C(1)-Beurling–Carleson sets are the classical Beurling–Carleson sets which
appear in many problems in function theory. See for instance the references in [12].
Our next result relates the support of a singular measure µ with the L(p)-entropy
of Sµ, extending the corresponding result for p = 1 proved in [9]. See also [12, The-
orem 2].

Theorem 1.3. Fix 0 < p < ∞. Let µ be a finite positive Borel measure on T which
is singular with respect m and let Sµ be the corresponding singular inner function
defined in (6). Consider the following conditions:

(1) The measure µ is supported in a C(p)-Beurling–Carleson set.
(2) Sµ has finite L(p)-entropy, that is, log |S′

µ| ∈ Lp(T).
(3) For every 0 < c < 1, the integral∫

{z∈D:|Sµ(z)|<c}

| log(1− |z|)|p−1

1− |z|
dA(z)

converges.
(4) There exists 0 < c < 1 such that the integral∫

{z∈D:|Sµ(z)|<c}

| log(1− |z|)|p−1

1− |z|
dA(z)

converges.
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(5) The measure µ is concentrated in a countable union of C(p)-Beurling–
Carleson sets.

Then, the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) hold.

Fix 0 < p < ∞. A positive finite Borel measure µ on T which is singular
with respect m will be called L(p)-invisible if for every non-trivial positive measure
ν ≤ µ, the corresponding singular inner function Sν satisfies log |S′

ν | /∈ Lp(T). The
case p = 1 was already considered in [9]. As a direct consequence of Theorem 1.3,
we have the following description of L(p)-invisible measures which in the case p = 1
was already proved in [9].

Corollary 1.4. A positive finite Borel measure µ on T which is singular with
respect to the Lebesgue measure m, is L(p)-invisible if and only if µ(E) = 0 for any
C(p)-Beurling–Carleson set E.

This paper is organised in three further sections. The next section is devoted to
some auxiliary results which will be used in the proofs of Theorem 1.1 and Theorem
1.2 which are given in Section 3. Lastly, in Section 4 we prove Theorem 1.3.

We will use the letter C to denote different absolute constants whose values may
change from line to line.

2. Preliminaries

Given an analytic mapping f : D → D consider

(7) G(f)(z) = log
1− |f(z)|2

1− |z|2
, z ∈ D.

For a point z ∈ D \ {0} we will denote by I(z) the subarc of T, centered at z/|z|
with m(I(z)) = 1 − |z|. We start with some elementary properties of G(f) which
will be used in the proof of Theorem 1.2.

Lemma 2.1. Let f : D → D be an analytic mapping and consider G(f) as defined
in (7). Then,

(a) There exists a universal constant C > 0 such that |G(f)(z) − G(f)(w)| ≤
Cdh(z, w) for any z, w ∈ D.

(b) There exists a universal constant C > 0 such that G(f)(w) ≥ G(f)(z) − C
for any z, w ∈ D with I(w) ⊂ I(z).

(c) The inequality | log |z|||∇G(f)(z)| ≤ 4 holds for any z ∈ D with 1
2 < |z| < 1.

Proof. (a) Note that

G(f)(z)−G(f)(w) = log
1− |f(z)|2

1− |f(w)|2
+ log

1− |w|2

1− |z|2
, z, w ∈ D.

Since there exists an absolute constant C1 > 0 such that

(8)

∣∣∣∣log 1− |w|2

1− |z|2

∣∣∣∣ ≤ C1dh(z, w), z, w ∈ D,

Schwarz’s Lemma gives that |G(f)(z) − G(f)(w)| ≤ 2C1dh(z, w), z, w ∈ D, which
gives the estimate in (a).

(b) Note that

G(f)(w)−G(f)(z) = log
1− |z|2

1− |w|2
+ dh(0, f(z))− dh(0, f(w)) + 2 log

1 + |f(w)|
1 + |f(z)|

,
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for any z, w ∈ D. Observe that there exists an absolute constant C1 > 0 such that
for any z, w ∈ D with I(w) ⊂ I(z), we have

log
1− |z|2

1− |w|2
≥ dh(z, w)− C1.

The triangular inequality gives that

G(f)(w)−G(f)(z) ≥ dh(z, w)− C1 − dh(f(z), f(w))− 2 log 2

and Schwarz’s Lemma finishes the proof.
(c) Given a differentiable function u : D → R we use the notation ∇u(z) =

ux(z) + iuy(z), z ∈ D. A simple computation shows that ∇ log(1 − |f(z)|2) =

−2f ′(z)f(z)/(1− |f(z)|2), z ∈ D. Thus

∇G(f)(z) = 2
z

1− |z|2
− 2

f ′(z)f(z)

1− |f(z)|2
, z ∈ D.

Since − log |z| ≤ 1− |z|2 for any 1
2 < |z| < 1, applying Schwarz-Pick inequality we

get that

| log |z|||∇G(f)(z)| ≤ 2
∣∣z−f ′(z)f(z)

1− |z|2

1− |f(z)|2
∣∣ ≤ 2+2Dh(f)(z) ≤ 4,

1

2
< |z| < 1.

□

For 1 ≤ p < ∞, let Np be the class of analytic functions g in D such that

sup
0<r<1

∫
T
(log+ |g(rξ)|)pdm(ξ) < ∞.

These classes were first considered by I. Privalov. Note that N1 is the Nevanlinna
class. For p > 1, Privalov proved that g ∈ Np if and only if g factors as g = IE,
where I is an inner function and E is an outer function whose boundary values
satisfy log |E| ∈ Lp(T). See [17, pag. 93]. Our next auxiliary result relates inner
functions with finite L(p)-entropy with the corresponding Privalov class.

Lemma 2.2. Let f be an inner function and 1 ≤ p < ∞. Then f has finite
L(p)-entropy if and only if f ′ ∈ Np.

Proof. Since G(f)(rξ) → log |f ′(ξ)| as r → 1 for any ξ ∈ T, Schwarz-Pick inequality
and part (b) of Lemma 2.1 provide an absolute constant C > 0 such that

|f ′(rξ)| ≤ 1− |f(rξ)|2

1− r2
≤ C|f ′(ξ)|, 0 < r < 1, ξ ∈ T.

Hence if f has finite L(p)-entropy, then f ′ ∈ Np. Conversely assume that f ′ ∈ Np.
Then f ′ has radial limits atm-almost every point of the unit circle and thus, Fatou’s
lemma finishes the proof.

□

In the proof of Theorem 1.2 we will also use the following technical result.

Lemma 2.3. There exists an absolute constant C > 0 such that for any analytic
mapping f : D → D, for any 0 < ℓ < 1 and for any pair of points z = |z|ξ1, w =
|w|ξ2 ∈ D with |z| > ℓ and |w| > ℓ, we have

(9)
∣∣ ∫ |z|

ℓ

µ(f)(sξ1)
2ds

1− s2
−

∫ |w|

ℓ

µ(f)(sξ2)
2ds

1− s2
∣∣ ≤ Cdh(z, w).
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Proof. Since dh(|z|, |w|) ≤ dh(z, w) for any z, w ∈ D, it is sufficient to show that
there exists a universal constant C > 0 such that

(10)
∣∣ ∫ |z|

ℓ

Dh(f)(sξ1)
2ds

1− s2
−

∫ |w|

ℓ

Dh(f)(sξ2)
2ds

1− s2
∣∣ ≤ Cdh(z, w), z, w ∈ D.

It is well known that

dh(Dh(f)(z), Dh(f)(w)) ≤ 2dh(z, w), z, w ∈ D,

(see [3, Corollary 3.7]). Using the elementary estimate 2x ≤ log(1+ x)− log(1− x)
for 0 ≤ x < 1, we deduce that

ρ(Dh(f)(sξ1), Dh(f)(sξ2)) ≤ dh(sξ1, sξ2), 0 ≤ s < 1.

Hence

|Dh(f)(sξ1)−Dh(f)(sξ2)| ≤ 2dh(sξ1, sξ2), 0 ≤ s < 1.

We first assume that |z| = |w| and dh(z, w) ≤ 1. Then there exists a universal
constant C1 > 0 such that dh(sξ1, sξ2) ≤ C1|z − w|/(1 − s2) for any 0 < s < |z|.
Hence the left hand side of (10) is bounded by

4C1

∫ |z|

ℓ

|z − w|
(1− s2)2

ds ≤ 4C1
|z − w|
1− |z|

≤ Cdh(z, w),

where C > 0 is an absolute constant.
Assume now that dh(z, w) ≤ 1 but |z| ≠ |w|. We can assume |z| < |w|. Let I

denote the left hand side of (10) and consider the point z∗ = |z|ξ2. The previous
argument shows that

I ≤ Cdh(z, z
∗) +

∫ |w|

|z|
Dh(f)(sξ2)

2ds

1− s2
.

Since the last integral is bounded by dh(z
∗, w) we deduce that I ≤ Cdh(z, z

∗) +
dh(z

∗, w). Now the estimate dh(z, z
∗) + dh(z

∗, w) ≤ C2dh(z, w) finishes the proof
in this case.

Finally assume that dh(z, w) > 1. Let N be the positive integer satisfying
N < dh(z, w) ≤ N + 1. Pick points z0 = z, z1, . . . , zN = w with dh(zk, zk+1) ≤ 1,
k = 0, 1, . . . N − 1. The previous argument gives that∣∣ ∫ |zk+1|

ℓ

Dh(f)(s
zk+1

|zk+1|
)

2ds

1− s2
−

∫ |zk|

ℓ

Dh(f)(s
zk
|zk|

)
2ds

1− s2
∣∣ ≤ C.

Adding over k = 0, . . . , N − 1 one finishes the proof.
□

Let Γ(ξ, α) = {z ∈ D : |z − ξ| < α(1 − |z|)} be the Stölz angle with vertex at
ξ ∈ T and aperture α > 1. Given an analytic self-mapping f of the unit disc,
consider its conical accumulated Möbius distortion defined as

(11) Bα(f)(ξ) =

∫
Γ(ξ,α)

µ(f)(z)
dA(z)

(1− |z|2)2
, ξ ∈ T.

It turns out that Bα(f) and A(f) are pointwise comparable.

Lemma 2.4. Given α > 1 there exists a constant C(α) > 0 such that for any
analytic self-mapping f of the unit disc and any point ξ ∈ T one has

C(α)−1A(f)(ξ) ≤ Bα(f)(ξ) ≤ C(α)A(f)(ξ).
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Proof. By [3, Corollary 3.7], we have that dh(Dh(f)(z), Dh(f)(w)) ≤ 2dh(z, w) for
any pair of points z, w ∈ D. Thus, for any C1 > 0 there exists a positive constant
C2 > 1 such that

C−1
2 µ(f)(w) ≤ µ(f)(z) ≤ C2µ(f)(w),

for any pair of points z, w ∈ D with dh(z, w) ≤ C1. Hence fixed α > 1, there exists
a constant C = C(α) > 1 such that

C−1µ(f)(rξ) ≤ µ(f)(z) ≤ Cµ(f)(rξ)

for any pair of points z, rξ ∈ D with z ∈ Γ(ξ, α) and (1− r)/2 < 1− |z| < 2(1− r).
We deduce that

C−1A(f)(ξ) ≤ Bα(f)(ξ) ≤ CA(f)(ξ).

□

3. Proof of Theorem 1.1

We start with the pointwise estimate mentioned in the Introduction which was
already proved in [7] and [13]. For the sake of completeness we give its short proof.

Lemma 3.1. Let f : D → D be an analytic function with f(0) = 0. Then A(f)(ξ) ≤
log |f ′(ξ)| for any ξ ∈ T.

Proof. Fix ξ ∈ T. We can assume |f ′(ξ)| < ∞ and hence f has radial limit of
modulus 1 along the radius ending at ξ. Since

dh(f(Rξ), 0) ≤
∫ R

0

Dh(f)(rξ)
2dr

1− r2
, 0 < R < 1,

we have ∫ R

0

(1−Dh(f)(rξ))
2dr

1− r2
≤ dh(0, Rξ)− dh(f(Rξ), 0) =

= log
1− |f(Rξ)|

1−R
+ log

1 +R

1 + |f(Rξ)|
, 0 < R < 1.

The estimate follows by taking R → 1.
□

We now introduce some notation. Given an arc I ⊂ T we consider the Carleson
box Q = Q(I) = {rξ : ξ ∈ I, 0 < 1 − r ≤ m(I)}. If Q = Q(I) is a Carleson
box, it is costumary to denote ℓ(Q) = m(I). Given a Carleson box Q denote by
I(Q) = {z/|z| : z ∈ Q} its radial projection on the unit circle and T (Q) = {z ∈
Q : 1 − |z| = ℓ(Q)} its top side. Note that I(Q(I)) = I. Also ξ(I) denotes the
center of the arc I and z(Q) = (1 − ℓ(Q))ξ(I(Q)) the center of T (Q). The dyadic
decomposition of an arc I ⊂ T into dyadic subarcs {Ij,k} gives the corresponding
dyadic decomposition of the Carleson box Q(I) into dyadic subboxes {Q(Ij,k)}.

Given a Carleson box Q we consider the local accumulated Möbius distortion
defined as

(12) AQ(f)(ξ) =

∫ 1

1−ℓ(Q)

µ(f)(rξ)
2dr

1− r2
, ξ ∈ I(Q).

Next auxiliary result is the main step in the proof of Theorem 1.2.
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Lemma 3.2. There exists a universal constant C > 0 such that the following
statement holds. Let f be an inner function with f(0) = 0. Let a, b, c > 0 be
positive constants and let Q ⊂ {z ∈ C : 1

2 < |z| < 1} be a Carleson box such that
G(f)(z(Q)) = a. Consider the set

E(b, c) = {ξ ∈ I(Q) : log |f ′(ξ)| ≥ b and AQ(f)(ξ) ≤ c}.

Then

(b− a)m(E(b, c)) ≤ C(c+ 1)m(I(Q)).

Proof. Given a Carleson box R ⊂ Q we denote by L(R) = [0, z(R)] ∩ Q the piece
of the radial segment joining the origin and the point z(R), contained in Q. By
Lemma 2.3 there exists a universal constant C0 > 0 such that for any Carleson box
R ⊂ Q and any point w ∈ T (R) we have∣∣∣∣∣

∫
L(R)

µ(f)(z)
2|dz|

1− |z|2
−

∫
[0,w]∩Q

µ(f)(z)
2|dz|

1− |z|2

∣∣∣∣∣ ≤ C0.

Now we use the following stopping time argument. Let {Rj} be the collection of
maximal dyadic Carleson sub-boxes of Q such that∫

L(Rj)

µ(f)(z)
2|dz|

1− |z|2
> c+ C0.

Note that the maximality and Lemma 2.3 give that there exists a universal constant
C > 0 such that

(13) c+ C0 <

∫
L(Rj)

µ(f)(z)
2|dz|

1− |z|2
< c+ C0 + C.

The choice of C0 gives that

(14)

∫
[0,w]∩Q

µ(f)(z)
2|dz|

1− |z|2
> c,

for any w ∈ T (Rj) and any Rj ∈ {Rj}. Let us define B = Q \ ∪jRj and Bn =
B ∩ {z ∈ D : |z| ≤ rn} where rn = 1 − 2−nℓ(Q). Applying Green’s formula to the
functions G(f) defined in (7) and v(z) = − log |z|, we have that

(15)

∫
∂Bn

(
v(z)

∂G(f)(z)

∂n
−G(f)(z)

∂v(z)

∂n

)
dσ(z) =

∫
Bn

v(z)∆(G(f)(z))dA(z),

where dA denotes the area measure and dσ denotes the linear measure on ∂Bn. Let
us name these integrals as

I1 =

∫
∂Bn

v(z)
∂G(f)(z)

∂n
dσ(z),

I2 =

∫
∂Bn

G(f)(z)
∂v(z)

∂n
dσ(z),

and

I3 =

∫
Bn

v(z)∆(G(f)(z))dA(z).

First we estimate I1. By Lemma 2.1, part (c), we have

(16) |I1| = |
∫
∂B

v(z)
∂G(f)(z)

∂n
dσ| ≤ 4σ(∂B) ≤ Cm(I(Q)).
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For I2, note that one can decompose ∂Bn = Cn ∪Dn with

Cn = T (Q) ∪ (∪AnT (Rj)) ∪ Jn,

where An is the subfamily of those Rj with ℓ(Rj) ≥ 1− rn and Jn ⊂ {z ∈ D : |z| =
rn}, while Dn is contained in a finite union of radius emanating from the origin.
Roughly speaking, ∂Bn is decomposed in a circular part Cn and a radial part Dn.
Since v is radial, its normal derivative vanishes on Dn. On the other hand

∂v(z)

∂n
=

−1

|z|
, z ∈ T (Q);

∂v(z)

∂n
=

1

|z|
, z ∈ Cn \ T (Q).

Hence

(17) I2 =
∑
An

1

|z(Rj)|

∫
T (Rj)

G(f)dσ +
1

rn

∫
Jn

G(f)dσ − 1

|z(Q)|

∫
T (Q)

G(f)dσ.

Since G(f)(zQ) = a and m(I(Q)) = σ(T (Q))/|z(Q)| , part (a) of Lemma 2.1 gives
that there exists an absolute constant C > 0 such that

(18)

∣∣∣∣∣ 1

|z(Q)|

∫
T (Q)

G(f)dσ − am(I(Q))

∣∣∣∣∣ ≤ Cm(I(Q))

Since

m(I(Q)) =
∑
An

ℓ(Rj) +m(r−1
n Jn),

from (17) and (18), we deduce that

(19) I2 =
∑
An

1

|z(Rj)|

∫
T (Rj)

(G(f)− a)dσ +
1

rn

∫
Jn

(G(f)− a)dσ +K,

where |K| ≤ Cm(I(Q)).
Let us now turn our attention to I3. By identity (5), we have

I3 =

∫
Bn

v(z)∆(G(f)(z))dA(z) ≤ 8

∫
Bn

| log |z||µ(f)(z) dA(z)

(1− |z2|)2
.

Let L(ξ) = [0, ξ] ∩ Bn. Now Fubini’s theorem, estimate (13) and the choice of C0

give that

(20) I3 ≤ C

∫
I(Q)

∫
L(ξ)

µ(f)(rξ)
2dr

1− r2
dξ ≤ C(C + 2C0 + c)m(I(Q)).

Combining the above estimates (16), (19), (20), from Green’s formula in (15) we
derive that there exists a universal constant C > 0 such that

1

rn

∫
Jn

(G(f)− a)dσ +
∑
An

1

|z(Rj)|

∫
T (Rj)

(G(f)− a)dσ ≤ C(1 + c)m(I(Q)).

By part (b) of Lemma 2.1, there exists a universal constant C1 > 0 such that
G(f)(z)−a+C1 ≥ 0 for any z ∈ ∪jRj ∪Jn. We deduce that there exist a universal
constant C > 0 such that

(21)
1

rn

∫
Jn

(G(f)− a)dσ ≤ C(c+ 1)m(I(Q)).
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Consider En(b, c) = {z ∈ Q : |z| = rn, G(f)(z) ≥ b and AQ(f)(z/|z|) ≤ c}. Note
that by (14) we have Jn ⊃ En(b, c). Thus, by (21)

C(1 + c)m(I(Q)) ≥
∫
En(b,c)

(G(f)− a)dσ ≥ (b− a)m(En(b, c)).

Therefore it suffices to notice that lim supm(En(b, c)) ≥ m(E(b, c)) which follows
from the observation that E(b, c) ⊂ lim inf r−1

n En(b, c). □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let C0 > 0 be the maximum of the universal constants
C appearing in Lemma 2.1, and let λ0 > 3C0 be a constant to be fixed later. Fix
λ > λ0. Let A = {Qj} be the collection of maximal dyadic Carleson boxes Q such
that

sup{G(f)(z) : z ∈ T (Q)} > λ+ λ0.

Since G(f)(0) = 0, part (a) of Lemma 2.1 gives that ℓ(Qj) < 1/2 for any Qj ∈
A. Fix Qj ∈ A and let Q∗

j be the dyadic Carleson box which contains Qj with
ℓ(Q∗

j ) = 2ℓ(Qj). The maximality gives that sup{G(f)(z) : z ∈ T (Q∗
j )} < λ + λ0.

Since part (a) of Lemma 2.1 gives that |G(f)(z)−G(f)(w)| ≤ 2C0 for any pair of
points z ∈ T (Qj), w ∈ T (Q∗

j ), we deduce that

(22) λ ≤ G(f)(z(Qj)) ≤ λ+ λ0 + 2C0.

By part (b) of Lemma 2.1 we have

(23) ∪jI(Qj) ⊂ {ξ ∈ T : log |f ′(ξ)| > λ}.
By construction we have log |f ′(ξ)| ≤ λ + λ0 for any ξ ∈ T \ ∪I(Qj). Fix M > 2.
Since λ > λ0 we have

{ξ ∈ T : log |f ′(ξ)| > Mλ} ⊂ ∪I(Qj).

Fix Qj ∈ A. Apply Lemma 3.2 with a = G(f)(z(Qj)), b = Mλ and c = ϵλ to
obtain

m({ξ ∈ I(Qj) : log |f ′(ξ)| > Mλ,A(f)(ξ) < ϵλ}) ≤ C
ϵλ+ 1

Mλ−G(f)(z(Qj))
ℓ(Qj),

where C > 0 is an absolute constant. By (22) we have

ϵλ+ 1

Mλ−G(f)(z(Qj))
≤ ϵλ+ 1

(M − 1)λ− λ0 − 2C0
≤ ϵ+ 1/λ0

(M − 2)− 2C0/λ0
.

Given 0 < η < 1, taking 0 < ϵ < 1 sufficiently small and λ0 > 0 sufficiently large,
we deduce

C
ϵ+ 1/λ0

(M − 2)− 2C0/λ0
< η.

Hence
m({ξ ∈ I(Qj) : log |f ′(ξ)| > Mλ,A(f)(ξ) < ϵλ}) ≤ η ℓ(Qj).

Summing over j = 1, 2, . . . and applying (23), the proof is completed. □

Theorem 1.1 follows from Theorem 1.2 by standard methods.

Proof of Theorem 1.1. Composing f with an automorphism of the unit disc,
if necessary, we can assume that f(0) = 0. By Lemma 3.1 we only need to show
that log |f ′| ∈ Lp(T) if A(f) ∈ Lp(T). Since f(0) = 0, Schwarz lemma gives that
|f ′(ξ)| ≥ 1 for any ξ ∈ T. We use the notation E(λ) = {ξ ∈ T : log |f ′(ξ)| ≥ λ}
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for λ > 0. Fix M > 2 and apply Theorem 1.2 with η = 2−1M−p to find constants
0 < ϵ < 1 and λ0 > 1 such that

m({ξ ∈ E(Mλ) : A(f)(ξ) ≤ ϵλ}) ≤ 1

2Mp
m(E(λ)),

for any λ > λ0. Then∫
E(Mλ0)

(log |f ′|)p = pMp

∫ ∞

λ0

λp−1m(E(Mλ))dλ

≤ p

2

∫ ∞

λ0

λp−1m(E(λ))dλ+ pMp

∫ ∞

λ0

λp−1m({ξ ∈ T : A(f)(ξ) ≥ ϵλ})dλ

≤ 1

2
∥ log |f ′|∥pLp +

(
M

ϵ

)p

∥A(f)∥pLp .

Hence

∥ log |f ′|∥pLp ≤ 1

2
∥ log |f ′|∥pLp +Mpϵ−p∥A(f)∥pLp + (Mλ0)

p,

which finishes the proof. □
Note that the previous proof shows that given 0 < p < ∞ there exist constants

C1, C2 > 0 depending on p, such that for any analytic mapping f of the unit disc
with f(0) = 0, we have

∥A(f)∥pLp ≤ ∥ log |f ′|∥pLp ≤ C1∥A(f)∥pLp + C2.

The authors do not know if one can take C2 = 0 in the estimate above.

4. Singular Inner Functions and C(p)-Beurling–Carleson sets

We will use the following auxiliary result from [12, Lemma 3.1].

Lemma 4.1. Let E ⊂ T be a closed set of Lebesgue measure zero. Denote by {Ij}
the collection of its complementary arcs, that is, T \E = ∪Ij. Fix 0 < p < ∞. The
following conditions are equivalent:

(a) E is a C(p)-Beurling–Carleson set.
(b)

∑
|Ij || log |Ij ||p < ∞.

(c)
∑

|I|| log |I||p−1 < ∞, where the sum is taken over all dyadic arcs of T that
meet E.

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3.

(1) ⇒ (2) Assume µ is supported in a C(p)-Beurling–Carleson set E ⊂ T. Since∣∣∣∣S′
µ(z)

Sµ(z)

∣∣∣∣ = ∣∣∣∣∫
T

2ξ

(ξ − z)2
dµ(ξ)

∣∣∣∣ ≤ 2µ(T) dist(z, E)−2, z ∈ T \ E,

it suffices to show that the integral∫
T\E

| log dist(z, E)|pdm(z),

converges. Consider the complementary arcs {Ij} of E, that is, T \ E = ∪jIj to
write the above integral as∑

j

∫
Ij

| log dist(z, E)|pdm(z).
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Since there exists a constant C > 0 such that∫
Ij

| log dist(z, E)|pdm(z) ≤ C|Ij || log |Ij ||p, j = 1, 2, . . . ,

Lemma 4.1 finishes the proof.
(2) ⇒ (3) This implication holds for any inner function f . Recall that Ahern

proved the estimate |f ′(rξ)| ≤ 4|f ′(ξ)| for any 0 ≤ r < 1, any ξ ∈ T and any inner
function f . See Lemma 6.1 of [1] or [16]. Then

1− |f(rξ)| ≤
∫ 1

r

|f ′(sξ)|ds ≤ 4|f ′(ξ)|(1− r), 0 < r < 1, ξ ∈ T.

Fix 0 < c < 1. Using the notation

I =

∫
{z∈D:|f(z)|<c}

| log(1− |z|)|p−1

1− |z|
dA(z),

we have that

I =

∫ 1

0

r| log(1− r)|p−1

1− r
m({ξ ∈ T : |f(rξ)| < c})dr

≤
∫ 1

0

| log(1− r)|p−1

1− r
m({ξ ∈ T : log |f ′(ξ)| > log

1− c

4(1− r)
})dr.

Using the change of variables x = − log(1− r), we obtain

I ≤
∫ ∞

0

xp−1m({ξ ∈ T : log |f ′(ξ)| > x+ log(1− c)− 2 log 2})dx

which is finite whenever log |f ′| ∈ Lp(T).
(3) ⇒ (4) This implication is obvious.
(4) ⇒ (5) In order to prove this implication we will make use of the heavy-light
decomposition from [12, Section 4.1] which we now briefly recall. Let µ be a positive

finite Borel singular measure on T and fix M > 0. Let {I(1)j } be the family of
maximal dyadic arcs of T such that

µ(I
(1)
j )

m(I
(1)
j )

≥ M.

In each arc I
(1)
j , consider the family {J (1)

k } of maximal dyadic subarcs of I
(1)
j such

that

µ(J
(1)
k )

m(J
(1)
k )

≤ M

100
.

In each J
(1)
k we again find the maximal dyadic arcs {I(2)j } contained in J

(1)
k such

that

µ(I
(2)
j )

m(I
(2)
j )

≥ M.

Continuing this construction we are left with two families of arcs {I(l)j } and {J (l)
k }

which satisfy the following properties:
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(1) For any j, l we have that∑
k:J

(l)
k ⊂I

(l)
j

m(J
(l)
k ) = m(I

(l)
j ).

(2) For any j, l we have that∑
k:I

(l+1)
k ⊂J

(l)
j

m(I
(l+1)
k ) ≤ 1

M
µ(J

(l)
j ) ≤

m(J
(l)
j )

100
.

(3) The measure µ is concentrated on

⋃
j,l

I
(l)
j \

⋃
k:J

(l)
k ⊂I

(l)
j

(J
(l)
k )◦

 ,

where (J
(l)
k )◦ denotes the interior of J

(l)
k

The arcs J
(l)
k are called light and I

(l)
j are called heavy arcs of the measure µ.

Now let us return to the proof of (4) ⇒ (5). Let {I(i)j }, {J (l)
k } be the heavy-light

decomposition of µ. Then it suffices to show that Ej,l = I
(l)

j \ ∪kJ
(l)
k is a C(p)-

Beurling–Carleson set for any j, l. Fix Ej,l. Let B = B(j, l) be the collection of
dyadic arcs I of T with m(I) < m(I lj) that meet Ej,l. Let I ∈ B and write TI =

{z ∈ D : z/|z| ∈ I, |I|
2 < 1− |z| < |I|}. Then by construction, µ(I) > Mm(I)/100.

Hence there exists an absolute constant C > 0 such that P [µ](z) ≥ CM for all
z ∈ TI . Here P [µ] denotes the Poisson integral of the measure µ. Since there exists
an absolute constant C1 > 0 such that∫

TI

| log(1− |z|)|p−1

1− |z|
dA(z) ≥ C1|I|| log |I||p−1,

we get that

C1

∑
I∈B

|I|| log |I||p−1 ≤
∫
{z∈D:P [µ](z)≥CM}

| log(1− |z|)|p−1

1− |z|
dA(z).

Choosing an appropriate constant M , Lemma 4.1 finishes the proof . □
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[3] A. F. Beardon and D. Minda. A multi-point Schwarz-Pick lemma. J. Anal. Math., 92:81–104,

2004.

[4] M. Craizer. Entropy of inner functions. Israel J. Math., 74(2-3):129–168, 1991.
[5] C. Fefferman and E. M. Stein. Hp spaces of several variables. Acta Math., 129(3-4):137–193,

1972.
[6] J. B. Garnett. Bounded analytic functions, volume 236 of Graduate Texts in Mathematics.

Springer, New York, first edition, 2007.

[7] P. Gumenyuk, M. Kourou, A. Moucha, and O. Roth. Hyperbolic distortion and conformality
at the boundary, 2024. arXiv:2410.13965.

[8] M. Heins. On a class of conformal metrics. Nagoya Math. J., 21:1–60, 1962.



14 KONSTANTINOS BAMPOURAS AND ARTUR NICOLAU

[9] O. Ivrii. Prescribing inner parts of derivatives of inner functions. J. Anal. Math., 139(2):495–

519, 2019.

[10] O. Ivrii and U. Kreitner. Critical values of inner functions. Adv. Math., 452:Paper No. 109815,
43, 2024.

[11] O. Ivrii and A. Nicolau. Analytic mappings of the unit disk which almost preserve hyperbolic

area. Proc. London Math. Soc., 129(5):e70001, 2024.
[12] O. Ivrii and A. Nicolau. Beurling-Carleson sets, inner functions and a semilinear equation.

Anal. PDE, 17(7):2585–2618, 2024.
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