INNER FUNCTIONS, MOBIUS DISTORTION AND ANGULAR
DERIVATIVES

KONSTANTINOS BAMPOURAS AND ARTUR NICOLAU

ABSTRACT. We prove that an inner function has finite £(p)-entropy if and
only if its accumulated Mobius distortion is in LP, 0 < p < co. We also study
the support of the positive singular measures such that their corresponding
singular inner functions have finite £(p)-entropy.

1. INTRODUCTION

Let D be the open unit disc in the complex plane and let dj(z,w) denote the
hyperbolic distance between the points z,w € D given by

2|dg]| 1+ p(z,w)
(z,w) mf/ = log ,
1—|¢[? 1= p(z,w)

where the infimum is taken over all curves v contained in D joining z and w and
p(z,w) = |z — wl|/|l —wz|, z,w € D. The Schwarz lemma says that any analytic
self-mapping f of the unit disc is a contraction in the hyperbolic metric, that
is, dp(f(2), f(w)) < dp(z,w) for any z,w € D, or equivalently, the hyperbolic
derivative of f, denoted by Dy, f, satisfies

(1 [P (2)
- fF "

Moreover, equality at a single point implies equality at every point in the unit disc
and that f is an automorphism of D.

An analytic self-mapping f of the unit disc is said to have a finite angular
derivative (in the sense of Carathéodory) at a point £ € T if lim, ;1 f(r€) exists
and belongs to the unit circle and lim,_,; f'(r§) exists. In this case, we write
|/ (&)] = lim,—q |f'(r€)]. Tt is well known that f has a finite angular derivative at
a point £ € T if and only if

z € D.

(1) Dy f(z) =

e L= F()]
(2) hgnal?fl—7|z| < 0.
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2 KONSTANTINOS BAMPOURAS AND ARTUR NICOLAU

If f does not have a finite angular derivative at &, it is customary to set | f'(£)| := oo.
With these notations it is well known that
el — i L= )
(€)= tim =2
where the limit is taken as z € D tends non-tangentially to £. See for instance [6]
or Chapter IV of [18].

Let m be the normalized Lebesgue measure on the unit circle T. Inner func-
tions are analytic self-mappings f of the unit disc such that their radial limits
lim, 1 f(r€) have modulus one at m-almost every point £ € T. Fix 0 < p < 0.
An inner function f has finite £(p)-entropy if its angular derivative |f'(£)]| is finite
at m-almost every point ¢ € T and log|f’(§)| € LP(T). Note that when p = 1
these are the inner functions f with finite entropy, or equivalently, inner functions
whose derivative is in the Nevanlinna class, which were first studied in |4] and have
recently attracted some attention [9,/10,[12}|13].

Let f be an analytic self-mapping of the unit disc. Define the Mdbius distortion
of f as

£eT,

p(f)(z) = 1=Dn(f)(2), zeD.

The Mobius distortion u(f)(z) measures how much f deviates from an automor-
phism of D near z € D. Several natural classes of inner functions can be described
using the Mébius distortion. For instance, M. Heins proved in [8] that u(f)(z) — 0
as |z| — 1 if and only if f is a finite Blaschke product. Local versions of this result
can be found in [15]. In [14] D. Kraus proved that f has a finite angular derivative
at almost every point of the unit circle if and only if for almost every point £ € T
we have u(f)(z) — 0 as z tends non-tangentially to &.
Consider the accumulated Mdbius distortion defined as

Q AN© = [ nNeoTT. ceT

The following pointwise estimate has been recently proved in |7] and [13] (see also
[11]): for every analytic self-mapping f of the unit disc that fixes the origin, we
have

(4) A(f)(©) <log|f' (), €€T.

It is worth mentioning that a converse estimate of the form log | f/(£)| < C1A(f)(€)+
C5 where C1, Cy are absolute constants, can not hold. This can be seen by taking
f(z) = z(z —a)/(1 — az) where 0 < a < 1 for which f'(1) = 2/(1 — a) and
A(f)(1) = log(1l 4+ a) + log2. However recently, P. Gumenyuk, M. Kourou, A.
Moucha and O. Roth and independently O. Ivrii and M. Urbanski, have proved
that for any analytic mapping f : D — D and any point ¢ € T, the angular
derivative |f'(£)| is finite if and only if A(f)(§) < co. See [7] and Theorem B.1
of [13]. The main purpose of this note is to show that even if log|f’| and A(f) are
not pointwise comparable, they still belong to the same LP(T) spaces, 0 < p < o0.

Theorem 1.1. Fiz 0 < p < oo. Let f: D — D be an inner function. Then f has
finite L(p)-entropy, that is log|f’| € LP(T), if and only if A(f) € LP(T).

When p = 1 the result follows easily from Green’s Formula and the identity

—|f(2)]? — 2)?
A<10g11_f|<2|3| )4(1 DAAEY |y

®) GEFRE




INTEGRABILITY OF INNER FUNCTIONS 3

which one can check by direct calculation. The general case p # 1 is harder and
follows from the following good-A inequality.

Theorem 1.2. Given 0 < n < 1 and M > 2 there exist constants 0 < € < 1 and
Ao > 0 such that for any A > Ao and any inner function f:D — D with f(0) =0,
we have that

m({& € T :log|f ()] = MA and A(f)(§) < eA}) <nm({€ € T :log|f'(§)] = A}).

Roughly speaking, Theorem says in a quantitative way that, even though
log |f'| and A(f) are not pointwise comparable, the set of points £ € T where
log |f'(€)] is large and A(f)(€) is small, has a small measure. Our result is inspired
by the classical good A-inequalities of Fefferman and Stein which relate the size of
the non-tangential maximal function of a harmonic function and the size of its Lusin
area function. See [5]. These estimates have been complemented and extended to
different contexts. See for instance [2]. The proof of Theorem uses stopping
time arguments, Green’s Formula and the identity and it is the most technical
part of the paper.

Recall that any inner function f factors as f = BS, where B is a Blaschke
product and S, is a singular inner function defined as

(6) S G == C)

T&—2
where p is a finite positive Borel measure on T singular with respect to the Lebesgue
measure m. Given a closed set E C T let dist (£, E') denote the distance from ¢ to
E. Fix 0 < p < 00. A closed subset £ C T of Lebesgue measure zero will be called
a C(p)-Beurling—Carleson set if

/ |logdist (¢, E) [Pdm(§) < oo.
T

Note that C(1)-Beurling-Carleson sets are the classical Beurling—Carleson sets which
appear in many problems in function theory. See for instance the references in [12].
Our next result relates the support of a singular measure p with the £(p)-entropy
of S,,, extending the corresponding result for p = 1 proved in [9]. See also |12, The-
orem 2].

Theorem 1.3. Fiz 0 < p < co. Let p be a finite positive Borel measure on T which
is singular with respect m and let S,, be the corresponding singular inner function
defined in @ Consider the following conditions:

(1) The measure p is supported in a C(p)-Beurling—Carleson set.
(2) S, has finite L(p)-entropy, that is, log|S,,| € LP(T).
(3) For every 0 < ¢ < 1, the integral

log(1 — |2])[P~
/ | log(1 — [2])] dA(2)
(2€D1|S, (2)|<c} 1— ||
CONVETYES.

(4) There exists 0 < ¢ < 1 such that the integral

log(1 — p—l
/ | log(1 — [2])] dA(2)
(2€D:]S,. (2)|<c} 1—|z]

CONVETJES.
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(5) The measure p is concentrated in a countable union of C(p)-Beurling—
Carleson sets.

Then, the implications (1) = (2) = (3) = (4) = (5) hold.

Fix 0 < p < oo. A positive finite Borel measure p on T which is singular
with respect m will be called £L(p)-invisible if for every non-trivial positive measure
v < p, the corresponding singular inner function S, satisfies log|S,| ¢ LP(T). The
case p = 1 was already considered in [9]. As a direct consequence of Theorem [1.3
we have the following description of £(p)-invisible measures which in the case p = 1
was already proved in [9).

Corollary 1.4. A positive finite Borel measure p on T which is singular with
respect to the Lebesque measure m, is L(p)-invisible if and only if u(E) = 0 for any
C(p)-Beurling—Carleson set E.

This paper is organised in three further sections. The next section is devoted to
some auxiliary results which will be used in the proofs of Theorem[I.I]and Theorem
[1.2] which are given in Section [3] Lastly, in Section [4] we prove Theorem [T.3]

We will use the letter C' to denote different absolute constants whose values may
change from line to line.

2. PRELIMINARIES

Given an analytic mapping f : D — D consider

1—|f(2)]?
(7) mnwrﬁ%kﬂx',zem
For a point z € D\ {0} we will denote by I(z) the subarc of T, centered at z/|z|
with m(I(2)) = 1 — |z|. We start with some elementary properties of G(f) which

will be used in the proof of Theorem

Lemma 2.1. Let f: D — D be an analytic mapping and consider G(f) as defined
n @ Then,

(a) There exists a universal constant C > 0 such that |G(f)(z) — G(f)(w)| <
Cdp(z,w) for any z,w € D.

(b) There exists a universal constant C > 0 such that G(f)(w) > G(f)(z) = C
for any z,w € D with I(w) C I(z).

(¢) The inequality |log |z|||[VG(f)(z)| < 4 holds for any z € D with § < |z| < 1.

Proof. (a) Note that

GU)(=) — G ) = tog ATy 1ol e
1—[f(w)] 1— ||
Since there exists an absolute constant C7 > 0 such that
1—|w]?
1 < D
(8) 0g T e S Cydp(z,w), z,weD,

Schwarz’s Lemma gives that |G(f)(z) — G(f)(w)| < 2C1dp(z,w), z,w € D, which
gives the estimate in (a).
(b) Note that

G(f)(w) — G(f)(2) = log ~

1 — fw]?

+dp(0, £(2)) — dn(0, f(w)) + 2log M

— |2
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for any z,w € D. Observe that there exists an absolute constant C7 > 0 such that

for any z,w € D with I(w) C I(z), we have

1— |22

1—[wf?

The triangular inequality gives that
G(F)(w) = G()(2) = dn(zw) — C1 — du(F(2), f(w)) — 2log2

and Schwarz’s Lemma finishes the proof.
(c¢) Given a differentiable function v : D — R we use the notation Vu(z) =
ug(2) + iuy(2), 2 € D. A simple computation shows that Vleg(l — [f(2)?) =

—2F (@) £(2)/(1 = |f(=)]), = € D. Thus

z f'(2)f(=)
VG(f)(z) =2 -2 , ze€D.
DB =25 ~ 22
Since —log|z| < 1 — |2|? for any 3 < |z| < 1, applying Schwarz-Pick inequality we
get that

log > dp(z,w) — Cy.

|log |2[[[VG(f)(2)] < 2|z f'(2) (= ) |f

1
|2’ <242D(f)() <4, 5 <l <1

O
For 1 < p < o0, let NV, be the class of analytic functions g in D such that

sup / (log™* g(r€)[)Pdm(€) < .

0<r<1
These classes were first considered by I. Privalov. Note that A7 is the Nevanlinna
class. For p > 1, Privalov proved that g € N, if and only if ¢ factors as g = I'E,
where [ is an inner function and E is an outer function whose boundary values
satisfy log |E| € LP(T). See [17, pag. 93]. Our next auxiliary result relates inner
functions with finite £(p)-entropy with the corresponding Privalov class.

Lemma 2.2. Let f be an inner function and 1 < p < oco. Then f has finite
L(p)-entropy if and only if f' € Nj.

Proof. Since G(f)(r§) — log [ (¢)] asr — 1 for any £ € T, Schwarz-Pick inequality
and part (b) of Lemma provide an absolute constant C' > 0 such that

r 2

Hence if f has finite £(p)-entropy, then f’ € N,. Conversely assume that ' € N,.
Then f’ has radial limits at m-almost every point of the unit circle and thus, Fatou’s
lemma finishes the proof.

<CIf' (9], 0<r<1,6eT.

O
In the proof of Theorem [I.2] we will also use the following technical result.

Lemma 2.3. There exists an absolute constant C' > 0 such that for any analytic
mapping f : D — D, for any 0 < £ < 1 and for any pair of points z = |z|&1,w =
|w|é2 € D with |z| > £ and |w| > £, we have

E 5 o]
O [ e - [ s0ee) | < )
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Proof. Since dp(|z|,|w]) < dp(z,w) for any z,w € D, it is sufficient to show that
there exists a universal constant C' > 0 such that

E < l
a0 | [ Dutnsen 2ds Di(1)(562) 1

It is well known that

dn(Dp(f)(2), Dr(f)(w)) < 2dp(z,w), z,w €D,

(see [3, Corollary 3.7]). Using the elementary estimate 2z < log(1+ ) —log(1 — z)
for 0 <z < 1, we deduce that

P(Dr(f)(s61), Dn(f)(s62)) < dn(s€1,862), 0<s <L

’<th(zw) z,w € D.

Hence

[Dn(f)(561) = Dn(f)(s&2)] < 2dn(s81,862), 0 <s<1.
We first assume that |z| = |w| and dp(z,w) < 1. Then there exists a universal
constant C; > 0 such that dj (s, s&2) < C1lz — w|/(1 — s?) for any 0 < s < |z|.
Hence the left hand side of is bounded by

)z - wl | w|
401/e = 52) < 4C, m—p < Cdp(z,w),
where C' > 0 is an absolute constant.

Assume now that dp(z,w) < 1 but |z| # |w|. We can assume |z| < |w|. Let I
denote the left hand side of and consider the point z* = |z|¢3. The previous
argument shows that

lw]
1< i+ [ DA(F)(s2) 22
Since the last integral is bounded by dp(z*,w) we deduce that I < Cdj(z,2*) +
dp(z*,w). Now the estimate dp(z, z*) + dp(2*,w) < Cadp(z,w) finishes the proof
in this case.

Finally assume that djp(z,w) > 1. Let N be the positive integer satisfying

N < dp(z, w) < N + 1. Pick points zg = z,21,...,2y = w with dp (2, 2x+1) < 1,

k=0,1,... N — 1. The previous argument gives that
el z 2d 12| 2d
k+1 S zk S
’ / ) 2 / Dh(f) T .2 | >~
\Zk+1| 1—=s* J, \Zk| l1—s
Adding over kK =0,..., N — 1 one finishes the proof.

O

Let T'(§,a) = {z €D : |z =& < ol —|z])} be the Stolz angle with vertex at
¢ € T and aperture > 1. Given an analytic self-mapping f of the unit disc,
consider its conical accumulated Mobius distortion defined as

dA(z)

(1) BN = [ uhe)g

. feT.
I(€,0) (1—[z?)?

It turns out that B,(f) and A(f) are pointwise comparable.

Lemma 2.4. Given o > 1 there exists a constant C(a) > 0 such that for any
analytic self-mapping f of the unit disc and any point & € T one has

C(a) T A(f)(€) < Bal£)(€) < C(a)A(S)(E).
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Proof. By [3 Corollary 3.7], we have that dj (D, (f)(2), Dn(f)(w)) < 2dp,(z,w) for
any pair of points z,w € . Thus, for any C; > 0 there exists a positive constant
C5 > 1 such that

Cy ' u(f)(w) < u(f)(2) < Cop(f)(w),

for any pair of points z,w € D with dp(z,w) < Cy. Hence fixed a > 1, there exists
a constant C' = C'(«) > 1 such that

Cu(f)(r€) < u(f)(2) < Cu(f)(ré)

for any pair of points z,7{ € D with z € I'(§, ) and (1 —r)/2 < 1—|z| < 2(1 — 7).
We deduce that

CTHA(f)(€) < Ba(f)(€) < CA(f)(©).

3. PROOF OF THEOREM [I.1]

We start with the pointwise estimate mentioned in the Introduction which was
already proved in [7] and [13]. For the sake of completeness we give its short proof.

Lemma 3.1. Let f : D — D be an analytic function with f(0) = 0. Then A(f)(§) <
log [f'(§)| for any § € T.

Proof. Fix £ € T. We can assume |[f'(£)| < oo and hence f has radial limit of
modulus 1 along the radius ending at £. Since

R dr
(R0 < [ DANIO T, 0<R<1,
we have
R 2dr
/0 (1= Da(£)(r€)) ;—5 < dn(0, RE) = di(f(RE),0) =
L= [f(RE) 1+R

The estimate follows by taking R — 1.
O

We now introduce some notation. Given an arc I C T we consider the Carleson
box Q = Q) ={r§: € ,0<1—r <m(}. If Q@ = Q) is a Carleson
box, it is costumary to denote £(Q) = m(I). Given a Carleson box @ denote by
I(Q) = {z/|z| : z € Q} its radial projection on the unit circle and T(Q) = {z €
Q :1—|z| = £(Q)} its top side. Note that I(Q(I)) = I. Also &(I) denotes the
center of the arc I and z(Q) = (1 — £(Q))&(1(Q)) the center of T(Q). The dyadic
decomposition of an arc I C T into dyadic subarcs {I;} gives the corresponding
dyadic decomposition of the Carleson box Q(I) into dyadic subboxes {Q(I;x)}.

Given a Carleson box () we consider the local accumulated Mobius distortion
defined as

(12) 00O = [ o el

Next auxiliary result is the main step in the proof of Theorem [1.2]
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Lemma 3.2. There exists a universal constant C > 0 such that the following
statement holds. Let f be an inner function with f(0) = 0. Let a,b,c > 0 be
positive constants and let Q@ C {z € C: 3 < |z| < 1} be a Carleson box such that
G(f)(2(Q)) = a. Consider the set

E(b,c) ={§ € I(Q) : log|f'(&)| = b and Ag(f)(§) < c}.
Then
(b—a)m(E(b,c)) < Clc+ )m(1(Q)).

Proof. Given a Carleson box R C @ we denote by L(R) = [0, z(R)] N Q the piece
of the radial segment joining the origin and the point z(R), contained in Q). By
Lemma [2.3] there exists a universal constant Cy > 0 such that for any Carleson box
R C @ and any point w € T(R) we have

2| 2|
Lo OO [ HDET g <

Now we use the following stopping time argument. Let {R;} be the collection of
maximal dyadic Carleson sub-boxes of @) such that

2|dz|
z2)———— >c+ Cp.
o, HOOT > e+ Co

Note that the maximality and Lemma|2.3|give that there exists a universal constant
C > 0 such that

2|d
(13) c+ Cy </ w(f)(=) | z|2 <c+Co+C.
L(Ry) 1— ||

The choice of Cy gives that

2|dz|
(14) L PO > e

for any w € T(R;) and any R; € {R;}. Let us define B = Q \ U;R; and B,, =
Bn{zeD:|z| <r,} where r, =1—2""4(Q). Applying Green’s formula to the
functions G(f) defined in (7)) and v(z) = —log |z|, we have that

) [ (% PE a0 2 ) aoe) = [ w@acnienaac)

where dA denotes the area measure and do denotes the linear measure on 0B,,. Let
us name these integrals as

AN G OP
h/aBn () 22N g,

on

B ; ov(z)
n- [ ane%:

do(z),

and

- / 0(2)A(G(f)(2))dA(2).

n

First we estimate I;. By Lemma part (c), we have
9G(f)(2)
(22D

(16) |1 = | v do| < 40(0B) < Cm(1(Q)).
dB n
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For I, note that one can decompose 0B,, = C,, U D,, with

where A, is the subfamily of those R; with ¢(R; ) >1—rpand J, C{zeD:|z| =
rn}, while D,, is contained in a ﬁnlte union of radius emanating from the origin.
Roughly speaking, 0B,, is decomposed in a circular part C,, and a radial part D,,.
Since v is radial, its normal derivative vanishes on D,,. On the other hand

ov(z) -1 o Ov(z) 1
g T ST @ S Ty

2 e O\ T(Q).

Hence
(17) Z =

Since G(f)(2q) = a and m(I(Q)) = o(T(Q))/|2(Q)| , part (a) of Lemma [2.1] gives

that there exists an absolute constant C' > 0 such that

G(f)do + 1 G(f)do

—_— G(f)do.
Rl Jr(r;) T Jg, 12(Q)] Jr) ()do

1

(18) Q) Jro)

G(f)do —am(I(Q))

Since

=Y URj) +m(r, ),
An
from and , we deduce that
(19) Z| (G(f) — a)do + i/] (G(f) — a)do + K,

| T(R;) Tn
where |K| < Cm(I(Q)).
Let us now turn our attention to I3. By identity , we have

= vz z z og |z z L(Z)
b= [ v@AGUIENAR) <8 [ o An(h () ;2 S

Let L(§) = [0,&] N B,. Now Fubini’s theorem, estimate and the choice of Cy
give that

(200 L<C / " / IRIGLE

Combining the above estimates , , , from Green’s formula in we
derive that there exists a universal constant C' > 0 such that

(C+2Cy+ c)ym(1(Q)).

1
o (G( dU+Z|

JW,

o] (G(f) —a)do < C(1 +c)m(I1(Q)).
T(R;)

By part (b) of Lemma there exists a universal constant C; > 0 such that
G(f)(z) —a+C1 > 0 for any z € U;R; U J,. We deduce that there exist a universal
constant C' > 0 such that

(21) L[ @) - aydo < Cle+ 1)m(I(Q)).

Tn JJ,
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Consider E,(b,c) = {z € Q : |z| =y, G(f)(z) > band Ag(f)(2/|z]) < c}. Note
that by we have J,, D FE,(b,c). Thus, by

C+aImt@)= [ (G() - a)do = (b am(En.0)

E, (b,c)
Therefore it suffices to notice that limsup m(E,(b,c)) > m(E(b,c)) which follows
from the observation that E(b,c) C liminfr,E, (b, c). O

We are now ready to prove Theorem

Proof of Theorem Let Cp > 0 be the maximum of the universal constants
C appearing in Lemma and let \g > 3Cy be a constant to be fixed later. Fix
A > Xg. Let A= {Q;} be the collection of maximal dyadic Carleson boxes () such
that

sup{G(f)(2) : z € T(Q)} > A + Xo.

Since G(f)(0) = 0, part (a) of Lemma gives that £(Q);) < 1/2 for any @, €
A. Fix Q; € A and let Q7 be the dyadic Carleson box which contains @; with
£(Q3) = 26(Q;). The maximality gives that sup{G(f)(2) : z € T(Q})} < A+ Ao.
Since part (a) of Lemma [2.1] gives that |G(f)(z) — G(f)(w)| < 2C) for any pair of
points z € T(Q;), w € T(Q}), we deduce that

(22) A< G(f)(2(Q))) < A+ Ao + 2Co.
By part (b) of Lemma[2.1] we have
(23) U;1(Q;) c {€ € T :log|f'(§)] > A}

By construction we have log |f'(§)| < A+ Ao for any £ € T\ UI(Q;). Fix M > 2.
Since A > A\g we have
{€eT:log|f'(&)] > MA} C UI(Q;).

Fix Q; € A. Apply Lemma with ¢ = G(f)(2(Q;)), b = MX and ¢ = € to
obtain

m({§ € 1(Q;) + 1og | f'(E)] > M, A(f)(§) <er}) < C

where C' > 0 is an absolute constant. By we have
ex+1 < ex+1 < e+1/Xo .
MX—=G(f)(2(Q;)) — (M =1)A=Xo—2C, ~ (M —2)—2Co/Ao
Given 0 < n < 1, taking 0 < € < 1 sufficiently small and Ag > 0 sufficiently large,
we deduce

ex+1
M = G(f)(2(Qy))

0(Q;),

€+1/)\0

Cr—2) 2005

<.

Hence
m({€ € 1(Q;) : log | f'(§)] > MA, A(f)(§) < eA}) < nl(Q;).
Summing over j = 1,2, ... and applying , the proof is completed. O

Theorem [T.1] follows from Theorem [I.2] by standard methods.

Proof of Theorem Composing f with an automorphism of the unit disc,
if necessary, we can assume that f(0) = 0. By Lemma we only need to show
that log|f’| € LP(T) if A(f) € LP(T). Since f(0) = 0, Schwarz lemma gives that
|f/(€)] > 1 for any £ € T. We use the notation E(A) = {£ € T : log|f'(&)| > A}
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for A > 0. Fix M > 2 and apply Theorem [1.2| with = 271 M ~P to find constants
0 <e<1and Ay > 1 such that

m({§ € E(MA) : A(f)(§) < eA}) <
for any A > A\g. Then

[ toglry = phr [ tmE)i
E(MXo) Xo

m(E(N)),

< g/m U (B(A))dA + pM? / TN Im({E € T A(E) = APdA

Ao
M

€

N

1 p
< el + (3F) 1A

Hence 1
Hog Iz < 5l1log Iz, + MPe P ALy + (MAo)",

which finishes the proof. |

Note that the previous proof shows that given 0 < p < oo there exist constants
C1,C5 > 0 depending on p, such that for any analytic mapping f of the unit disc
with f(0) = 0, we have

ALy < [Nog Iy < CLlI AN L, + Co.

The authors do not know if one can take Cy = 0 in the estimate above.

4. SINGULAR INNER FUNCTIONS AND C(p)-BEURLING-CARLESON SETS
We will use the following auxiliary result from [12, Lemma 3.1].

Lemma 4.1. Let E C T be a closed set of Lebesgue measure zero. Denote by {I;}
the collection of its complementary arcs, that is, T\ E = UI;. Fiz 0 < p < co. The
following conditions are equivalent:

(a) E is a C(p)-Beurling—Carleson set.

(b) ||| 10g [ 1|7 < oo.

(c) S |I]|log |T|[P~! < oo, where the sum is taken over all dyadic arcs of T that
meet E.

We are now ready to prove Theorem
Proof of Theorem [L.3l
(1) = (2) Assume p is supported in a C(p)-Beurling—Carleson set E C T. Since

Suz)] 2 R
‘S;Az) B /T@—z)zd“(ﬁ)‘ﬂﬂmd t(z,B)7% 2z € T\ E,

it suffices to show that the integral

/ |log dist(z, E)[Pdm(z),
T\E

converges. Consider the complementary arcs {I;} of E, that is, T\ E = U,I; to
write the above integral as

Z/l |log dist(z, E)[Pdm(z).
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Since there exists a constant C' > 0 such that

/ |log dist(z, E)Pdm(z) < C|L, | log|L|P, j=12,...,
1

Lemma finishes the proof.

(2) = (3) This implication holds for any inner function f. Recall that Ahern
proved the estimate | f/(r&)| < 4|f/(€)| for any 0 < r < 1, any £ € T and any inner
function f. See Lemma 6.1 of [1] or [16]. Then

1
1f|f(r£)\§/ F(sO)lds <4 f'©)(1—r), 0<r<LEeT.

Fix 0 < ¢ < 1. Using the notation
log(1 — L
- Jlog(L— [P~
{z€D:|f(2)|<c} 1- |Z|
we have that

he /o wm({ﬁ eT:[f(r§)l <chdr

1 -1
|log(1 —r)|P , 1—c¢
< —_— : log ——— })dr.
< / [ m{E € T log | /()] > log g =
Using the change of variables = —log(1 — r), we obtain

I< /OO 2P Im({€ € T : log |f'(€)] > x + log(1 — ¢) — 2log 2})dx
0

which is finite whenever log |f'| € LP(T).

(3) = (4) This implication is obvious.

(4) = (5) In order to prove this implication we will make use of the heavy-light
decomposition from [12} Section 4.1] which we now briefly recall. Let p be a positive
finite Borel singular measure on T and fix M > 0. Let {I ](»1)} be the family of
maximal dyadic arcs of T such that

In each arc I ](1), consider the family {J,gl)} of maximal dyadic subarcs of I ](1) such
that

In each J,gl) we again find the maximal dyadic arcs {I ;2)} contained in J,gl) such

that
w(1?)
m(I1”)

Continuing this construction we are left with two families of arcs {I J(l)} and {J ,gl)}
which satisfy the following properties:
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(1) For any 7,1 we have that

kP
(2) For any j,! we have that

@
I+1 1 l m(J;”)
S m ) < L) <
kD g

(3) The measure u is concentrated on

U IJ(»Z) \ U (Jlgl))o 7

gk kgD

where (J,gl))o denotes the interior of J, ,gl)

The arcs J,gl) are called light and I ](-l) are called heavy arcs of the measure pu.
Now let us return to the proof of (4) = (5). Let {Ij(.i)}7 {J,il)} be the heavy-light
decomposition of y. Then it suffices to show that E;; = T;l) \ Ulegl) is a C(p)-
Beurling—Carleson set for any j,l. Fix E;;. Let B = B(j,l) be the collection of
dyadic arcs I of T with m(I) < m(I]l-) that meet E,;. Let I € B and write T =
{zeD:z/|z| €I, %l < 1—|z| < |I]}. Then by construction, u(I) > Mm(I)/100.
Hence there exists an absolute constant C' > 0 such that P[u](z) > CM for all

z € T7. Here P[] denotes the Poisson integral of the measure p. Since there exists
an absolute constant C; > 0 such that

log(1 — [2])|P~
/ [oa( = D™ 44(2) > ¢y 11 tog 117,
Tr

1—|z|
we get that
log(1 — p—1
e Y 1l og 1] < / Hog(1 = [2DI" 4 ),
e {2€D: P[] (2)>CM} 1—|z]
Choosing an appropriate constant M, Lemma finishes the proof . [
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