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Elementary remarks on units in monoidal categories

JOACHIM KOCK

Abstract

We explore an alternative definition of unit in a monoidal category ori-

ginally due to Saavedra: a Saavedra unit is a cancellative idempotent (in a

1-categorical sense). This notion is more economical than the usual notion

in terms of left-right constraints, and is motivated by higher category theory.

To start, we describe the semi-monoidal category of all possible unit struc-

tures on a given semi-monoidal category and observe that it is contractible

(if nonempty). Then we prove that the two notions of units are equivalent

in a strong functorial sense. Next, it is shown that the unit compatibility

condition for a (strong) monoidal functor is precisely the condition for the

functor to lift to the categories of units, and it is explained how the notion of

Saavedra unit naturally leads to the equivalent non-algebraic notion of fair

monoidal category, where the contractible multitude of units is considered

as a whole instead of choosing one unit. To finish, the lax version of the unit

comparison is considered. The paper is self-contained. All arguments are

elementary, some of them of a certain beauty.
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Introduction

Monoidal categories. Monoidal categories are everywhere in mathematics, and

serve among other things as carrier for virtually all algebraic structures. Mon-

oidal categories are also the simplest example of higher categories, being the
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same thing as bicategories with only one object, just as a monoid can be seen as

a category with only one object. With the rapidly growing importance of higher

category theory, it is interesting to revisit even the most basic theory of monoidal

categories, to test new viewpoints and experiment with new formulations (cf. also

Chapter 3 in Leinster’s book [9]).

Units. This note analyses the notion of unit in monoidal categories. Units enjoy

a mixed reputation: in some monoidal categories, the unit appears to be an insig-

nificant part of the structure and is often swept under the carpet; in other cases

(like in linear logic, in the theory of operads, or in higher categories), the proper

treatment of units can be highly non-trivial, suggesting that we have not yet fully

understood the nature of units.

While the axioms for the multiplication law are rather well understood, and

fit into a big pattern continuing in higher dimension (the geometrical insight

provided by the Stasheff associahedra [12]), the unit axioms are subtler, and so

far there seems to be no geometrical ‘explanation’ of them. This delicacy is per-

haps also reflected historically. The first finite list of axioms for a monoidal cat-

egory was given by Mac Lane [8] in 1963, including one axiom for associativity

(the pentagon equation) and four axioms for the unit with its left and right con-

straints. Shortly after, it was shown by Kelly [6] that one of these four axioms

for units in fact implies the three others. His proof constitutes nowadays the first

three lemmas in many treatments of monoidal categories, while other sources

continue to employ the redundant axiomatics. It is less well-known that con-

versely the three other unit axioms imply Kelly’s axiom; this was observed by

Saavedra [10] in 1972.

However, mere rearrangement of the axioms imposed on the unit structure is

not the crux of the matter. The structure itself must be analysed. As it turns out,

the classical notion of unit is overstructured. Saavedra [10] seems to have been

the first to notice this: he observed that it is possible to express the notion of unit

in monoidal categories without even mentioning the left and right constraints: a
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Saavedra unit (cf. 2.3) is an object I equipped with an isomorphism α : I ⊗ I ∼→ I,

and having the property that tensoring with I from either side is an equivalence

of categories (in short, we say I is a cancellable idempotent). Saavedra observed

that this notion is equivalent to the classical notion (although his proof has a gap,

as far as I can see, cf. Remark 2.15 below), but he did not pursue the investigation

further — he did not even consider monoidal functors in this viewpoint.

The present note exploits the notion of Saavedra unit systematically to throw

light also on the classical notion of unit and exhibit its redundancy. Many math-

ematicians experience this redundancy even at a naïve level, writing for example

‘the right constraint is treated similarly’, without realising that these phenom-

ena can be distilled into precise results. At a deeper level, one may expect that

the more economical notion of unit can help aliviate the nastiness of units felt at

times, since in general it is cheaper to check a property than to provide a struc-

ture.

Terminology. Saavedra [10] used the term reduced unit for these cancellable idem-

potents, since they are less structured than the units-with-left-and-right-constraints.

Another option would be absolute unit, referring to the fact that the notion makes

sense prior to any associativity constraints, so for example it makes sense to fix

the Saavedra unit and vary the associators. In contrast, the units axioms given in

terms of left and right constraints make sense only relative to a fixed associativity

constraint. But in any case it seems unfortunate to differentiate this alternative

notion of unit from the usual notion by means of an extra adjective, since the

former are not a special kind of the latter – the two notions are equivalent. From

a purist’s viewpoint, the cancellable-idempotent notion is what really should be

called unit, the richer structure of left and right constraints being something de-

rived, as explained in Section 2. In this note, a temporary terminology is adopted

where both notions of unit carry an extra attribute: the notion of unit in terms of

left-right constraints is called LR unit, while the cancellable-idempotent notion is

called Saavedra unit.
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Overview of results. The material is organised as follows. In Section 1, after

quickly reproducing Kelly’s unit argument, we describe the category U(C ) of

all possible LR unit structures on a semi-monoidal category C and show that it

is contractible (if non-empty) (1.7). We observe that U(C ) has a canonical semi-

monoidal structure (1.8).

In Section 2 we introduce the notion of Saavedra unit, and show how Saavedra

units are canonically LR units and vice versa (2.9). We also define morphisms

of Saavedra units, and show that the category of LR units is isomorphic to the

category of Saavedra units (2.20).

In Section 3 we study (strong) monoidal functors, and show that compatibility

with LR units implies compatibility with Saavedra units and vice-versa (3.5), and

more precisely (3.13): there is an isomorphism between the 2-category of mon-

oidal categories with LR units (and strong monoidal functors and monoidal nat-

ural transformations) and the 2-category of monoidal categories with Saavedra

units (and strong monoidal functors and monoidal natural transformations). Two

corollaries are worth mentioning: first (3.12), a strong monoidal functor is com-

patible with left constraints if and only if it is compatible with right constraints,

and in fact this compatibility can be measured on I alone! Second, a multiplic-

ative functor is monoidal if and only if the image of a unit is again a unit (3.9).

This statement does not even make sense for LR units (since the image of an LR

unit does not have enough structure to make sense of the question whether it is a

unit again). Finally we prove a rather technical result (3.17), needed in Section 5:

a unit compatibility on a strong monoidal functor C → D is equivalent to a lift to

the categories of units U(C )→ U(D).

Section 4 is a short interlude on monoids, placed here in order to motivate the

next notion: in Section 5 we introduce a relativisation of the notion of cancellable

object, here called gentle functors: these are functors U → (C ,⊗) such that the

two composites U × C → C × C
⊗
→ C

⊗
← C × C ← C ×U are fully faithful. It

is easy to see that a Saavedra unit in C is the same thing as a strong multiplicative
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functor ∗ → C which is furthermore gentle. Following this idea, we come to

the notion of fair monoidal category: it is a gentle (strict) multiplicative functor

U → C with U contractible. Here U is thought of as the category of all units

in C . It is shown (5.5) that this notion of monoidal category is equivalent to the

classical notion (as claimed in [7]).

Finally, in Section 6, we generalise some of the results about strong monoidal

functors to lax monoidal functors. The Saavedra-unit compatibility is a bit less

elegant to express in this case, but again we get an isomorphism of 2-categories

(6.2). As a particular case we get an isomorphism of the categories of monoids in

the LR and Saavedra-unit viewpoints, proving an assertion left open in Section 4.

Generalisations and outlook. Throughout we assume the tensor product to be

strict. This is just for convenience: every argument can be carried over to the

non-strict case, simply by inserting associator isomorphisms as needed. That

complication would not seem to illuminate anything concerning units.

The notion of Saavedra unit has an obvious many-object version yielding an

alternative notion of identity arrow in a bicategory. The notion of fair monoidal

category described in Section 5 is just the one-object version of the notion of fair

2-category, which has generalisations to fair n-categories [7].

The remarks compiled in this note are a by-product of a more general invest-

igation of weak units and weak identity arrows in higher categories [7], [4], [5],

but as it turns out, even the 1-dimensional case contains some surprises, and I

found it worthwhile to write it down separately and explicitly, since I think it

deserves a broader audience. The notion of Saavedra unit dropped out of the

theory of fair categories [7]. I am thankful to Georges Maltsiniotis for point-

ing out that the viewpoint goes back to Saavedra [10]. In this note, reversing

my own path into the subject, it is shown how the basic notion of Saavedra unit

leads to the notion of fair (monoidal) category. The two papers [4] and [5] joint

with André Joyal deal with units in monoidal 2-categories. In [5] we use the 2-

dimensional notion of Saavedra unit to prove a version of Simpson’s weak-unit
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conjecture [11] in dimension 3: strict 3-groupoids with weak units can model all

1-connected homotopy 3-types. The relevance of the Saavedra-unit viewpoint in

higher-dimensional category theory was first suggested by Simpson [11]. The

main advantage is its economical nature, and in particular it is important that

the very notion of unit is expressed in terms of a multiplication map, already a

central concept in the whole theory.

Acknowledgments. Part of this work was carried out while I was a postdoc at

the Université du Québec à Montréal, supported by a CIRGET grant. I wish to

thank everybody at the UQÀM, and André Joyal in particular, for a wonderful

year in Montréal. Presently I am supported by a Ramón y Cajal fellowship from

the Spanish Ministry of Science and Technology. I am grateful to Robin Houston

for some interesting observations included in the text.

1 The classical notion: LR units

1.1 Semi-monoidal categories. A category with a multiplication, or a semi-monoidal

category, is a category C equipped with an associative functor C × C → C , here

denoted by plain juxtaposition, (X, Y) 7→ XY. For simplicity we assume strict

associativity, X(YZ) = (XY)Z. This is really no loss of generality: all the argu-

ments in this note carry over to the case of non-strict associativity — just insert

associators where needed.

If X is an object we use the same symbol X for the identity arrow of X.

1.2 Monoidal categories. A semi-monoidal category C is a monoidal category

when it is furthermore equipped with a distinguished object I, called the unit,

and natural isomorphisms

IX
λX- X �ρX

XI

obeying the following rules (cf. Mac Lane [8]):

λI = ρI (1)



Joachim Kock: Units 2006-07-02 13:42 [7/37]

λXY = λXY (2)

ρXY = XρY (3)

XλY = ρXY (4)

It was observed by Kelly [6] that Axiom (4) implies the other three axioms. We

quickly run through the arguments — they are really simple.

1.3 Naturality. Naturality of the left constraint λ with respect to the arrow λX :

IX → X is expressed by this commutative diagram:

I IX
λIX - IX

IX

IλX

?

λX

- X

λX

?

Since λX is invertible, we conclude

λIX = IλX. (5)

Similarly with the right constraint:

ρXI = ρX I. (6)

1.4 Fundamental observation. Tensoring with I from either side is an equivalence of

categories:

I ⊗ _ : C
∼→ C

_⊗ I : C
∼→ C

Indeed, the left and right constraints λ and ρ are invertible natural transform-

ations between these two functors and the identity functors. This observation

does not depend on the axioms (1)–(4).

1.5 Lemma. (Kelly [6].) Axiom (4) implies axioms (1), (2), and (3).
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Proof. (4) implies (2): Since tensoring with I on the left is an equivalence, it is

enough to prove IλXY = IλXY. But this equation follows from Axiom (4) applied

twice (swap λ out for a ρ and swap back again only on the nearest factor):

IλXY = ρIXY = IλXY.

Similarly for ρ, establishing (3).

(4) and (2) implies (1): Since tensoring with I on the right is an equivalence, it

is enough to prove λI I = ρI I. But this equation follows from (2), (5), and (4):

λI I = λI I = IλI = ρI I.

2

It was observed by Saavedra [10] that conversely (1), (2), and (3) imply (4).

This will be an immediate corollary of the results in the next section, cf. 2.10.

1.6 The category of LR units A triple (I, λ, ρ) as in 1.2 is called an LR unit structure

on (C ,⊗), or just an LR unit. These form the objects of a category U(C ), the

category of LR units of C , where an arrow (I, λ, ρ) → (I ′, λ′, ρ′) is given by an

arrow ψ : I → I ′ compatible with the left and right constraints in the sense that

for every object X, these two triangles commute:

IX

X

λX

-

I ′X

ψX

?
λ′X

-

XI

X

ρX

�

XI ′.

Xψ

?
ρ′X

� (7)

Note that the morphisms of LR units are precisely those with respect to which

λ and ρ are also natural in U. That is, one can think of λ (encoding all left con-

straints) as a natural transformation

U(C )× C

⊗

j
⇓ λ

proj.

*
C .

The component of λ on ((I, λ, ρ), X) is simply λX.
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It is a basic observation that for a semi-monoid the unit is unique if it exists.

The following result, which goes back to Saavedra [10], shows that the LR unit

for a monoidal category is unique up to unique isomorphism (if it exists).

1.7 Proposition. The category U(C ) is contractible.

Proof. Given two LR units (I, λ, ρ) and (I ′, λ′, ρ′), define a map ψ : I → I ′ by

I
ρ′I
−1
- I I ′

λI′- I ′.

To see that ψ is compatible with the left constraint as in (7), consider the diagram

IX
λX - X

ψX

z

I I ′X

ρ′I X Iλ′X

6

λI′X

- I ′X

λ′X

6

I ′X

λI′X

?

λ′X

- X

λ′X

?

The bottom square is Equation (2) composed with λ′X . The top square is naturality

of λ with respect to λ′X . Since all the arrows are invertible, we can invert the

vertical arrows of the top square; then the outline of the diagram is precisely the

left-hand compatibility triangle in (7).

Compatibility with the right constraint is analogous to establish.

Finally we check that this ψ is the only morphism of LR units from I to I ′:

suppose we had another morphism of LR units γ : I → I ′. Now take X = I in the

left-hand compatibility diagram (7). Since all the arrows involved are invertible,

there can by at most one compatible arrow I I → I ′ I, so we have ψI = γI. But

since tensoring with I on the right is an equivalence, we conclude that ψ = γ. 2

1.8 Tensor product of LR units. There is a natural tensor on U(C ): the tensor

product of (I, λ, ρ) with (I ′, λ′, ρ′) is the object I I ′ equipped with left and right
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constraints given by these two composites:

I I ′X
Iλ′X- IX

λX- X

XII ′
ρX I ′- XI ′

ρ′X- X.

It is easy to see that this tensor product is associative. It remains to check Ax-

iom (4) for these new left and right constraints: in the diagram

XII ′Y

XIY

XIλ′Y

�
XI ′Y

ρX I ′Y

-

XY

Xλ′Y

ρ′XY�

ρXY

XλY -

the inner labels show that the diagram commutes. The passage from inner labels

to outer labels is just Axiom (4) for the original two units, and with the outer

labels the diagram is precisely Axiom (4) for the new unit I I ′.

Note that the natural forgetful functor U(C )→ C preserves the tensor product

strictly.

We shall come back to this construction and show that the association C 7→

U(C ) is functorial: a strong monoidal functor C → D induces a strong multi-

plicative functor U(C ) → U(D) compatible with the forgetful functors (Corol-

lary 3.18).

2 Saavedra units

2.1 Cancellable objects. An object I in C is called cancellable if the two functors

C → C

X 7−→ IX

X 7−→ XI

are fully faithful.
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2.2 Idempotents. A idempotent in C is an object I equipped with an isomorphism

α : I I → I which is associative, i.e., the equation Iα = αI holds. By a pseudo-

idempotent we mean the same thing but without requiring α to be associative.

2.3 Saavedra units. We define a Saavedra unit to be a cancellable pseudo-idempotent,

and proceed to compare this notion with the notion of LR unit.

The two conditions in the definition of Saavedra unit strengthen each other mu-

tually:

2.4 Lemma. (i) A Saavedra unit (I, α) is in fact an idempotent, i.e. α is automatically

associative. In other words, (I, α) is a semi-monoid.

(ii) The two functors C → C given by X 7→ IX and X 7→ XI are in fact automatic-

ally equivalences.

This will be an easy consequence of the comparison with the LR notion of unit

expressed by the next two lemmas.

2.5 Lemma. Given a Saavedra unit (I, α), for each object X there are unique arrows

IX
λX- X �ρX

XI

such that

IλX = αX (8)

ρX I = Xα (9)

The λX and ρX are isomorphisms and natural in X.

These two equations will be invoked throughout.

Proof. Let L : C → C denote the functor defined by tensoring with I on the left.

That L is fully faithful means we have a bijection on hom sets

C (IX, X) → C (I IX, IX).
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Now take λX to be the inverse image of αX; it is an isomorphism since αX is.

Naturality follows by considering more generally the bijection

Nat(L, idC )→ Nat(L ◦ L, L);

let λ be the inverse image of the natural transformation whose components are

αX.

Similarly on the right. 2

2.6 Proposition. The λ and ρ constructed from α satisfy Axiom (4):

ρXY = XλY .

Hence a Saavedra unit has a canonical LR unit structure.

Proof. In the commutative square

XIIY
ρX IY- XIY

XIY

XIλY

?

ρXY
- XY

XλY

?

the left-hand arrow is equal to XαY, by X tensor (8), and the top arrow is also

equal to XαY, by (9) tensor Y. Since XαY is an isomorphism, it follows that ρXY =

XλY . 2

Proof of 2.4. Re (i): set X = Y = I in the Kelly equation (4), and apply (8) and (9)

once again:

Iα
(9)
= ρI I = IλI

(8)
= αI. (10)

Re (ii): L is an equivalence, because it is isomorphic to the identity via λ. (Simil-

arly on the right.)

2

Conversely,

2.7 Lemma. An LR unit (I, λ, ρ) becomes a Saavedra unit by taking α := λI = ρI .



Joachim Kock: Units 2006-07-02 13:42 [13/37]

Indeed, I is cancellable by 1.4.

2.8 Back and forth. It is clear that starting from a Saavedra unit (I, α) and con-

structing λ and ρ as in 2.5, then λI = α and ρI = α (this follows from (10)).

Conversely, starting from an LR unit (I, λ, ρ) and setting α : = λI = ρI , then we

have

αX = λI X
(2)
= λIX

(5)
= IλX,

and similarly on the right, giving Xα = ρX I. Hence the original λ and ρ satisfy

the equations defining the left and right constraints induced from α. Altogether:

2.9 Proposition. There is a natural bijection between LR unit structures (on I) and

Saavedra unit structures (on I).

We will see in a moment that this correspondence is functorial, with the appropri-

ate notion of morphisms of Saavedra units. But first let us extract a few corollaries

of the back-and-forth construction.

First, since the arguments in 2.7 do not depend on (4), we get the converse of

Kelly’s Observation 1.5:

2.10 Corollary. Axioms (1), (2), and (3) together imply (4).

As noted above, (1), (2) and (3) are needed to ensure that the back-and-forth

construction gives back the original λ and ρ. In absence of (1), (2) and (3) we just

get:

2.11 Corollary. Let (C ,⊗) be a semi-monoidal category and let I be an object equipped

with natural isomorphisms λX : IX ∼→ X and ρX : XI ∼→ X, not required to satisfy any

of (1), (2), (3), or (4). Then there exists an LR unit structure on I (possibly given by left

and right constraints different from λ and ρ).

Proof. Take α = λI , then clearly (I, α) is a Saavedra unit, and hence there are

induced left and right constraints which satisfy (4), but there is no reason why

these new left and right constraints should coincide with the original λ and ρ. 2
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2.12 Example. An interesting example of the situation of the corollary was poin-

ted out by Bob Paré, by way of Robin Houston: Let A
f-�
g

B be a pair of pseudo-

inverse arrows in a 2-category, i.e. there are natural isomorphisms λ : f ◦ g ≃ idA

and ρ : g ◦ f ≃ idB. Composition of arrows gives the category Hom(A, B) a strict

semi-monoidal structure with g as multiplication infix, and λ and ρ make f into

a ‘non-coherent’ unit as in the corollary. Applying the procedure of the corollary

now turns f and g into an adjoint equivalence, replacing ρ with some ρ′ which

satisfies the usual adjunction identities with λ.

Finally from the fact that λ alone determines α (cf. 2.7), and α determines both

λ and ρ (by 2.5), we get this:

2.13 Corollary. The left constraint and the right constraint of an LR unit determine

each other. In other words, if (I, λ, ρ) and (I, λ, ρ′) are both LR units then ρ = ρ′ (and

similarly with ρ fixed).

This corollary can also be deduced from contractibility of the category of units

(the arguments in the proof of Proposition 1.7): the unique morphism of units

between them is λI ◦ ρ−1
I , which is just the identity arrow of I, by (1). Now it

follows from (7) that ρ = ρ′.

2.14 Economy and absoluteness of Saavedra units. The LR notion of unit in-

volves a lot of structure: two whole families of arrows are specified, and the

Corollary reveals that this data is somewhat redundant. The notion of Saavedra

unit is meant to be as economical as possible: the only structure to be specified is

a single multiplication map α : I I → I, a notion already central to the theory of

monoidal categories.

The notion of Saavedra unit is also more fundamental than the LR notion in

that it is an absolute notion: namely, the notion of Saavedra unit makes sense prior to

any associativity constraints, while in contrast the axioms for an LR unit only make

sense relative to a specified associativity constraint. In this note, for simplicity,

the associativity is assumed strict, and in particular fixed, so this remark does
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not play any role here. But as observed, all the arguments generalise to the non-

strict case by inserting associators when needed. Then it makes sense to fix the

Saavedra unit and vary the associator; λ and ρ will then vary with the associator.

(In the non-strict setting, the associator is involved in Construction 2.5, and the

pentagon equation is required to establish Axiom (4) in Proposition 2.6).

2.15 Historical remarks. The notion of Saavedra units goes back to Saavedra’s

thesis [10] where it is mentioned in the preliminary chapter on monoidal cat-

egories as an alternative to the standard notion of unit. He doesn’t really exploit

the notion, though. He states the comparison result 2.9, but his proof (p.34–37)

seems to contain an error. (First (Ch. I, 1.3), he defines a unit to be a triple (I, λ, ρ)

such that λI = ρI . Then he imposes conditions of compatibility with the asso-

ciativity constraint (Ch. I, 2.2.1.1); these conditions are precisely (2), (3), and (4)

above. He then proves (Ch. I, Prop. 2.2.3) the converse of Kelly’s result, namely

that (1)+(2)+(3) imply (4). Note that condition (1) can not be omitted. The defini-

tion of Saavedra unit is given in Ch. I, 1.3.2, and our Proposition 2.6 is part of his

Proposition 2.2.5.1. The problem is this: after constructing λ and ρ, he promises

first to establish (2), (3), (4) before finally proving (1). However to prove (4) he

uses Prop. 2.2.3 which crucially relies on (1) (and when he comes to proving (1)

he uses (4)).)

2.16 Remark on strict units. An LR unit is strict if λX and ρX are identity arrows

for all X. A Saavedra unit is strict if α is the identity arrow and if the two functors

‘tensoring with I’ are isomorphisms of categories. To see that the latter strictness

implies the former, note that every object X is of form IY for some Y. Now λIY =

αY is an identity arrow, so by naturality λX is an identity arrow too.

2.17 Tensor cancellable arrows. Let I and J be cancellable objects. An arrow

ψ : I → J is called left tensor cancellable if the induced map on hom sets

C (X, Y) −→ C (IX, JY) (11)

f 7−→ ψ f



Joachim Kock: Units 2006-07-02 13:42 [16/37]

is a bijection. Right tensor cancellable is defined in the obvious way; an arrow is

tensor cancellable if it is both left and right cancellable.

2.18 Morphisms of Saavedra units. Let (I, α) and (J, β) be Saavedra units in C .

In partcular they are semi-monoids, by 2.4 (i). A morphism of Saavedra units is a

tensor cancellable semi-monoid homomorphism ψ : I → J. Being a semi-monoid

homomorphism means that this diagram commutes:

I I
ψψ - J J

I

α

?

ψ
- J.

β

?
(12)

This defines the category of Saavedra units in C .

2.19 Remark. By factoring (11) in two ways like this:

C (X, Y)
JC - C (JX, JY)

C (IX, IY)

IC

?

postcomp. ψY
- C (IX, JY)

precomp. ψX

?

it follows that any monomorphism or epimorphism between cancellable objects

is tensor cancellable. In particular, isomorphisms are tensor cancellable.

It follows from the next Proposition that a morphism of Saavedra units is auto-

matically an isomorphism, since morphisms of LR units are so:

2.20 Proposition. The category of Saavedra units is canonically isomorphic to the cat-

egory of LR units, hence contractible.

Proof. We have already established a bijection on the level of objects.

Given an arrow in the category of LR units, ψ : I → J, then in particular it

is an isomorphism and hence tensor cancellable. It remains to check that it is a
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semi-monoid homomorphism (I, α)→ (J, β). But this is easy: in the diagram

I I

I

α

λI
I

-

J I

ψI

? λ
J
I

-

J

ψ

?

J J

Jψ

?
λ

J
J

β

-

the triangle is compatibility (7) with the left constraint for the object I. The square

is naturality of λJ with respect to ψ. The outer square is the semi-monoid homo-

morphism condition (12).

Conversely, suppose we have a tensor cancellable semi-monoid homomorph-

ism ψ : I → J. Construct λI
X : IX → X and λ

J
X : JX → X as in 2.5, and check that

the composite

θ : IX
ψX- JX

λ
J
X- X

is equal to λI
X : In the diagram

I IX
IλI

X

αX
- IX

I JX

IψX

?

ψJX
- J JX

ψψX

-

IX

Iλ
J
X

?

ψX
- JX

ψX

?

βX
Jλ J

X -

the upper right-hand cell is the semi-monoid homomorphism condition (12) (tensored

with X on the right), and the other cells are trivially commutative. Now the left-

and-bottom composite is the tensor product ψθ while the top-and-right compos-

ite is ψλI
X . These two coincide since the outer square commutes. But since ψ is
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(left) tensor cancellable, we conclude that θ = λI
X as wanted. A similar argument

shows that ψ is compatible with the right constraint. 2

Observe that in the passage from morphism of LR units to morphism of Saavedra

units we only used compatibility with the left constraint (and could equally well

have used only ρ), and in fact we only used the compatibility with respect to the

object X = I. (It would also have been enough to test the compatibility with

respect to the object X = J.) In particular:

2.21 Corollary. Given LR units (I, λ, ρ) and (I ′, λ′, ρ′), an arrow I → I ′ is compatible

with the left constraints if and only if it is compatible with the right constraints.

2.22 Tensor products of Saavedra units. The isomorphism of Proposition 2.20

endows the category of Saavedra units with a tensor product, which is surprising

if you only look at the definition of Saavedra unit, where the only structure is

a semi-monoid structure — usually in order to define tensor products of semi-

monoids you need a symmetry on the underlying semi-monoidal category.

Tracing through the correspondences, the tensor product of two Saavedra

units (I, α) and (J, β) is given by (I J, γ) where γ is the composite

I J I J
I JλI

J- I J J
ρ

J
I J- I J.

3 Strong functoriality

In this section we prove that the category of monoidal categories and strong mon-

oidal functors in the LR-unit sense is isomorphic to the category of monoidal cat-

egories and strong monoidal functors in the Saavedra-unit sense.

3.1 Strong multiplicative functors. A strong multiplicative functor is a functor

C −→ D

X 7−→ X
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equipped with a natural family of isomorphisms in D :

φ2 := φX,Y : XY → XY

such that this square commutes:

XYZ - XYZ

XYZ

?
- XYZ

?
(13)

3.2 Strong monoidal functors in the LR-unit sense. A strong monoidal functor is

a strong multiplicative functor (C ,⊗, I) → (D ,⊗, J), X 7→ X together with an

isomorphism φ0 : J → I satisfying these two conditions of compatibility with the

left and right constraints:

JX
λ

J

X - X

IX

φ0X
?

φ2

- IX

λI
X

6
X �

ρ
J

X XJ

XI

ρI
X

6

�
φ2

XI

Xφ0
?

(14)

In Section 6 we shall consider also lax monoidal functors, where φ2 and φ0 are not

required to be invertible.

3.3 Remark. Saavedra [10] considers only strong monoidal functors (and only in

the LR-unit sense): he requires φ2 to be an isomorphism, and claims that then φ0

is automatically an isomorphism too ([10], Ch. I, 4.2.3.). This claim is false. It is

true that φ0X is always an isomorphism, as seen in the diagram. But if X is not a

cancellable object in D , then this does not imply that φ0 is an isomorphism. As a

concrete counter example, consider the lax monoidal functor Vect → Vect send-

ing every vector space to the zero vector space. This is a strong multiplicative

functor (in fact strict), but the unit comparison φ0 : k → k = {0} is obviously

not an isomorphism. In the following paragraph, Saavedra states that a mon-

oidal functor with a compatibility with given units might not have a compatibil-

ity with other units. This is correct as stated there, because at that point he does
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not assume Axiom (4) to hold. In that case the category of units is not necessarily

connected, and compatibility is only guaranteed for units connected to the given

compatible unit. When Axiom (4) is assumed to hold, as throughout the present

note, compatibility with one unit implies compatibility with any other unit. This

observation, and some related ones, will be made in the setting of Saavedra units

where they are trivial to establish (cf. 3.8).

3.4 Strong monoidal functors in the Saavedra-unit sense. In the viewpoint of

Saavedra units, a strong monoidal functor is defined to be a strong multiplicative

functor (C ,⊗, (I, α))→ (D ,⊗, (J, β)) together with a semi-monoid isomorphism

φ0 : J → I.

Recall that I is a semi-monoid via the arrow

I I
φ2- I I α- I, (15)

so the semi-monoid homomorphism condition is this:

J J
φ0φ0 - I I

I I

φ2?

J

β

?

φ0

- I

α?

(16)

3.5 Proposition. The two compatibility conditions are equivalent. In other words, for

a strong multiplicative functor, a compatibility with an LR unit canonically induces a

compatibility with the corresponding Saavedra unit, and vice versa.

For later reference, we split the statement into two lemmas, Lemma 3.10 and

Lemma 3.11. But first a couple of remarks, the first one being rather important:

3.6 Proposition. φ0 : J → I is a Saavedra-unit compatibility if and only if (I, α) is a

Saavedra unit and φ0 is a morphism of Saavedra units.

Here and below, by abuse of notation, the symbol α refers to the composite (15).
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Proof. Suppose φ0 is a unit compatibility, cf. 3.4. The fact that I is isomorphic

to J implies that it is itself cancellable, and hence (I, α) is a Saavedra unit. The

fact that φ0 is an invertible semi-monoid homomorphism is just to say that it is a

morphism of units. Conversely, if (I, α) is a Saavedra unit and φ0 is a morphism

of units, then in particular it is an invertible semi-monoid homomorphism. 2

Note that this proposition can not be stated in terms of LR units, since a priori

the image of an LR unit does not even have enough structure to make sense of

the question whether it satisfies the unit axioms. (The left and right constraints

of the image of the unit are only defined for objects in the image of the functor.)

Combining this proposition with contractibility of the category of units we get

these three immediate corollaries:

3.7 Corollary. A unit compatibility on a strong multiplicative functor is unique if it

exists.

This can be seen as a generalisation of the uniqueness part of Proposition 1.7.

Namely, to give a morphism of units I → I ′ in C is the same thing as providing

a unit compatibility on the identity functor on C , with I chosen as unit in the

domain and I ′ in the codomain.

3.8 Corollary. Let C and D be monoidal categories and let C → D be a strong multi-

plicative functor. Given a unit compatibility with respect to chosen units I in C and J in

D , then there are canonical compatibilities with any other choices of units in C and D .

Finally, in view of Corollary 3.7 we can consider unit compatibility to be a prop-

erty, not a structure, and restate Proposition 3.6 as:

3.9 Corollary. A multiplicative functor is monoidal if and only if the image of a unit is

again a unit.

Again, this statement does not even make sense for LR units.

Now for the lemmas that make up Proposition 3.5:



Joachim Kock: Units 2006-07-02 13:42 [22/37]

3.10 Lemma. If C → D , X 7→ X is a multiplicative functor, and φ0 : J → I is an

LR-unit compatibility, then it is also a Saavedra-unit compatibility.

Proof. In fact it is enough to have the compatibility (14) with λ for the object X = I.

We then have a commutative diagram

J J
β

λ
J
J

- J

J I

Jφ0
?

λ
J

I - I

φ0
?

I I

φ0 I
?

φ2

- I I

λI
I α

6

The top square is naturality of λJ with respect to φ0, and the bottom square is

the left compatibility (14). The outer square is precisely the compatibility dia-

gram (16) for φ0 with respect to the Saavedra units β = λ
J
J and α = λI

I .

2

3.11 Lemma. If φ0 : J → I is a Saavedra-unit compatibility then it is also compatible

with λ and ρ.

Proof. In the diagram

J JX
Jλ

J

X

βX

- JX

JIX

Jφ0X
?

φ0 IX- I IX
φ2X - I IX

αX - IX

φ0X
?

J IX

Jφ2
?

φ0 IX

- I IX

Iφ2
?

φ2

- I IX

φ2
?

αX

λI X

- IX

φ2
?

JX

JλI
X

?

φ0X

- IX

IλI
X

?

φ2

- IX

IλI
X

?

λI
X

- X

λI
X

?

(17)
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the top square is precisely the compatibility (16) between α and β (tensored with

X); the other squares are commutative for trivial reasons. Now since the bot-

tom composite and the right-hand composite in the big square are equal and are

monomorphisms, we can cancel them away and conclude that the left-hand com-

posite is equal to the top arrow as we wanted.

The compatibility with ρ is established analogously. 2

In the proof of Lemma 3.10 we only used compatibility with λI , so as a corol-

lary we get the following result, which does not refer to the notion of Saavedra

unit.

3.12 Corollary. A strong monoidal functor (in the classical sense) is compatible with left

constraints if and only if it is compatible with right constraints, and this can be measured

on I alone.

Joining Proposition 3.5 and Proposition 2.9, and with the monoidal natural

transformations as 2-cells (cf. just below), we get

3.13 Proposition. There is an isomorphism between the 2-category of monoidal categor-

ies, strong monoidal functors (in the LR sense), and monoidal natural transformations,

and the 2-category of monoidal categories, strong monoidal functors in the Saavedra-unit

sense, and monoidal natural transformations.

3.14 Monoidal natural transformations. A natural transformation u : (F, φ2) ⇒

(G, γ2) between strong multiplicative functors F : C → D , X 7→ X and G : C →

D , X 7→ X̃ is called multiplicative if for every pair of objects X, Y in C this diagram

commutes:

XY
φ2 - XY

X̃Ỹ

uXuY
?

γ2

- X̃Y.

uXY
?
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A multiplicative natural transformation is monoidal if the following unit con-

dition is satisfied:
I

uI - Ĩ

J
γ0

-

φ0

�

(18)

(It is the same condition for LR units and Saavedra units.)

There is one remark to make about monoidal natural transformations:

3.15 Lemma. Condition (18) holds automatically if uI is an isomorphism (or just tensor

cancellable).

Proof. By 3.6, (I, α) and ( Ĩ, α̃) are Saavedra units, and φ0 and γ0 are morphisms of

units. Now, naturality of u means that we have this commutative square

I I
uI I - Ĩ I

I

α
?

uI

- Ĩ

α̃
?

Hence if just uI is tensor cancellable then it is a morphism of units, and hence

the triangle (18) commutes — every diagram of morphisms of units commutes

because the category of units is contractible. 2

3.16 Unit compatibility in terms of multiplicativity for units. The following

result is a variation of the corollaries 3.7 and 3.8, but stated in a global manner

involving also multiplicativity. It will play an important role in Section 5.

3.17 Proposition. Let C → D be a multiplicative functor admitting a unit compatib-

ility. The totality of all units compatibilities (one for each choice of unit in C and in D)

amounts precisely to a lift to a strong multiplicative functor U(C ) → U(D). I.e., a

commutative diagram of strong multiplicative functors

U(C ) - U(D)

C

?
- D

?
(19)
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Proof. Given a lift, then for any I in U(C ) and J in U(D), there is a connecting

isomorphism J ∼→ I, since U(D) is contractible. Hence by 3.6 we have a unit

compatibility.

The converse implication is subtler. We already noticed (3.6) that the existence

of a unit compatibility implies that the image of any unit is again a unit. It is also

easy to see that if ψ is a morphism of units then ψ is a morphism of units — this

is just a consequence of the naturality of φ0 with respect to ψ. Composition is

obviously preserved; hence we have a functor U(C )→ U(D), and it is clear that

diagram (19) commutes as a diagram of functors.

Furthermore, since U(D) is contractible there exists a unique multiplicative

structure on the functor U(C )→ U(D). Indeed, its components I I ′ → I I ′ are the

unique comparison arrows that exist in U(D), and axiom (13) is automatically

satisfied since all diagrams commute in a contractible category.

It remains to check that this map extends the φ2 of the original functor, i.e.,

that the diagram commutes as strong multiplicative functors, not just as functors.

Verifying this amounts to checking that φ2 : I I ′ → I I ′ is a morphism of units,

i.e. a semi-monoid homomorphism. Doing this in the Saavedra-unit setting is a

bit cumbersome since the definition of the tensor products in the categories of

units involve the left and right constraints anyway. But it is not difficult to check

that φ2 : I I′ → I I ′ is a morphism of LR units. We need to check that this diagram

commutes for all objects Y in D :

I I
′
Y

Y

λI I
′

Y

-

I I ′Y

φ2Y
?

λI I
′

Y

- (20)

In view of Corollary 2.21 we do not have to check also the right-hand diagram,

although of course this could be done analogously. By the remarks preceding that

corollary, it is furthermore enough to check the diagram in the case Y = I I ′. Since

there are already so many Is involved, it is practical in the following argument to

set X := I I ′.



Joachim Kock: Units 2006-07-02 13:42 [26/37]

Note that for the unit (I, α), the corresponding left constraint λI
X

is given by

the equation
IX

X

λI
X

-

IX

φ2

?
λI

X

- (21)

Now the wanted equation (20) is the outline of this big diagram:

I I′X

II ′X
IλI′

X

-

Iφ2 -

IX

IλI′

X

-

IX

φ2

?
λI

X - X

λI
X

-

I I ′X

φ2X

?

φ2

- I I ′X

φ2

?
λI I′

X

-

IλI′
X

-

The left-hand square is associativity of φ2. The middle square is naturality of

φ2. The three triangles are the definition of the left constraints as in (21). Now

the top composite is precisely the left constraint of the tensor product I I ′ (by

definition 1.8), and the bottom composite is the image of the left constraint on I I ′.

2

3.18 Corollary. The association C → U(C ) defines a functor from the category of mon-

oidal categories and strong monoidal functors to the category of categories with multi-

plication and strong multiplicative functors.
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4 Monoids

In this short section we describe what a monoid is in the Saavedra-unit setting.

The proof is postponed to the end of the paper where it will be a special case

of the treatment of lax monoidal functors. The Saavedra-unit notion of monoid

motivates the fancy description of Saavedra units in Section 5.

4.1 Semi-monoids. A semi-monoid in a semi-monoidal category C is an object

S equipped with an associative multiplication map µ : SS → S. A semi-monoid

homomorphism from (S, µ) to (S′ , µ′) is an arrow S → S′ such that this diagram

commutes:

SS - S′S′

S

µ

?
- S′.

µ′

?

Henceforth when we refer to a monoidal category, we understand it to have

both LR and Saavedra unit structure, corresponding to each other as described in

Section 2. So a monoidal category is the data of (C ,⊗, (I, α), λ, ρ).

4.2 Classical monoids. A monoid in the classical sense is a semi-monoid µ :

MM → M equipped with an arrow η : I → M such that these two triangles

commute:
IM

ηM - MM � Mη
MI

M

µ

? ρM
�

λM -
(22)

The arrow η : I → M with these properties is unique, if it exists.

4.3 Gentle maps. Let (M, µ) be a semi-monoid, and let U be any object. We call

an arrow U → M gentle if the two composites

UM → MM
µ
→ M

MU → MM
µ
→ M
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are monomorphisms.

4.4 Saavedra monoids. A Saavedra monoid is a semi-monoid µ : MM → M

equipped with a gentle semi-monoid homomorphism η : (I, α) → (M, µ) (i.e. a

semi-monoid homomorphism that is gentle as an arrow in C .)

As a consequence of the following proposition, in fact the two monomorph-

isms are automatically isomorphisms.

4.5 Proposition. There is an isomorphism between the category of classical monoids in

C and the category of Saavedra monoids in C .

The arrows in these categories are described in the following paragraph. The

Proposition can be proved directly without difficulty, but we postpone the proof

— it will be a special case of the treatment of lax monoidal functors, cf. page 35.

4.6 Monoid homomorphisms. A monoid homomorphism between two monoids in

C is just a semi-monoid homomorphism ψ : M → M′ such that this diagram

commutes:

M
ψ - M′

I

-
�

This is the same condition for Saavedra monoids.

5 Gentle multiplicative functors and fair monoidal categories

In Section 4 we described a monoid in a monoidal category as a semi-monoid

with a gentle semi-monoid homomorphism from the unit object. Clearly the no-

tion of monoidal category should be a categorification of the notion of monoid,

so let us reformulate the notion of Saavedra unit in terms of gentle multiplicative

functors. This viewpoint also leads to the notion of fair monoidal category, which

is the simplest manifestation of the higher-categorical concept of fair category,

cf. [7].
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Definition. We call a functor U → (C ,⊗) gentle if the two induced functors

U × C −→ C × C
⊗
−→ C

C ×U −→ C × C
⊗
−→ C

are fully faithful.

5.1 Lemma. Suppose U is contractible. Then U → C , U 7→ U is gentle if and only if

U is cancellable for some (and hence for all) U in U .

Proof. We consider the left-hand conditions only. That U → C is gentle means

that

U (I, J)× C (X, Y) → C (IX, JY)

is a bijection for all I, J in U and all X, Y in C . But since U is contractible the set

U (I, J) contains precisely one element ψ, so the bijection is just {ψ}×C (X, Y) →

C (IX, JY), given by tensoring with ψ on the left. This is to say that ψ is tensor can-

cellable. It remains to notice that since U is contractible, and since isomorphisms

between cancellable objects are always tensor cancellable, ψ is tensor cancellable

for all arrows ψ in U if and only if I is cancellable for all objects I in U . 2

5.2 Corollary. A Saavedra unit in C is the same thing as a gentle, strong multiplicative

functor η : ∗ → C .

Proof. Call the image object I; this object is cancellable if and only if η is gentle.

Specifying the strong multiplicative compatibility on η is equivalent to giving the

isomorphism α : I I → I. (Note that since I is cancellable, the multiplication map

α is automatically associative by Lemma 2.4.) 2

Similarly, a morphism of Saavedra units in C is the same thing as a multiplic-

ative natural isomorphism between the corresponding functors ∗ → C .

5.3 Fair monoidal categories. (Cf. [7].) The idea of fair monoidal category is to

take the whole contractible category of units, instead of choosing an arbitrary
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unit in it. In the viewpoint of Corollary 5.2, a multiplicative category C is mon-

oidal when it is equipped with a gentle, strong multiplicative functor ∗ → C . By

definition, a fair monoidal category is a gentle, strict multiplicative functor U → C

between categories with multiplication U and C , with U contractible.

Here C is thought of as the ‘underlying category with multiplication’, while

U is thought of as its category of units. We want U → C to be strict because it

should be thought of as the forgetful functor from the category of units.

5.4 Fair monoidal functors. Given fair monoidal categories (U → C) and (U′ →

C′), a (strong) fair monoidal functor is a pair of strong multiplicative functors (φU , φC)

such that the diagram

U
φU - U′

C
?

φC

- C′
?

(23)

commutes (as strong multiplicative functors). (Note that in [7], only strict fair

monoidal functors are considered, i.e. φU and φC are required to be strict multi-

plicative functors.)

5.5 Proposition. There is an equivalence of categories between the category MonCat of

monoidal categories and strong monoidal functors and the category FairMonCat of fair

monoidal categories and (strong) fair monoidal functors.

Proof. We describe first the functor MonCat → FairMonCat which is canonical,

whereas the pseudo-inverse depends on a choice. Given a monoidal category

(C ,⊗, I) then the category itself is a strict semi-monoidal category C. The cat-

egory of units U = U(C ) is another strict semi-monoidal category, which is con-

tractible, and there is a strict multiplicative functor U → C, which is gentle by

5.1, since each unit is cancellable. Hence U → C is a fair monoidal category.

Given a multiplicative functor (C ,⊗, I) → (D ,⊗, J), X 7→ X, the existence of

a unit compatibility φ0 : J ∼→ I means that I is a unit in D (by Proposition 3.6),

and by Proposition 3.17, we can lift to a multiplicative functor U(C ) → U(D),
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by sending any unit (I, α) to (I, α). (This is the only possible way to lift C → D

to U(C ) → U(D).) By Proposition 3.17, the square (23) commutes as strong

multiplicative functor, so we do have a fair monoidal functor.

Conversely, suppose we are given a fair monoidal category (U → C). Let C

denote the category with multiplication C. We must provide it with a Saavedra

unit. Just choose an object I in U — since U is contractible, any choice is as good as

any other choice. Now there is induced a canonical unit structure on its image I in

C. Indeed, the fact that U is contractible implies that there is a unique isomorph-

ism α : I I → I, and the fact that U → C is gentle means that I is cancellable, by

5.1. Hence I is a Saavedra unit in C .

Suppose now we are given a diagram (23) of semi-monoidal categories, where

U and U′ are contractible. We have already chosen I ∈ U and I ′ ∈ U′ whose

images are units in C and C′. The arrows α : I I → I and α′ : I ′ I ′ → I ′ are given

uniquely since U and U′ are contractible. Also since U′ is contractible, there is a

unique isomorphism φ0 : I ′ → I, and it is automatically compatible with α and

α′ because all compatibilities hold in a contractible category. The image of this

compatibility diagram in C ′ is the unit compatibility.

It is easy to see that the two constructions are pseudo-inverse to each other,

in the sense that going back and forth gives something canonically isomorphic to

the starting point, in either direction. 2

5.6 Monoids in fair monoidal categories. Monoids in fair monoidal categories

have the following appealing description. A fair monoidal category is a gentle

multiplicative functor η : U → C with U contractible. A monoid in here is a

gentle semi-monoid homomorphism η(I) → M, where I is a semi-monoid in U

and M is a semi-monoid in C.
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6 Lax functoriality

Many of the constructions and arguments of Section 3 admit a lax version, but

not everything works as well in the lax case: the contractibility of the category

of units makes it behave better under strong functors than under lax ones. For

example, when φ0 : J → I is not invertible, I is not in general a unit itself.

The definition of lax monoidal functor in the LR setting is well-established:

simply allow φ2 : XY → XY and φ0 : J → I to be non-invertible, and otherwise

keep the conditions of 3.2. One important motivation for considering lax mon-

oidal functors is that monoids are a special case: a monoid in C is essentially the

same as a lax monoidal functor ∗ → C (cf. Bénabou [2]).

6.1 Lax monoidal functors in the Saavedra-unit setting. A Saavedra-unit compat-

ibility for a lax multiplicative functor (C , I) → (D , J), X 7→ X is a gentle semi-

monoid homomorphism φ0 : J → I, such that

IX → IX and XI → XI are epi for all X. (24)

Recall that gentle means that the two composites

J I - I I - I I - I (25)

I J - I I - I I - I

are monomorphisms. (The following proposition implies that in fact those com-

posites are isomorphisms.)

6.2 Proposition. The two notions of lax monoidal functor coincide, under the corres-

pondence of Proposition 2.9.

The epi condition (24) may appear a little bit strange, and one might hope it

would be unnecessary (i.e. automatically satisfied). Note that the LR unit com-

patibility of a lax monoidal functor implies that IX → IX and XI → XI are epi

for all X. This follows from the conditions (14) since λX and ρX are isomorphisms.
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Note that for strong monoidal functors, both condition (24) and (25) are auto-

matic, so the definition reduces to 3.4 in this case.

Proof of Proposition 6.2. From LR unit compatibility to Saavedra unit compatibility

works exactly like in the strong case (Lemma 3.10), noticing that the composites

(25) are just λ and ρ, and hence isomorphisms. We already observed that (24) is

automatic for LR unit compatibilities.

The other direction, starting with a Saavedra-unit compatibility and showing

that it is also an LR compatibility, is a little bit different from the strong case. First

we show that the compatibility holds in the special case where the object is I. This

is the content of Lemma 6.3, which does not use the epi condition (24). Then we

use the epi condition to deduce the general result from this case (Lemma 6.4). 2

6.3 Lemma. The composite

J I - I I - I I - I (26)

is precisely λJ

I
. And similarly the other isomorphism is precisely ρJ

I
. This does not depend

on the epi condition (24).

Proof. We consider compatibility with λ; compatibility with ρ is established ana-

logously. By construction of λ, we have JλJ

I
= βI, so to establish the assertion of

the lemma we tensor the composite with J on the left and check that it gives βI.

Consider the big diagram (17) of the proof in the strong case, but with X = I.

In this case the right-hand composite and the bottom composite both coincide

with (26), which is a monomorphism by assumption. So we can cancel them

away and conclude that the lemma holds in the case X = I as claimed. 2

6.4 Lemma. If φ0 : J → I is a Saavedra unit compatibility for a lax monoidal functor

X 7→ X, then it is also an LR unit compatibility.

Proof. By the previous lemma, the LR compatibility holds for the object I. The

next step is the case of an object of form IX: we claim that the composite

θ : J IX
φ0 IX- I IX

φ2- I IX
λI

IX- IX
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is equal to λ
J

IX
. Tensor (26) with X on the right, and apply φ2:

J IX
φ0 IX - I IX

φ2X - I IX
αX - IX

JIX

Jφ2

?

φ0 IX

- I IX

Iφ2

?

φ2

- I IX

φ2

?
αX

λI
IX

- IX

φ2

?

The first square is trivially commutative; the second is associativity of φ2 (cf. (13));

the third is naturality. The top row is λ
J

I
X = λ

J

IX
(by basic property (2) of λ). But

we also have the naturality square

J IX
λ

J

IX - IX

JIX

Jφ2
?

λ
J

IX

- IX

φ2
?

Hence the left-and-bottom ways around in these two diagrams coincide. Now

φ2 is epi, and tensoring with J on the left is an equivalence and hence preserves

epimorphisms, so Jφ2 is also epi. So we conclude that θ = λ
J

IX
.

Now we have proved that the compatibility holds for every object of form IX:

J IX
λ

J

IX - IX

I IX

φ0 IX
?

φ2

- I IX

λI
IX

6

To finish the proof, use the isomorphism λI
X : IX ∼→ X to compare with the

diagram we want:

JX
λ

J

X - X

IX

φ0X
?

φ2

- IX.

λI
X

6

The compatibility with ρ is established analogously. 2
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6.5 Lemma. The epi condition (24) is automatically satisfied in the following cases:

(a) φ0 is mono and φI,X and φX,I are mono for all X

(b) In the domain category, every object is isomorphic to I.

Proof. Re (a): If both φ0 and φI,X are mono, then the long composite

JX → IX → IX → X

is mono. But this was all we needed in the proof of Proposition 3.5 (proof of

Lemma 3.11), so it carries over to the lax case.

Re (b): Lemma 6.3 shows that J I → I I → I I → I is an isomorphism independ-

ently of the epi condition (24). Hence I I → I I is epi. But since X is isomorphic to

I, also IX → IX is epi. 2

6.6 Monoids as lax monoidal functors. A monoid in C is essentially the same

thing as a lax monoidal functor ∗ → C . For the LR definition of lax monoidal

functor this gives the classical notion of monoid, and for Saavedra-unit lax mon-

oidal functors this gives the notion of Saavedra monoid of 4.4. This follows im-

mediately since ∗∗ → ∗∗ is automatically epi, cf. item (b) of the previous lemma.

Hence as a corollary we get Proposition 4.5.

6.7 Remark. For strong monoidal functors we got Corollary 3.12 for free: com-

patibility with the left constraint implies compatibility with the right constraint.

This result does not follow in the lax case, since we need both compatibilities (14)

in order to be able to establish the epi condition (24). (The conclusion does hold

in the special situations of 6.5.)

In fact, the following example, contributed by Robin Houston, shows that the

left unit condition does not imply the right unit condition for a lax multiplicative

functor: Let C be the strict monoidal category which has one object X in addition

to the unit I, one arrow f : X → X (idempotent) in addition to the identity

arrows, and where the tensor product is defined by XX : = X, f f : = f . Give the

identity functor φ : C → C a lax multiplicative structure by setting φI,I = idI ,
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φI,X = idX, φX,I = f , and φX,X = f . (The lax version of axiom 3.1 is easily checked

by hand.) Now let φ0 be the identity arrow of I, then the left unit condition of (14)

is satisfied, but the right unit condition is not. To argue in Saavedra terms: φX,I

fails to be epi.

Finally note that by splitting the notion of gentle into left-gentle and right-

gentle, also the Saavedra unit compatibility condition 6.1 can be split into left

and right, and then also Proposition 6.2 can be split into independent statements

for left and right.
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