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Abstract. We characterize Hopf spaces with finitely generated co-
homology as an algebra over the Steenrod algebra. We “deconstruct”
the original space into an H-space Y with finite mod p cohomol-
ogy and a finite number of p-torsion Eilenberg-Mac Lane spaces. We
give a precise description of homotopy commutative H-spaces in this
setting.

Introduction

Since their introduction in the 50’s by Serre, H-spaces have produced
some of the most beautiful results in Algebraic Topology. Some ex-
amples are Adams’ solution of the Hopf invariant one conjecture [1],
the criminal of Hilton-Roitberg [21], the construction of DI(4) by
Dwyer and Wilkerson [17], the recent proof that a finite loop space
is of the homotopy type of a manifold [4], and the new example of a
finite loop space in [3].

The structure of finite H-spaces is rather well understood. In
one of the most important articles on finite H-spaces, [22], Hub-
buck shows that there are no other finite connected homotopy com-
mutative H-spaces than products of circles, which was proved for
compact Lie groups by James. It was not until the early 90’s that
this result was extended by Slack to H-spaces with finitely generated
mod 2 cohomology. With the aid of secondary operations, he shows
in [36] that such homotopy commutative H-spaces are products of
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circles and other Eilenberg-Mac Lane spaces. In fact, using the mod-
ern techniques of Lannes’ T' functor, Broto et al. obtain a structure
theorem for all H-spaces with noetherian mod p cohomology. They
“deconstruct” such an H-space into mod p finite ones and copies of
K(Z/p",1) and CP* in a functorial way. Recall that an H-space is
said to be mod p finite if it is p-complete with finite mod p cohomol-
ogy, which we denote simply by H*(—).

Our goal is to extend such results to an even larger class of in-
finite dimensional spaces and understand which are the basic pieces
permitting to reconstruct the original H-space.

Natural examples of H-spaces, arising in connection with those
which are finite, are their Postnikov sections and connected covers.
The mod p cohomology of the n-connected cover of a finite H-space
is not finite in general, but is finitely generated as an algebra over
the Steenrod algebra A, (we refer to the article [14] for more de-
tails). Up to p-completion, the basic examples of H-spaces satisfying
this cohomological finiteness condition are all finite H-spaces, and
Eilenberg-Mac Lane spaces of type K(Z/p",n) and K (Zp~,n).

We show that one can deconstruct any such H-space in terms
of these basic H-spaces. We call an H-space which has only finitely
many non-trivial homotopy groups an H -Postnikov piece.

Theorem 6.5. Let X be a connected H-space such that H*(X) is
a finitely generated algebra over the Steenrod algebra. Then X is the
total space of an H-fibration

F— X Y,

where Y is an H-space with finite mod p cohomology and F is a p-
torsion H-Postnikov piece whose homotopy groups are finite direct
sums of copies of cyclic groups Z/p" and Priifer groups Zpe.

The above fibration behaves well with respect to loop structures
and a similar result holds for loop spaces. Our deconstruction theorem
enables us to reduce questions on infinite dimensional H-spaces to
finite ones. For instance, we use this technique to give a generalization
of Hubbuck’s Torus Theorem.

Corollary 6.6. Let X be a connected homotopy commutative H -
space such that the mod 2 cohomology H*(X) is finitely generated as
an algebra over the Steenrod algebra As. Then, up to 2-completion, X
is homotopy equivalent to (S')" x F, where F is a connected 2-torsion
H -Postnikov piece.

When H*(X) is finitely generated as an algebra, we get back
Slack’s result [36], as well as their generalization by Lin and Williams
in [27].

The arguments to prove our main theorem are the following. When
H*(X) is finitely generated over A,, we show in Lemma 6.1 that



Deconstructing Hopf spaces 3

the unstable module of indecomposable elements QH*(X) belongs
to some stage U,, of the Krull filtration in the category of unstable
modules. This filtration has been studied in [34] by Schwartz in order
to prove Kuhn’s non-realizability conjecture [24].

The stage Uy of the Krull filtration is particularly interesting since
it consists exactly of all locally finite modules (direct limits of fi-
nite modules). In fact, the condition that QH*(X) is locally finite is
equivalent to requiring that the loop space 2X be BZ/p-local, i.e.
the space of pointed maps map, (BZ/p, {2X) is contractible, see [18,
Prop 3.2] and [32, Proposition 6.4.5].

We extend this topological characterization to H-spaces X with
QH*(X) € Uy,,. We use the standard notation Ty for Lannes’ T" func-
tor.

Theorem 5.3. Let X be a connected H-space such that Ty H*(X)
is of finite type for any elementary abelian p-group V.. Then QH*(X)
is in Uy, if and only if 2" X is BZ/p-local.

We apply now Bousfield’s results on the Postnikov-like tower asso-
ciated to the BZ/p-nullification functor Ppgz, (relying on his “Key
Lemma”, [7, Chapter 7]). They enable us to reconstruct those H-
spaces such that 2"+t X is BZ/p-local from Pgy /pX in a finite num-
ber of principal H-fibrations over p-torsion Eilenberg-Mac Lane spa-
ces. When n = 0, we recover the results of Broto et al. from [10,15,
11].

Theorem 5.5. Let X be an H-space such that Ty H*(X) is of
finite type for any elementary abelian p-group V. Then QH*(X) is
in Uy, if and only if X is the total space of an H-fibration

F—’X—'PBz/pX

where F' is a p-torsion H-Postnikov piece whose homotopy groups are
finite direct sums of copies of cyclic groups Z/p" and Prifer groups
Ly concentrated in degrees 1 to n + 1.

It is worthwhile to mention that working with H-spaces is crucial
as illustrated by the example of B.S3. Its loop space S? is BZ/p-local,
but the fiber of the nullification map has infinitely many non-trivial
homotopy groups (see Dwyer’s computations in [16, Theorem 1.7,
Lemma 6.2]).

Notation. We say that H*(X) is of finite type if H"(X) is a finite
[Fp-vector space for any integer n > 0.

Acknowledgements. Most of this work has been done in the coffee room of the
Maths Department at the UAB. We would like to thank Alfonso Pascual for
his generosity. We warmly thank Carles Broto for his questions which regularly
opened new perspectives and Jesper Grodal for many useful comments.
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1. Lannes’ T functor

Lannes’ T' functor was designed as a tool to compute the cohomol-
ogy of mapping spaces with source BV, the classifying space of an
elementary abelian p-group V. It was used also by Lannes to give an
alternative proof of Miller’s Theorem on the Sullivan’s conjecture.

Let U (resp. K) be the category of unstable modules (resp. alge-
bras) over the Steenrod algebra. The functor Ty is the left adjoint of
— ® H*(BV) in K, where V is an elementary abelian p-group. The
left adjoint of — @ H*(BV) is called the reduced T functor and de-
noted by Ty . For each unstable module M € U, we have a splitting
of modules over the Steenrod algebra Ty M = M & Ty M. We will
use T" to denote 17/, and T to denote Ty, /p-

If M = H*(X), the evaluation map BV X map(BV,X) — X
induces by adjunction a map Ay : Ty H*(X) —— H*(map(BV, X))
of unstable algebras over A, which is often an isomorphism.

Proposition 1.1. Let X be an H-space such that H*(X) is of finite
type. Assume that Ty H*(X) (or equivalently H*(map(BV, X))) is of
finite type. Then

Ty HY(X) = H* (map(BV, X)),
as algebras over A,. Moreover, map(BYV, Xp) is p-complete.

Proof. If X is an H-space, then map(BV, X) is again an H-space,
and so is the connected component map(BV, X). of the constant
map (see [38]). Moreover, when X is connected, all connected com-
ponents of the mapping space have the same homotopy type. Since
the evaluation map is an H-map and has a section, there is a splitting

map(BV, X) ~ X X map,(BV, X).

By [29, Theorem 1.5] there is a weak equivalence map, (BV, X) ~
map, (BV, Xp) for any elementary abelian p-group V. Since X is
p-good, we can work with Xp and [25, Proposition 3.4.4] applies:
Ty H*(X,) = H*(map(BV, X,)) and we can conclude. O

When working with H-spaces, it is often handy to deal with the
pointed mapping space instead of the full mapping space. This is
possible since the above finiteness condition on Ty H*(X) can be
given in terms of the pointed mapping space.

Lemma 1.2. Let X be an H-space such that H*(X) is of finite type.
Then, Ty H*(X) is of finite type if and only if H*(map,(BV, X))
is of finite type. Moreover, if X is such that Ty H*(X) is of finite
type for any elementary abelian p-group V then the same holds for
map, (BW, X)) for any elementary abelian p-group W .
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Proof. By Proposition 1.1, if Tyy H*(X) is of finite type then
H*(map(BV, X)) & H*(X) @ H* (map, (BV, X))

is of finite type. In particular, H*(map,(BV, X)) is of finite type.
On the other hand, if H*(X) and H*(map,(BV, X)) are of finite
type then H*(map(BV, X)) is of finite type, which is equivalent to
Ty H*(X) being of finite type by Proposition 1.1.

The last statement follows from the fact that Ty xw = Ty Tw for
any elementary abelian p-groups V and W. 0O

When X is connected, the evaluation map(BV,X) — X is a ho-
motopy equivalence if Ty H*(X) = H*(X) (for finite spaces, this is
the Sullivan conjecture proved by Miller [29, Theorems A,C]). Actu-
ally, spaces for which this happens have been cohomologically char-
acterized by Lannes and Schwartz in [26]: their mod p cohomology is
locally finite.

When one restricts the evaluation map to the connected compo-
nent of the constant map, the module of indecomposable elements
QH*(X) comes into play as observed by Dwyer and Wilkerson in
[18, Proposition 3.2] (see also [32, 3.9.7 and 6.4.5]).

Proposition 1.3. Let X be a connected H-space of finite type. Then
QH*(X) is a locally finite A,-module if and only if map,(BV, 2X)

is contractible for some elementary abelian p-group V.

Proof. Since Xp is a connected p-complete H-space, QH*(X) is a

locally finite A,-module if and only if map, (BV, Xp) is homotopically
discrete for any elementary abelian p-group V' by [18, Proposition 3.2]
and [32, Proposition 6.4.5].

The weak equivalence map,(BV, X) ~ map,(BV, X,) given by
[29, Theorem 1.5] shows that this is equivalent to map,(BV, 2X)
being contractible, i.e. the loop space 2X is BV-local. O

2. The Krull filtration of U

In [34], Schwartz proves the “strong realization conjecture” extending
his previous results from [33]. This conjecture, given by Kuhn in [24],
states that if the cohomology of a space lies in some stage of the
Krull filtration of the category U of unstable modules, then it must be
locally finite. The Krull filtration Uy C Uy C ... is defined inductively,
see [20]. It starts with the full subcategory Uy of U of locally finite
unstable modules and the modules in U, can be characterized as
follows by means of the functor T

Theorem 2.1. [32, Theorem 6.2.4] Let M be an unstable module.
Then M € U, if and only if T""'M=0. O
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The proof of Kuhn’s conjecture by Schwartz shows that under the
usual finiteness conditions the cohomology of a space either lies in U
or it is not in any U,,. Instead of looking at when the full cohomology
of a space is in U,,, we will study the module of the indecompos-
able elements QH*(X). The Krull filtration induces a filtration of
the category of H-spaces by looking at those H-spaces X for which
QH*(X) € U,. There exist many spaces lying in each layer of this
filtration, the most obvious ones being Eilenberg-Mac Lane spaces.

Ezample 2.2. The module QH* (K (Z/p,n + 1)) is isomorphic to the
suspension of the free unstable module F(n) on one generator in
degree n. In particular, the formula TF (n) = ©o<i<n—1F (i) (see [32,
Lemma 3.3.1]) yields that QH*(K(Z/p,n+ 1)) € U,.

More generally, let G be any abelian discrete group such that
H*(K(G,n+1)) is of finite type. Then QH*(K(G,n+ 1)) € U,, (see
[32, Section 9.8] for the explicit computations of the 7" functor).

From the above example, it is easy to see that the filtration is
not exhaustive, since the infinite product [],,~; K(Z/p,n) does not
belong to any stage of the filtration. -

Next lemma shows, by means of the reduced T functor, how
QH*(X) is related to QH*(map, (BZ/p, X)).

Lemma 2.3. Let X be an H-space such that TH*(X) is of finite
type. Then,

TQH"(X) = QH" (map, (BL/p, X)) .

Proof. Under such assumptions, Proposition 1.1 applies and we know
that the T" functor computes the cohomology of the mapping space.
Thus QT H*(X) is isomorphic to

QH"(map(BZ/p, X)) = Q(H"(map,(BZ/p, X)) ® H*(X))

Since T commutes with taking indecomposable elements [32, Lemma
6.4.2], it follows that TQH*(X) = QH*(X)®QH*(map,(BZ/p, X)).
This is equivalent to TQH*(X) = QH*(map,(BZ/p, X)). O

We end the section with a proposition which will allow us to per-
form an induction in the Krull filtration. Observe that Kuhn’s strat-
egy to move in the Krull filtration is to consider the cofiber of the
inclusion X — map(BZ/p, X ) in the component of the constant map,
see [24]. In our context, Lemma 2.3 suggests to use the fiber of the
evaluation map(BZ/p, X) — X.

Proposition 2.4. Let X be an H-space with TH*(X) of finite type.
Then, forn > 1, QH*(X) € U, if and only if QH*(map,(BZ/p, X))
18 m Upy_1.
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Proof. By Theorem 2.1, the unstable module Q H*(X) belongs to U,
if and only if T""'QH*(X) = 0. By Lemma 2.3, T"TQH*(X)
T"(QH*(map,(BZ/p, X)) , and we obtain that QH*(X) € U, if and
only if QH*(map,(BZ/p, X)) € Up—1. O

By repeatedly applying the previous proposition, one can give a
more geometrical formulation to the condition QH*(X) € U,,. This
happens if and only if the pointed mapping space out of an (n + 1)-
fold smash product map,(BZ/p A ... AN BZ/p, X) is homotopically
discrete.

3. Bousfield’s BZ /p-nullification filtration.

The plan of this section follows the preceding one step-by-step, re-
placing the algebraic filtration defined with the module of indecom-
posables by a topological one.

Dror-Farjoun and Bousfield have constructed a localization func-
tor P4 from spaces to spaces together with a natural transformation
[l : X — PsX which is an initial map among those having a local
space as target (see [19] and [5]). This functor is known as the A-
nullification. It preserves H-space structures since it commutes with
finite products. Moreover, when X is an H-space, the map [ is an
H-map and its fiber is an H-space.

Bousfield has determined the structure of the fiber of the nullifi-
cation map [ : X — P4 X under certain assumptions on A. We are
interested in the situation in which A = X" BZ/p.

Theorem 3.1. [6, Theorem 7.2] Let n > 1 and X be a connected
H-space such that "X is BZ/p-local. The homotopy fiber of the
localization map X — Psgn-1pz/,X is then an Eilenberg-Mac Lane
space K(P,n) where P is an abelian p-torsion group (possibly infi-
nite). O

As mentioned by Bousfield in [6, p. 848], an inductive argument al-
lows to obtain a precise description of the fiber of the BZ/p-nullifica-

tion map for H-spaces for which some iterated loop space is local.

Theorem 3.2. Let n > 0 and X be a connected H-space such that
"X is BZ/p-local. Then there is an H-fibration

FHXHPBz/pX,

where F' is a p-torsion H-Postnikov piece whose homotopy groups are
concentrated in degrees from 1 ton. O
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We introduce a “nullification filtration” by looking at those H-
spaces X such that the iterated loop space 2" X is BZ/p-local. The
example of the Eilenberg-Mac Lane spaces shows that there are many
spaces living in each stage of this filtration as well, compare with
Example 2.2.

Ezxample 3.3. Let G be an abelian discrete group with non-trivial mod
p cohomology. Then, the Eilenberg-Mac Lane space K(G,n) enjoys
the property that its n fold iterated loop space is BZ/p-local (it is
even discrete). The infinite product [],,~; K(Z/p,n) does not live in
any stage of this topological filtration.

Another source of examples of spaces in this filtration is provided
by connected covers of finite H-spaces.

Ezxample 3.4. Let X be a finite connected H-space and consider its
n-connected cover X (n). Then £2"~1(X(n)) is BZ/p-local.

For a connected H-space X such that 27X is BZ/p-local, the
study of the homotopy type of map,(BZ/p, X) is drastically simpli-
fied by Theorem 3.2, since this space is equivalent to map, (BZ/p, F')
where F' is a Postnikov piece, as we explain in the proof below. A
complete study of the BZ/p-homotopy theory of such H-spaces is
undertaken in [13].

We prove now the topological analogue of Lemma 2.3.

Proposition 3.5. Let X be a connected H-space such that "X is
BZ/p-local, then §2" ‘map,(BZ/p, X) is BZ/p-local.

Proof. Under the hypothesis that 2"X is BZ/p-local, Theorem 3.2
tells us that we have a fibration

F—’X—’PBz/pX,

where F' is a p-torsion Postnikov system with homotopy concentrated
in degrees from 1 to n. Thus, map,(BZ/p, X) ~ map,(BZ/p, F)
because Ppz/,X is a BZ/p-local space. Now, 2" Ymap,(BZ/p, F) is
B7Z/p-local (in fact, it is a homotopically discrete space) and thus so
is 2" 'map,(BZ/p,X). O

4. Infinite loop spaces

In order to compare the topological with the algebraic filtration, one
of the key ingredients comes from the theory of infinite loop spaces. In
this section we explain when a pointed mapping space map, (A, X)
is an infinite loop space, but we are of course specially interested
in the case when A is BZ/p. We make use of Segal’s techniques of
I'-spaces and follow his notation from [35], which is better adapted
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to our needs than that of Bousfield and Friedlander, see [8]. Recall
that the category I is the category of finite sets, and a morphism
0 : S — T between two finite sets is a partition of a subset of T" into
|S| disjoint subsets { 6(«) }acs. A I'-space is a contravariant functor
from I to the category of spaces with some extra conditions. We first
construct a covariant functor A, : I' — Spaces for any pointed space
A by setting A, = A™ (so in particular Ag = %) and a morphism
0 : [n] — [m] induces the map 6, : A" — A™ sending (ai,...,a,)
to the element (by,...,by) with b; = a; if and only if j € 6(i) and
b; = * otherwise.

Hence, we get a contravariant functor for any pointed space X
by taking the pointed mapping space map, (—, X). For map, (4., X)
to be a I['-space one needs to check it is special, i.e. the n inclu-
sions iy : [1] — [n] sending 1 to k& must induce a weak equivalence
map, (A", X) — map, (A, X)".

Lemma 4.1. Let A and X be pointed spaces and assume that the
inclusion A"V A — A™ x A induces for anyn > 1 a weak equivalence
map, (A" x A, X) — map, (A" V A, X). Then, map,(As, X) is a I'-
space. O

Proposition 4.2. Let A be a pointed connected space and X an H-
space. Assume that map, (A, X) is A-local. Then map,(As, X) is a
I'-space.

Proof. The cofiber sequence A" VA — A" x A — A" A A yields a
fibration of pointed mapping spaces

map, (A" AN A, X) — map, (A" x A, X) — map, (A" V A, X).

By adjunction, the fiber map,(A™ A A, X) ~ map, (A", map, (A4, X))
is contractible since any A-local space is also A™-local (A" is A-
cellular or use Dwyer’s version of Zabrodsky’s Lemma in [16, Propo-
sition 3.4]). Moreover, the inclusion A" V A — A™ x A induces a
bijection on sets of homotopy classes [A" x A, X] — [A" V A, X]| by
[38, Lemma 1.3.5]. Since all components of these pointed mapping
spaces have the same homotopy type, we have a weak equivalence
map, (A" x A, X) ~ map, (A" V A, X) and conclude by the preceding
proposition. O

Theorem 4.3. Let A be a pointed connected space and let X be a
loop space such that map, (A, X) is A-local. Then, map, (A, X) is an
infinite loop space, and so is the corresponding connected component
map, (A, X). of the constant map.

Proof. The I'-space structure constructed above yields classifying
spaces B"map, (A, X) and weak equivalences £2B" ' map, (A, X) ~
B™map, (A, X) for any n > 1. In our situation X is a loop space, and
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so is the mapping space map, (A, X). Therefore, Segal’s result [35,
Proposition 1.4] applies and shows that map, (A4, X) is equivalent to
the loop space 2Bmap,(4,X). O

We specialize now to the case A = BZ/p, where we can even say
more about the intriguing infinite loop space map, (BZ/p, X ).

Proposition 4.4. Let X be a loop space such that map,(BZ/p, X)
is BZ/p-local. Then all homotopy groups of the infinite loop space
map,(BZ/p, X). are Z/p-vector spaces.

Proof. Since mpmap,(BZ/p,X). = [BZ/p,2"X], consider a map
BZ/p — 2"X. We claim that it is homotopic to an H-map. In-
deed, by [38, Proposition 1.5.1], the obstruction lives in the set
[BZ/p A\ BZ/p, £2" X], which is trivial since map, (BZ/p, X ) is BZ/p-
local. But any non-trivial H-map out of BZ/p has order p. O

5. Structure theorems for H-spaces

The purpose of this section is to give an inductive description of the
H-spaces whose module of indecomposable elements lives in some
stage of the Krull filtration. This is achieved by comparing this alge-
braic filtration with the topological one and by making use of Bous-
field’s result 3.2.

Proposition 5.1. Let X be an H-space such that Ty H*(X) is of
finite type for any elementary abelian p-group V. Assume that 2" X
is BZ/p-local. Then QH*(X) € Up_1.

Proof. We proceed by induction. For n = 1, assume that 2X is
BZ/p-local, that is, 2map,(BZ/p, X). ~ *. Then, map,(BZ/p, X)
is homotopically discrete since map, (BZ/p, X). is so and all compo-
nents of the mapping space have the same homotopy type. Hence,
QH*(map,(BZ/p, X)) = 0 and, by Lemma 2.3, QH*(X) € Up.

Ifn > 1,let X be an H-space such that 2" X is BZ/p-local. We see
by Proposition 3.5 that 2" 'map, (BZ/p, X). is BZ/p-local as well.
Now, map, (BZ/p, X ). is an H-space such that 2" 'map,(BZ/p, X).
is BZ/p-local. Moreover, by Lemma 1.2, Ty H*(map,(BZ/p, X)) is
of finite type for any elementary abelian p-group V. By induction hy-
pothesis, QH*(map, (BZ/p, X).) € U,—2. Since all components have
the same homotopy type, we obtain that QH*(map,(BZ/p, X)) €
Uy,—2, and we conclude that QH*(X) € Uy,—1 by Corollary 2.4. O

Proposition 5.2. Let X be a connected H -space such that Ty H*(X)
is of finite type for any elementary abelian p-group V. Suppose that
QH*(X) € U,. Then 2" X is BZ/p-local.
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Proof. As in the proof of Proposition 1.1 we can assume without loss
of generality that X is p-complete.

Let us proceed by induction. The case n = 0 is given by Corol-
lary 1.3. Now assume that the result is true for n — 1, and con-
sider a space X such that QH*(X) € U,. Then, by Lemma 2.4,
QH*(map,(BZ/p, X)) € Up—1 and the induction hypothesis ensures
that 2"map,(BZ/p, X ). ~ map,(BZ/p, 2" X) is BZ/p-local. Apply
now Theorem 4.3 to deduce that the space map,(BZ/p, 2"X), is an
infinite loop space, with a p-torsion fundamental group by Proposi-
tion 4.4.

These are precisely the conditions of McGibbon’s main theorem
in [28]: the BZ/p-nullification of connected infinite loop spaces with
p-torsion fundamental group is trivial, up to p-completion. Moreover,
our infinite loop space is BZ/p-local, so

(map*(BZ/pa QnX)C);)\ = (PBZ/p(map*(BZ/p7 “QnX)C))}/a\ =*

As we assume that X is p-complete, so are the loop space §2"X
and the pointed mapping space map,(BZ/p, 2" X).. Thus, we see
that map, (BZ/p, 2" X ). must be contractible. Since all components
of the pointed mapping space have the same homotopy type as the
component of the constant map, we infer that map,(BZ/p, 2"X) is
homotopically discrete. Looping once again, one obtains the equiv-
alence map,(BZ/p, 2" X) ~ x, ie. 2"T1X is BZ/p-local, as we
wanted to prove. O

Let us sum up these two results in one single statement, which
extends widely Dwyer and Wilkerson’s [18, Proposition 3.2] when X
is assumed to be an H-space.

Theorem 5.3. Let X be a connected H-space such that Ty H*(X) is
of finite type for any elementary abelian p-group V. Then, QH*(X)
is in Uy, if and only if Q"X is BZ/p-local. O

Combining these results with Theorem 3.2 (about the nullification
functor Ppz/,) enables us to give a topological description of the H-
spaces X for which the indecomposables QH*(X) live in some stage
of the Krull filtration. Recall that the Priifer group Zy~ is defined as
the union U Z/p". It is a p-torsion divisible abelian group.

n>1

Theorem 5.4. Let X be a connected H-space of finite type such that
Ty H*(X) is of finite type for any elementary abelian p-group V.. Then
QH*(X) € Uy, if and only if X fits into a fibration

KPn+1) — X — Y,

where Y is a connected H-space such that QH*(Y) € U,—1, and P
1 a p-torsion abelian group which is a finite direct sum of copies of
cyclic groups Z/p" and Priifer groups Zye.
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Proof. Let F' be the homotopy fiber of the nullification map X —
Psnpz/p(X). By Theorem 3.1, F' ~ K(P,n+1) where P is an abelian
p-group. Moreover, the equivalence map,(X"BZ/p, K(P,n + 1)) ~
map, (X" BZ/p, X) shows that the set

mpmap, (BZ/p, X) & mmap, (X" BZ/p, X) = Hom(Z/p, P)

is finite since all homotopy groups of map, (BZ/p, X) are p-torsion
and its cohomology is of finite type. Thus, P is isomorphic to a finite
direct sum of copies of cyclic groups Z/p" and Priifer groups Z,~ by
Lemma 5.8, which we prove at the end of the section.

We conclude by taking Y = Pxnpz/,(X). The cohomology H*(Y)
is of finite type since H*(K(P,n + 1)) and H*(X) are of finite type,
and so is H*(map, (BV,Y’)). Moreover, since 2"Y ~ Pz ,(£2"X) is
BZ/p-local, Theorem 5.3 implies that QH*(Y') e U,—;. O

Equivalently, one can reformulate this result by describing the
fiber of the BZ/p-nullification map.

Theorem 5.5. Let X be an H-space such that Ty H*(X) is of finite
type for any elementary abelian p-group V. Then, QH*(X) is in U,
if and only if X is the total space of an H-fibration

F—'X—'PBZ/an

where F' is a p-torsion H-Postnikov piece whose homotopy groups are
finite direct sums of copies of cyclic groups Z/p" and Prifer groups
Ly concentrated in degrees 1 ton+1. O

In other words, the only H-spaces such that QH*(X) lies in U,
for some n are the BZ/p-local H-spaces, the p-torsion Eilenberg-
MacLane spaces introduced in Example 2.2, and extensions of the
previous type.

Recall that the BZ/p-nullification of a loop space is again a loop
space. Moreover, by [19, Lemma 3.A.3|, the nullification map is a
loop map, and hence its homotopy fiber is also a loop space. Thus we
obtain automatically the following result about loop spaces.

Corollary 5.6. Let X be a loop space such that Ty H*(X) is of finite
type for any elementary abelian p-group V. Then QH*(X) is in U,
if and only if X is the total space of loop fibration

F—’X—'PBz/pX,

where the loop space F is a p-torsion Postnikov piece whose homo-
topy groups are finite direct sums of copies of cyclic groups Z/p" and
Priifer groups Zp>~ concentrated in degrees 1 ton +1. O
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If we restrict our attention to the case n = 0 in Theorem 5.5,
our result reproves in a more conceptual way the theorems about H-
spaces with locally finite module of indecomposable elements given
by Broto, Saumell and the second named author in [10,15,11].

What do we learn from our study about H-spaces which do not
belong to any stage of the filtration we have introduced in this paper?
From a cohomological point of view, such H-spaces have a very large
module of indecomposables. Let us discuss the example of BU.

Ezample 5.7. The module QH*(BU) is isomorphic to X2 H*(BS!). In
particular, it is not a finitely generated A,-module. A computation
of the value of the T functor on this module can be done using [32,
Section 9.8] and shows that QH*(BU) does not belong to any U,
Therefore the Krull filtration for the indecomposables detects in
BU the fact that the BZ/p-nullification Postnikov-like tower does
not permit to deconstruct it into elementary pieces. In fact BU is
K(Z/p,2)-local by a result of Mislin (see [30, Theorem 2.2]).

Finally, we prove the lemma about abelian p-torsion groups which
was used in the proof of Theorem 5.4.

Lemma 5.8. Let P be a p-torsion discrete group. If Hom(Z/p, P) is
finite then P is a finite direct sum of copies of cyclic groups Z/p" and
Priifer groups Zpe .

Proof. By Kulikov’s theorem (see [31, Theorem 10.36]), P admits a
basic subgroup, which is a direct sum of cyclic groups. It must be
of bounded order since Hom(Z/p, P) is finite, and a result of Priifer
(see [31, Corollary 10.41]) shows now that this subgroup is a direct
summand. Since the quotient is divisible and Hom(Z/p, P) is finite,
P is a finite direct sum of copies of cyclic groups Z/p” and Priifer
groups Zyes. 0O

6. H-spaces with finitely generated algebra over A,

We will assume in this section that H*(X) is finitely generated as
an algebra over the Steenrod algebra. Then, the BZ/p-nullification
of X is a mod p finite H-space up to p-completion, as we prove in
Theorem 6.4.

The next lemma shows that, under this finiteness condition, the
H-spaces considered in this section satisfy the hypothesis of Theo-
rem 5.3 (they belong to some stage of the filtration we study in this

paper).

Lemma 6.1. Let K be a finitely generated unstable Ay,-algebra. Then
there exists some integer n such that the module of indecomposables
QK belongs to U,. Moreover Ty K is a finitely generated unstable
A, -algebra for any elementary abelian group V.



14 Natalia Castellana et al.

Proof. First of all, QK is a finitely generated module over A,, i.e. it
is a quotient of a finite direct sum of free modules. Hence, there exists
an epimorphism @5 F(n;) — QK. Since T is an exact functor, it
follows that T (QK) = 0, where m is the largest of the n;’s, and so
QK € Uy,—1.

Moreover, Ty commutes with taking indecomposables elements
[34, Lemma 6.4.2]. Therefore, Q(Ty K) is a finitely generated unstable
module. Then, the above discussion shows that Ty K is a finitely
generated A,-algebra. O

Our first proposition is inspired by the situation studied by Smith
in [37].

Proposition 6.2. Let p : X — B be a principal H-fibration classified
by an H-map ¢ : B — BF. Then, there is an isomorphism of algebras
H*(X)= (H*(B)//¢*) ® A, where A is a subalgebra of H*(X) and
H*(B)//¢* is the quotient by the ideal generated by the positive degree
elements in Im(p*). Moreover, if H*(BF) and H*(X) are finitely
generated Ap-algebras, then so is H*(B).

Proof. Consider the Serre spectral sequence associated to the prin-
cipal fibration F' — X — B, with Es-term Ey” = H*(F) ® H*(B)
which converges to H*(X). Let {E|} be the spectral sequence asso-
ciated to the universal path fibration /' — PBF — BF. The map
¢ induces a morphism of spectral sequences E! — E, which, in the
FEs-term, is the identity on the vertical axes and ¢* on the horizontal
axes.

Since the spectral sequence for the universal path fibration con-
verges to I, it follows from naturality that all elements in the image
of ¢* are hit by some differential. Moreover, an element on the hori-
zontal axis is hit by a differential exactly if it lies in the ideal generated
by the elements which are killed by an element on the vertical axis.
Therefore, EX° = H*(B)//¢*.

The morphism p* induced in cohomology factors through the edge
homomorphism H*(B) — H*(B)//¢* C H*(X). In particular, we
know that H*(B)//¢* = Im(p*) is an Ap-Hopf subalgebra. Therefore,
by the proof of the Borel-Hopf decomposition theorem in [23, Section
2.2], there is a complement A such that H*(X) = (H*(B)//¢*) ® A,
as algebras.

If H*(X) is a finitely generated algebra over A, then H*(B)//¢*
is also a finitely generated algebra over A,. On the other hand,
Im(¢*) C H*(B) is a Ap-Hopf subalgebra which is also finitely gen-
erated as algebra over A,, being the image of the finitely generated
one H*(BF). Thus so is H*(B). O

The proof of the next theorem is done by induction, in which
the reduction step relies again on mapping spaces. Thus, we need to
control the finiteness conditions of such mapping spaces.
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Lemma 6.3. Let F' be a p-torsion H-Postnikov piece. If the coho-
mology H*(map,(BZ/p,F)) is a finitely generated algebra over A,
then so is H*(F").

Proof. Since map, (BZ/p, K(P,n)) is homotopy equivalent to a prod-
uct K(P,—1,n—1)x---xK(Py,0) of lower dimensional Eilenberg-Mac
Lane spaces, the result holds for Eilenberg-MacLane spaces. In par-
ticular, P,—1 = Hom(Z/p, P) must be finite and P is a finite direct
sum of cyclic and Priifer groups by Lemma 5.8.

By induction, the same holds for Postnikov pieces. Let F' be a
Postnikov piece with homotopy concentrated in degrees from 1 to n
and consider the principal fibration

K(Pn) — F — F'.

The highest non-trivial homotopy group of map, (BZ/p, F') is isomor-
phic to Hom(Z/p, P). Since the mod p cohomology is of finite type,
this must be a finite group. Hence, by Lemma 5.8, P is a finite direct
sum of copies of Z/p".

Applying map, (BZ/p, —) to the fibration F — F' — K(P,n+1),
we notice that map, (BZ/p, F') has finitely generated cohomology as
an A,-algebra by the assumption on map,(BZ/p, F') and Proposi-
tion 6.2. By induction hypothesis, H*(F”) enjoys the same property
and so, the same holds for H*(F') by Proposition 6.2 again. O

We can now state our main finiteness result. It enables us to under-
stand better the BZ/p-nullification, which is the first building block
in our deconstruction process (Theorem 5.4).

Theorem 6.4. Let X be a connected H-space such that H*(X) is
finitely generated as algebra over the Steenrod algebra. Then, Ppz/, X
1s an H-space with finite mod p cohomology.

Proof. By Lemma 6.1, there exists an integer n such that QH*(X) €
Up—1, so Theorem 5.3 applies and we know that 2"X is BZ/p-local.

We will show that if H*(X) is finitely generated as an algebra over
Ap and 27X is BZ/p-local, then H*(Ppy/,X) is finitely generated
as an algebra over A,. We proceed by induction on n. When n = 0
the statement is clear. Assume the statement holds for n — 1.

Since H*(X) is a finitely generated Ay-algebra, so is TH*(X) by
Lemma 6.1. Lemma 2.3 shows that H*(map,(BZ/p, X)) is a finitely
generated algebra over A, as well. Let F' be the homotopy fiber of
the nullification map X — Ppg/,X. Because of the weak equivalence
map, (BZ/p, F) ~ map,(BZ/p, X), H*(map,(BZ/p, F)) is finitely
generated as algebra over A, and, by Lemma 6.3, the same holds for
H*(F) since F is a p-torsion Postnikov piece. By Theorem 3.1, there
is a principal H-fibration

K(P, n) —_ X — PE”_lBZ/pX)
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where P is a finite direct sum of copies of Z/p", 1 < r < 0o and the
nth homotopy group of F' is precisely P. In particular, H*(K(P,n))
is a finitely generated .Aj,-algebra as well as H*(K(P,n+1)).

It follows from Lemma 6.2 that H*(Pxn-1p7/,X) is finitely gen-

erated as an algebra over A,. Moreover, O 1 Pyn_ipy /pX 18 weakly

equivalent to Pgy /pQ”AX , which is BZ/p-local, so the induction hy-
pothesis applies. The cohomology of Ppz,,X ~ Ppz/,Pyn-1pz,X is
finitely generated as an algebra over the Steenrod algebra.

Since H*(Ppgz/,X) is locally finite, this implies that Pgyz/, X has
finite mod p cohomology. O

Combining this last result with Theorem 5.5 we obtain:

Theorem 6.5. Let X be a connected H-space such that H*(X) is a
finitely generated algebra over the Steenrod algebra. Then, X is the
total space of an H-fibration

F— X —Y

where Y is an H-space with finite mod p cohomology and F is a p-
torsion H-Postnikov piece whose homotopy groups are finite direct
sums of copies of cyclic groups Z/p" and Prifer groups Zye. O

In the special case in which the H-space we are working with is a
loop space, a result analogous to Corollary 5.6 follows.

We propose finally an extension of Hubbuck’s Torus Theorem on
homotopy commutative H-spaces. At the prime 2, we have:

Corollary 6.6. Let X be a connected homotopy commutative H -space
such that the mod 2 cohomology H*(X) is finitely generated as alge-
bra over the Steemrod algebra As. Then, up to 2-completion, X is
homotopy equivalent to (S')" x F, where F is a connected 2-torsion
H -Postnikov piece.

Proof. Consider the fibration ' — X — Ppz,,X. We know from
the preceding theorem that the fiber is a p-torsion Postnikov piece
and the basis is an H-space with finite mod p cohomology. Both are
homotopy commutative. In particular, the mod 2 Torus Theorem of
Hubbuck (see [22]) implies that Ppgz/»X is, up to 2-completion, a
finite product of circles (S')™. Since the fiber is 2-torsion, the above
fibration is split and the result follows. O

When X is a mod 2 finite H-space, this corollary is the origi-
nal Torus Theorem due to Hubbuck. When X is an H-space with
noetherian cohomology, QH*(X) € Up, the Postnikov piece F' is an
Eilenberg-Mac Lane space K(P,1) where P is a 2-torsion abelian
group, and we get back Slack’s results [36], as well as their gener-
alization by Lin and Williams in [27]: up to 2-completion, X is the
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direct product of a finite number of S'’s, K(Z/p",1)’s, and K(Z,2)’s.
Of course, in our setting it is no longer true that the fiber F' in The-
orem 6.5 is a product of Eilenberg-Mac Lane spaces.

At odd primes, there are many more finite H-spaces which are
homotopy commutative (all odd dimensional spheres for example).
However, Hubbuck’s result still holds for finite loop spaces of H-
spaces, as was shown in [2] by Aguadé and Smith. Therefore, replacing
the original Torus Theorem by the Aguadé-Smith version, the same
conclusion as in Corollary 6.6 holds at odd primes for the loop space
on an H-space.
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