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Abstract. The class of loop spaces whose mod p cohomology is Noetherian is much larger

than the class of p-compact groups (for which the mod p cohomology is required to be finite). It

contains Eilenberg-Mac Lane spaces such as CP∞ and 3-connected covers of compact Lie groups.

We study the cohomology of the classifying space BX of such an object and prove it is as small

as expected. We also show that BX differs basically from the classifying space of a p-compact

group in a single homotopy group.

Introduction

Compact Lie groups are geometric occurrences of finite loop spaces, i.e. triples (X,BX, e) where

X is a finite complex, and e : X → ΩBX is a homotopy equivalence. Dwyer and Wilkerson in-

troduced in [17] the notion of p-compact group, a sort of mod p analogue, replacing the finiteness

condition by a cohomological one, namely that H∗(X; Fp) must be finite, and requiring the addi-

tional property that BX be local with respect to mod p homology, or equivalently p-complete, [5].

Amazingly enough, apart from compact Lie groups, there are only a few families of exotic p-compact

groups and they have been recently completely classified by Andersen, Grodal, Møller, and Viruel,

see [3] for the odd prime case and [2], [31], [32] for the prime 2 (the only exotic 2-compact group

is basically the space DI(4) constructed by Dwyer and Wilkerson, [16]).

We define a p-Noetherian group to be a loop space (X,BX, e) where BX is p-complete and

H∗(X; Fp) is a finitely generated (Noetherian) Fp-algebra. Note that if the integral cohomology of

a space is Noetherian, as an algebra, then so is the mod p cohomology (just like finite loop spaces

have finite mod p cohomology). Relying on Bousfield localization techniques, [4], and Miller’s

solution to the Sullivan conjecture, [29], more precisely on Lannes’ T -functor technology, [27], we

describe the structure of p-Noetherian groups and their relation to p-compact groups, and compute

qualitatively the cohomology of the classifying space BX.

Let us be more precise. In the case of p-compact groups, i.e. when the mod p cohomology

of the loop space H∗(X; Fp) is finite, Dwyer and Wilkerson’s main theorem in [17] shows that

there are severe restrictions on the cohomology of the classifying space: H∗(BX; Fp) is always a
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finitely generated (Noetherian) Fp-algebra. Likewise the cohomology of the classifying space of a

p-Noetherian group cannot be arbitrarily large.

Theorem 5.1 Let (X,BX, e) be a p-Noetherian group. Then H∗(BX; Fp) is finitely generated as

an algebra over the Steenrod algebra.

This information is not optimal as it does not permit to decide for example which Eilenberg-

Mac Lane space of type K(Z/p,m) is a p-Noetherian group. The mod p cohomology of any of

them is finitely generated as an algebra over Ap, but the only classifying spaces of a p-Noetherian

group are K(Z/p, 1) and K(Z/p, 2). A convenient tool to measure how large an unstable algebra

is is Schwartz’s Krull filtration of the category U of unstable modules, [34]. The Krull filtration

U0 ⊂ U1 ⊂ . . . is defined inductively, starting with the full subcategory U0 of U of locally finite

unstable modules (the span of every element under the action of the Steenrod algebra is finite). In

fact the cohomology H∗(X; Fp) is locally finite if and only if the space X is BZ/p-local, i.e. the

evaluation map(BZ/p,X)→ X is a weak equivalence ([28, Théorème 0.14]).

There are many BZ/p-local spaces, but there are none for which the cohomology lies in higher

stages of the Krull filtration. This is the statement of Kuhn’s non-realizability conjecture [26],

which has been settled by Schwartz in [35] and [36], and proved in its full generality by Dehon

and Gaudens in [11]. Thus the cohomology of a space lies in U0 or it does not lie in any Un. The

cohomology H∗(K(Z/p,m); Fp) for example does not lie in any Un, but the quotient module of

indecomposable elements QH∗(K(Z/p,m); Fp) lies in Um−1 for any m ≥ 1 ([8, Example 2.2]).

It was observed in [8, Lemma 7.1] that if H∗(BX; Fp) is finitely generated as an algebra over Ap,
then QH∗(BX; Fp) must be finitely generated as a module over Ap, and hence lies in Uk for

some k. We remark that the condition that H∗(X; Fp) be a Noetherian Fp-algebra is equivalent

to saying that H∗(X; Fp) is finitely generated as an algebra over Ap and that the unstable module

QH∗(X; Fp) of indecomposable elements lies in U0. Our second result shows that the cohomology of

the classifying space of a p-Noetherian group is as small as expected in terms of the Krull filtration.

Theorem 3.3 Let (X,BX, e) be a p-Noetherian group. Then QH∗(BX; Fp) belongs to U1.

The arguments to prove these results are the following. We start in Section 1 with the study

of the structure of p-Noetherian groups. The most basic examples of p-Noetherian groups X are

p-compact groups and Eilenberg-Mac Lane spaces K(Z/pr, 1) and, K(Z∧p , 2). In the spirit of our

deconstruction results for H-spaces, [8], we show that these are the basic building blocks for all

p-Noetherian groups.

Theorem 1.9 Let (X,BX, e) be any p-Noetherian group. There exists then a fibration

K(P, 2)∧p −→ BX −→ BY ,
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where P is a p-group which is a finite direct sum of copies of cyclic groups and Prüfer groups and

Y is a p-compact group.

The understanding of the cohomology of BX goes the through the analysis of the Serre spectral

sequence of this fibration. Note that, by [17], H∗(BY ; Fp) is finitely generated as an algebra. Also,

the mod p cohomology of K(P, 2)∧p is finitely generated as an algebra over the Steenrod algebra

by [37] and [7]. The spectral sequence is not nearly as nice as what happens for H-spaces though,

compare with [9], and we must first tackle Theorem 3.3.

This we do in Sections 2 – 3 by giving first a geometric interpretation to T̄QH∗(BX; Fp), where

T̄ is Lannes’ reduced T -functor. Recall that for “nice” spaces (such as BX) the unreduced T

functor TH∗(BX; Fp) computes the cohomology of the mapping space map(BZ/p,BX) and we

rely on Schwartz’s characterization [34, Theorem 6.2.4] of the Krull filtration in terms of T̄ . In

order to perform our reduced T functor calculation, we prove that the component map(BZ/p,BX)c

of the constant map splits as a product BX ×map∗(BZ/p,BX)c. Using the properties of the T

functor, this splitting yields a geometric interpretation of the reduced T functor in terms of the

pointed mapping space, more precisely T̄QH∗(X; Fp) ∼= H∗(map∗(BZ/p,BX)c; Fp).

We finally come back to Theorem 5.1, which we prove in two steps. First we investigate in

Section 4 the Serre Spectral sequence for fibrations over spaces with finite cohomology and fibre

a finite product of Eilenberg Mac–Lane spaces. We show that in this situation the cohomology of

the total space is finitely generated as an algebra over Ap. Secondly, we reduce the situation in

which the base space of the fibration is a p-compact toral group.

Let us conclude the introduction with a remark. By Corollary 1.11 a p-Noetherian group is

the 3-connected cover of a p-compact group Y if and only if it is 3-connected. The results in this

article show that QH∗((BY )〈4〉; Fp) is finitely generated as a module over Ap and belongs to U1.

This puts into context the calculations made by Harada and Kono, [24], and explains how the

cohomology will look like even in the cases where an explicit description has not been obtained,

compare with Example 5.10.

Acknowledgments. This project originated at the Mittag-Leffler Institute during the emphasis

semester on homotopy theory in 2006. We would like to thank Kasper Andersen, Jesper Grodal,

Frank Neumann, and Alain Jeanneret for their interest and Akira Kono for pointing out a problem

in an earlier version of this article.

1. The structure of p-Noetherian groups

This first section is devoted to the description of the classifying space of p-Noetherian groups

and the relation to p-compact groups. Let us start with the definition and the basic examples. The

statements about the action of the Steenrod algebra and the Krull filtration will be explained and

developed in Section 3.
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Definition 1.1. A p-Noetherian group is a triple (X,BX, e) where H∗(X; Fp) is a Noetherian

algebra (it is finitely generated as an algebra), BX is a p-complete space, and e : X → ΩBX is a

weak equivalence.

We will often use the word p-Noetherian group for the loop space X and refer to BX as the

classifying space. Hence, we will say that a p-Noetherian group is n-connected if so is the loop

space X, or equivalently if the classifying space is (n+ 1)-connected.

Remark 1.2. Since π1(BX) ∼= π0(X) and H∗(X; Fp) is of finite type, it follows that π1(BX) is

finite and, therefore BX is a p-good space by [5, VII, Proposition 5.1]. In fact, π1(BX) is a p-group

by [5, VII, Proposition 4.3].

Example 1.3. In [17], Dwyer and Wilkerson introduced the notion of a p-compact group. A

p-compact group is a loop space (X,BX, e) such that BX is p-complete and H∗(X; Fp) is a finite

Fp-vector space. It is clear from the definition that p-compact groups are p-Noetherian groups.

The most basic example of p-compact group is given by the p-completed circle and its classifying

space K(Z∧p , 2). Our definition of p-Noetherian group allows to include not only all p-compact

groups but also the following Eilenberg-Mac Lane spaces.

Example 1.4. Let X = K(Z∧p , 2), BX = K(Z∧p , 3), and e the obvious homotopy equivalence

between ΩK(Z∧p , 3) and K(Z∧p , 2). This is a p-Noetherian group since H∗(K(Z∧p , 2); Fp) ∼= Fp[u] is

finitely generated as an algebra. Let us point out here that H∗(K(Z∧p , 3); Fp) is finitely generated

as an algebra over Ap and that the module of indecomposable elements QH∗(K(Z∧p , 3); Fp) lives

in U1. For example QH∗(K(Z∧2 , 3); F2) ∼= ΣF (1), where F (1) is the free unstable module on one

generator in degree 1.

In fact, this is basically the only 1-connected p-Noetherian group X such that ΩX is Fp-finite.

Proposition 1.5. Let (X,BX, e) be a p-Noetherian group such that H∗(ΩX; Fp) is finite. Then

BX is 2-connected if and only if it is a product of a finite number of copies of K(Z∧p , 3).

Proof. The loop space ΩX ' Ω2BX is a connected homotopy commutative mod p finite H-space.

Thus, by the mod p version of Hubbuck’s Torus Theorem, [25] and [1], we see that ΩX is equivalent

to a p-completed torus.

Example 1.6. Let us consider the compact Lie group S3 and its 3-connected cover S3〈3〉. Iden-

tifying B(S3〈3〉) with (BS3)〈4〉, we have a fibration K(Z, 3) → (BS3)〈4〉 → BS3. The triple

(S3〈3〉∧p , B(S3)〈4〉∧p , e) is then a p-Noetherian group since H∗(S3〈3〉; Fp) ∼= Fp[x] ⊗ E(y) where x

has degree 2p, y has degree 2p+ 1, and a Bockstein connects x and y, β(x) = y. This p-Noetherian

group is an extension of the p-compact group (S3)∧p and the Eilenberg-Mac Lane space from Ex-

ample 1.4.
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It is not difficult to compute the mod p cohomology of (BS3)〈4〉 using the Serre spectral sequence.

For example, H∗(B(S3〈3〉); F2) ∼= F2[z, Sq1z, Sq4z, Sq8,4z, . . . ], where z has degree 5. This is

a subalgebra of the mod 2 cohomology of K(Z, 3) and z corresponds to Sq2ι3, where ι3 is the

fundamental class. Again, we see that the module of indecomposable elements belongs to U1, as it

differs from ΣF (1) by only a few classes in low degrees.

This last example fits into a more general picture. One can consider 4-connected covers of

classifying spaces of compact Lie groups.

Example 1.7. Let G be a simply connected compact Lie group and consider the 4-connected cover

of its classifying space, (BG)〈4〉. Since the mod p cohomology G〈3〉 is Noetherian, this provides

an infinite number of examples of p-Noetherian groups.

Harada and Kono studied in [24] and [23] the fibration K(Z, 3) → (BG)〈4〉 → BG. They were

able to compute explicitly, as an algebra, the cohomology of the total space at odd primes and a

few cases at the prime 2. In all of these computations the result is the tensor product of a quotient

of H∗(BG; Fp) with a certain subalgebra of H∗(K(Z, 3); Fp), which turns out to be always finitely

generated as an algebra over the Steenrod algebra.

In fact, p-Noetherian groups are closed under fibrations in the following sense (and this explains

why G〈3〉 defines a p-Noetherian group).

Proposition 1.8. Let BX → E → BZ be a fibration of connected spaces where BX and BZ are

classifying spaces of p-Noetherian groups. Then E is also the classifying space of a p-Noetherian

group.

Proof. Since π1(BZ) is a finite p-group and both BX and BZ are p-complete and p-good (see

Remark 1.2), the fibre lemma [5, II.5.1] shows that E is also p-complete. It remains to show that

H∗(ΩE; Fp) is a finitely generated algebra.

Looping the fibration, we obtain an H-fibration X → ΩE → Z where both X and Z have finitely

generated mod p cohomology. By [9, Theorem 5.1], the cohomology of ΩE is finitely generated

as an algebra over the Steenrod algebra, in other words QH∗(ΩE; Fp) is finitely generated as an

Ap-module. This unstable module is thus finite if and only if it is locally finite, which by [18] is

equivalent to the evaluation map(BZ/p,ΩE)c → E to be an equivalence. This follows from the

fact that this is the case for X and Z.

Let us analyze the structure of an arbitrary connected p-Noetherian group. The following

theorem tells us that it always differs from a p-compact group in a single p-completed Eilenberg-

MacLane space.

Theorem 1.9. Let (X,BX, e) be any p-Noetherian group. There exists then a fibration

K(P, 2)∧p → BX → BY ,
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where P is a finite direct sum of copies of cyclic groups and Prüfer groups and Y is a p-compact

group.

Proof. By assumption the mod p cohomology of X is finitely generated as an algebra. In other

words, the module of indecomposable elements QH∗(X; Fp) is finite. Therefore, by [18, Theo-

rem 3.2] the loop space ΩX is BZ/p-local, or equivalently the classifying space BX is Σ2BZ/p-

local ([20, Theorem 3.A.1]). The analysis in [4] by Bousfield of the Postnikov like nullification

tower shows then that the homotopy fiber of the nullification map BX → PΣBZ/pBX is a single

Eilenberg-Mac Lane space K(P, 2), where P is an abelian p-torsion group. Moreover, he also shows

that the corresponding fibration is principal. In particular, it implies that PΣBZ/pBX is a p-good

space, and (PΣBZ/pBX)∧p is p-complete by the fibre lemma [5, II.5.1].

From the equivalence PBZ/pX ' ΩPΣBZ/pBX, [20, Theorem 3.A.1], we obtain a loop fibration

K(P, 1) → X → PBZ/pX. Since X is a loop space with finitely generated mod p cohomology, we

know from [8, Theorem 7.3], or directly from [10], that P is a finite direct sum of copies of cyclic

groups and Prüfer groups and that H∗(PBZ/pX; Fp) is finite.

Let us consider the loop space PBZ/pX. Notice that π1PΣBZ/pBX ∼= π1BX, which must be

a finite p-group by Remark 1.2. By p-completing we obtain hence a p-compact group BY =

(PΣBZ/pBX)∧p .

The fibration we have obtained allows us to give a precise description of the component of the

constant in the pointed mapping space map∗(BZ/p,BX).

Corollary 1.10. Let (X,BX, e) be a p-Noetherian group. Then map∗(BZ/p,BX)c is the classi-

fying space of a finite elementary abelian p-group.

Proof. Consider the fibration K(P, 2)∧p → BX → BY from Theorem 1.9. Since BY is a p-

compact group, H∗(ΩBY ; Fp) is finite and map∗(BZ/p,ΩBY ) ' ∗ by [29]. Therefore the com-

ponent map∗(BZ/p,BY )c is contractible and map∗(BZ/p,BX)c ' map∗(BZ/p,K(P, 2)∧p )c. By

[29, Theorem 1.5], map∗(BZ/p,K(P, 2)∧p ) ' map∗(BZ/p,K(P, 2)), which has trivial homotopy

groups in degrees ≥ 2. The component of the constant map is thus the classifying space of a finite

elementary abelian p-group V = Hom(Z/p, P ).

From Theorem 1.9 we deduce that many p-Noetherian groups are 3-connected covers of p-

compact groups.

Corollary 1.11. Let (X,BX, e) be a p-Noetherian group. Then BX is the 4-connected cover of

the classifying space of a p-compact group if and only if X is 3-connected.
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Proof. One implication is obvious. Let us hence assume that X is 3-connected and consider the

fibration K(P, 2)∧p → BX → BY from Theorem 1.9. We see that BY is 2-connected, hence 3-

connected [6, Theorem 6.10]. This shows that P must be a divisible abelian p-group, or equivalently

that K(P, 2)∧p ' K(⊕Z∧p , 3).

To the Lie group Example 1.7 we can add now new examples of p-Noetherian groups, namely

those given by 3-connected covers of exotic p-compact groups.

Example 1.12. Let X be a p-compact group such that BX is 3-connected and π4(BX) ∼= Z∧p .

By looking at the classification of p-compact groups, we observe that there are only two sporadic

examples, namely numbers 23 and 30 in the Shephard-Todd list [38], and one infinite family, number

2b, corresponding to the dihedral groups D2m. The triple (X〈3〉, (BX)〈4〉, e) is a p-Noetherian

group by Corollary 1.11.

The two sporadic examples are defined at primes p ≡ 1, 4 mod 5, and they are non-modular

since the only primes which divide the order of their Weyl group are 2, 3 and 5. The family of

p-compact groups corresponding to the dihedral groups D2m is defined for primes p ≡ ±1 mod m.

Note that p = 2 occurs when m = 3 and corresponds to the exceptional Lie group G2.

Remark 1.13. From Corollary 1.11 we obtain a classification of 3-connected p-Noetherian groups.

They are given by the 3-connected covers of simply connected p-compact groups, which are known

from the recent classification results, [31], [32], [2], and [3]. A general classification will be more

difficult to obtain, even in the 2-connected case, as there are p-Noetherian groups fibering over

a product of p-compact groups which do not split themselves as a product. Consider indeed the

homotopy fiber of the composite map

f : BS3 ×BS3 → K(Z, 4)×K(Z, 4)→ K(Z, 4),

where the first map is the fourth Postnikov section and the second is given by the sum. Let us

complete this fiber at the prime 7 for example and call it BX. Even though X splits as a product

(S3)∧7 × (S3)∧7 〈3〉, the classifying space BX does not split.

Assume that BX splits as a product (BS3)∧7 × (BS3)∧7 〈4〉. There exists then an essential map

g : (BS3)∧7 → (BS3)∧7 × (BS3)∧7 such that f ◦ g ' ∗ and p1 ◦ g is an equivalence, where p1 denotes

the projection on the first factor. But g induces on the fourth homology group a map of degree

n 6= 0 on the first copy of (BS3)∧7 and of degree m on the second. The composite f ◦ g will thus

have degree n + m on H4. We claim that this cannot be zero. Both m and n must be squares in

Z∧7 as a self-map of (BS3)∧7 is induced by a self-map on the maximal torus (BS1)∧7 . But the sum

of two 7-adic squares is nul if and only both are so. Therefore BX cannot split as a product. We

refer the reader to Dwyer and Mislin’s article [15] for a complete study of self-maps of BS3.
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2. Splitting fibrations and mapping spaces

Our next aim is to obtain conditions under which the total space of the evaluation fibration

map∗(BZ/p,BX)c → map(BZ/p,BX)c → BX splits as a product. The key observation is that

map∗(BZ/p,BX)c has a single non-trivial homotopy group, see Corollary 1.10.

We thus consider a fibration F → E → B of connected spaces and assume that the homo-

topy fiber F has finitely many homotopy groups (it is a Postnikov piece, or in other words there

exists an integer n such that the n-th Postnikov section F → F [n] is a homotopy equivalence).

Such a fibration is classified by a map B → B aut(F ), where aut(F ) denotes the monoid of self-

equivalences of F . The original fibration can be recovered by pulling-back the universal fibration

F → B aut∗(F ) → B aut(F ), where aut∗(F ) is the monoid of pointed self-equivalences. The ex-

istence of the universal fibration was known to Dold, [12], but it was Gottlieb who identified first

the total space, [22].

Proposition 2.1. Let F ' F [n] be a connected Postnikov piece and X be any space. Then

(1) map(X,F ) ' (map(X,F ))[n] and πn(map(X,F )) ∼= πn(F ),

(2) map∗(X,F ) ' (map∗(X,F ))[n− 1].

Proof. We proceed by induction on the number of non-trivial homotopy groups of F . When F is a

K(G, 1), map(X,F ) ' map(X[1], F ) and any component has the homotopy type of the classifying

space of a centralizer. Likewise map∗(X,K(G, 1)) is homotopically discrete, the components being

in bijection with homomorphisms π1X → G.

Suppose now that n ≥ 2, write A = πnF , and consider the fibration K(A,n)→ F
p−→ F [n− 1].

Let us fix a map k : X → F . We analyze one component of the mapping spaces at a time. Observe

first that both claims are true for the component of the constant map since we have a fibration

map(X,K(A,n)) → map(X,F ) → map(X,F [n − 1]) and can conclude by the classical result of

Thom, [39], and Federer, [21], that map(X,K(A,n)) splits as a product of Eilenberg-Mac Lane

spaces
∏
K(Hi(X;A), n− i). Møller has proved in [30] a relative version of this lemma which will

allow us to understand the other components as well.

Let k̄ denote the composite X → F → F [n − 1]. The (n − 1)-st Postnikov section induces a

fibration map(X,F )k → map(X,F [n − 1])k̄, the fiber of which is F (X, ∅;F, F [n − 1])k̄, i.e. the

space of all lifts f : X → F such that p ◦ f = k̄. This space of lifts is a product of Eilenberg-Mac

Lane spaces by [30, Theorem 3.1] just like in the case of the component of the trivial map. In

particular the highest non-trivial homotopy group of map(X,F )k is the n-th, isomorphic to A.

In the case of pointed mapping spaces the space of lifts F (X, ∗;F, F [n−1])k̄ appears in a similar

argument. Its highest non-trivial homotopy group is the (n− 1)-st one.

Remark 2.2. The proof of Proposition 2.1 also shows that if X is n-connected then map∗(X,F )

is contractible.
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When F = K(G, 1) has a single homotopy group, it is well-known that aut(F ) is the semi-direct

product K(G, 1) n Aut(G) and aut∗(F ) ' Aut(G). All higher homotopy groups of the topological

monoid of self-equivalences are trivial. The following corollary generalizes this observation.

Corollary 2.3. Let n ≥ 1 and F ' F [n] be a connected Postnikov piece. Then

(1) B aut(F ) ' (B aut(F ))[n+ 1] and πn+1(B aut(F )) = πn(F ),

(2) B aut∗(F ) ' (B aut∗(F ))[n].

Proof. The components of the monoid aut(F ) are precisely the components in map(F, F ) of maps

which are homotopy equivalences. We conclude by Proposition 2.1.

This statement is very much related to the work of Dwyer, Kan, and Smith, [14], where they

provide classifying spaces for towers of fibrations with prescribed fibers. In our case these fibers

would be K(π1F, 1), . . . ,K(πnF, n).

Let us now come back to our fibration F → E → B. We ask when the total space E splits as a

product B × F .

Theorem 2.4. Let F → E → B be a fibration of connected spaces and assume that F ' F [n].

(1) If B is n-connected, then E ' B × F if and only if the connecting morphism πn+1(B) →
πn(F ) is trivial.

(2) If the fibration has a section s : B → E and B is (n− 1)-connected, then E ' B×F if and

only if the morphism πn(B)→ πn(B aut∗(F )) is trivial.

Proof. The fibration is classified by a map f : B → B aut(F ) and πiB aut(F ) = 0 for i > n+ 1 by

Corollary 2.3. Part (1) when B is (n + 1)-connected is thus a direct consequence of the first part

of this corollary. Now assume that B is n-connected, consider the pullback diagram

F

��

F

��
E′

��

// E

��

// K(πn+1(B), n+ 1)

B〈n+ 1〉 i // B // K(πn+1(B), n+ 1)

where the left vertical fibration splits since the base now is (n+ 1)-connected. That means that f

restricted to B〈n+1〉 is null-homotopic. Since map∗(B〈n+1〉, B aut(F ))c is contractible (Proposi-

tion 2.1), applying the Zabrodsky Lemma, [13, Proposition 3.4], we deduce that f factors through

K(πn+1(B), n + 1). Therefore, to show that f is null-homotopic, we only need to prove that the

induced map on homotopy groups πn+1(B) → πn+1(B aut(F )) ∼= πn(F ) is trivial. The natural-

ity of the long exact sequence on homotopy groups shows that this morphism is the connecting

morphism for the fibration F → E → B.
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To prove (2) we use the fact that f factors actually through a map B → B aut∗(F ) if the

fibration has a section. We first assume that B is n-connected. In this case, from the connectivity

assumption on B and part (2) in Corollary 2.3 we see that f is null-homotopic. If B is (n − 1)-

connected, consider the fibration B〈n〉 → B → K(πn(B), n). The same argument as above shows

that f factors through K(πn(B), n). Therefore, f is null-homotopic if and only if the induced map

on homotopy groups πn(B)→ πn(B aut∗(F )) is trivial.

Corollary 2.5. Let K(G, 1) → E → B be a fibration of connected spaces with a section where G

is a discrete group. Then E ' K(G, 1) × B if and only if the induced action π1(B) → Aut(G) is

trivial.

Proof. Note that aut∗(K(G, 1)) ' Aut(G).

Corollary 2.6. Let n ≥ 0, A be a connected space, and B be an n-connected space such that

Ωn+1B is A-local. Then the homotopy groups of map∗(A,B)c are concentrated in degrees from 1

to n and map(A,B)c ' map∗(A,B)c ×B.

Proof. Let us consider the evaluation fibration map∗(A,B)c → map(A,B)c → B. It has always

a section, given by the constant maps. Since Ωn+1B is A-local, we see that Ωn+1 map∗(A,B)c,

being weakly equivalent to map∗(A,Ωn+1B), is contractible. Therefore the homotopy groups of

map∗(A,B)c in degree > n are all trivial. Part (2) of Theorem 2.4 applies.

Remark 2.7. The sharpness of the connectivity assumption in Theorem 2.4 is illustrated by the

following non-trivial fibrations. For part (1), consider the fibration K(Z, n)→ Sn+1〈n+1〉 → Sn+1.

The base space is only n-connected, and the fibration is not trivial, as it is classified by a non-trivial

map Sn+1 → K(Z, n + 1). In this example the connecting morphism πn+1(Sn+1) → πn(K(Z, n))

is an isomorphism.

For part (2), let p be any prime, n ≥ 2 and F be the product K(Z/p, 1) ×K(Z/p, n). Since F

is an H-space, the identity component map∗(F, F )id is weakly equivalent to the component of the

constant map, i.e. is a product of Eilenberg-MacLane spaces, one of them being K(Z/p, n − 1).

Therefore πn(B aut∗(F )) ∼= Z/p and there exists a map Sn → B aut∗(F ) classifying a split fibration

over Sn with fiber F ' F [n], which is not trivial. In this example πn(Sn) ∼= Z→ πn(B aut∗(F )) ∼=
Z/p is the projection.

We apply now the results of this section to analyze certain mapping spaces. This allows us in

particular to understand the space map(BZ/p,BX)c for any p-Noetherian group X.

Proposition 2.8. Let Z be a space such that Ω2Z is BZ/p-local. Then the component of the

mapping space map(BZ/p, Z)c splits as a product Z×map∗(BZ/p, Z)c and map∗(BZ/p, Z)c is the

classifying space of an elementary abelian p-group (not necessarily finite).
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Proof. By the work of Bousfield, [4, Theorem 7.2], the homotopy fiber of the nullification map

Z → PΣBZ/pZ is a single Eilenberg-Mac Lane space K(P, 2), where P is an abelian p-torsion group.

He also shows that the fibration K(P, 2)→ Z → PΣBZ/pZ is principal. By adjunction, the compo-

nent map∗(BZ/p, PΣBZ/pZ)c is contractible. Therefore map∗(BZ/p, Z)c ' map∗(BZ/p,K(P, 2))c,

which is the classifying space of the elementary abelian p-group W = Hom(Z/p, P ).

Now, by Corollary 2.5, we only need to check that the action of π = π1(Z) on W is trivial.

By taking mapping spaces at the component of the constant map and evaluation, we obtain the

following diagram of fibrations (since map∗(BZ/p, PΣBZ/pZ)c is contractible):

BW

��

BW

��
map(BZ/p,K(P, 2))c //

��

map(BZ/p, Z)c

��

// map(BZ/p, PΣBZ/pZ)c

'
��

K(P, 2) // Z // PΣBZ/pZ

The bottom and middle horizontal fibrations are principal, therefore the action of the fundamental

group of the base space, π1PΣBZ/pZ ∼= π, is trivial on all homotopy groups of the fiber, in particular

on the fundamental group of the fiber. This action can be seen as conjugation in the fundamental

group of the total space map(BZ/p, Z)c, but now it does not matter whether we look at the vertical

fibration or the horizontal one (in both cases the induced morphism is surjective on the fundamental

group).

Corollary 2.9. Let X be a p-Noetherian group. Then the mapping space map(BZ/p,BX)c splits

as a product BX × map∗(BZ/p,BX)c where map∗(BZ/p,BX)c is the classifying space of a fi-

nite elementary abelian p-group. In particular, the mapping space map(BZ/p,BX)c is p-good,

p-complete and H∗(map(BZ/p,BX)c; Fp) is of finite type.

Proof. The finiteness of the elementary abelian p-group follows from Corollary 1.10.

In particular, we see that map(BZ/p,BX)c is again the classifying space of a p-Noetherian

group.

3. Indecomposable elements and the Krull filtration

As mentioned in the introduction, a good way to understand the cohomology of a space as an al-

gebra over the Steenrod algebra is to look at the module of indecomposable elements QH∗(X; Fp) =

H̃∗(X; Fp)/H̃∗(X; Fp)·H̃∗(X; Fp). An important observation here is that this definition depends on

the choice of a base point, or more exactly on the choice of a component X0 if X is not connected.

Since H0(X; Fp) is a p-Boolean algebra, it follows that QH∗(X; Fp) is isomorphic to QH∗(X0; Fp).
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There is a (Krull) filtration of the category U of unstable modules, U0 ⊂ U1 ⊂ . . . such that

U0 consists in the locally finite unstable module. Schwartz established in [34, Theorem 6.2.4] a

criterion to check whether (and where) an unstable module lives in the Krull filtration, namely

M ∈ Un if and only if T̄n+1M = 0, where T̄ is Lannes’ reduced T -functor.

Therefore our objective in this section is to prove that T̄ 2QH∗(BX; Fp) = 0 for a p-Noetherian

group. To do so, we need first to find a geometrical interpretation of the reduced T -functor.

Recall that “under some mild assumptions”, TH∗(Z; Fp) ∼= H∗(map(BZ/p, Z); Fp). Lannes’

standard mild assumptions on Z are that TH∗(Z; Fp) is of finite type (or H∗(map(BZ/p, Z); Fp)

is of finite type), and that map(BZ/p, Z) is p-good, [27, Proposition 3.4.4]. We will not need to

understand globally the mapping space, but restrict our attention to the component map(BZ/p, Z)c

of the constant map, the natural choice of base point in the full mapping space. We thus only

consider the component Tc(H∗(Z; Fp)) of Lannes’ T -functor.

Theorem 3.1. Let Z be a p-complete space such that H∗(Z; Fp) and H∗(map(BZ/p, Z)c) are of

finite type. If Ω2Z is BZ/p-local, then

T̄QH∗(Z; Fp) ∼= QH∗(map∗(BZ/p, Z)c; Fp).

In particular the unstable module QH∗(Z; Fp) lies in U1.

Proof. In Proposition 2.8 we obtained a splitting map(BZ/p, Z)c ' map∗(BZ/p, Z)c × Z and

an equivalence map∗(BZ/p, Z)c ' BW where W is an elementary abelian p-group. With the

hypothesis of the theorem this splitting shows that H∗(BW ; Fp) is of finite type and therefore

W is finite. Therefore map(BZ/p, Z)c is p-good. Since moreover H∗
(
map(BZ/p, Z)c; Fp

)
is of

finite type by assumption, we can apply Lannes’ result [27, Proposition 3.4.4] and deduce that the

T -functor computes what it should: TcH∗(Z; Fp) ∼= H∗(map(BZ/p, Z)c; Fp).

Notice also that QH∗(map(BZ/p, Z); Fp) ∼= QH∗(map(BZ/p, Z)c; Fp). Since Lannes’ T -functor

commutes with taking the module of indecomposable elements, TQH∗(Z; Fp) ∼= QTH∗(Z; Fp).

But in degree zero TH∗(Z; Fp) is a Boolean algebra, [34, Section 3.8], so that QTH∗(Z; Fp) ∼=
Q
(
TcH

∗(Z; Fp)
)
, which is isomorphic to QH∗(map(BZ/p, Z)c; Fp). The splitting yields next an

isomorphism

TQH∗(Z; Fp) ∼= QH∗(map∗(BZ/p, Z)c; Fp)⊕QH∗(Z; Fp)

so that we have finally identified T̄QH∗(Z; Fp) ∼= QH∗(map∗(BZ/p, Z)c; Fp). This proves the

first part of the theorem. For the second claim, use the fact that map∗(BZ/p, Z)c ' BW , the

classifying space of a finite elementary abelian group. The cohomology of W is finitely generated as

an algebra, so QH∗(BW ; Fp) is finite and lies in U0. Therefore T̄QH∗(BW ; Fp) = 0, or equivalently

T̄ 2QH∗(Z; Fp) = 0, and so QH∗(Z; Fp) lies in U1.

Let us now turn to an even finer analysis of the module of indecomposable elements. Let us

denote by Q1 the unstable module QH∗(BZ/p; Fp) of the cohomology of a cyclic group of order p.
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At the prime p = 2, the unstable module Q1 is isomorphic to ΣF2 = ΣF (0). At an odd prime Q1

is an unstable module with one generator t in degree 1 and its Bockstein βt in degree 2.

Proposition 3.2. Let Z be a p-complete space such that H∗(Z; Fp) and H∗(map(BZ/p, Z)c) are

of finite type. Assume that Ω2Z is BZ/p-local. Define Q1 = QH∗(BZ/p; Fp). Then there exists a

morphism QH∗(Z; Fp)→ F (1)⊗ (Q⊕k1 ) with finite cokernel and locally finite kernel.

Proof. Schwartz characterizes in [36, Proposition 2.3] the unstable modules M in U1 as those

sitting in an exact sequence 0 → K → M → F (1) ⊗ L → N → 0, where K,L, and N are

locally finite (i.e. in U0). In particular T̄M ∼= L since T̄F (1) = F (0) and T commutes with tensor

products, [34, Theorem 3.5.1]. In our case we know from the previous theorem that T̄QH∗(Z; Fp) ∼=
QH∗(BW ; Fp) where W is an abelian elementary group, say of rank k. Thus L = Q⊕k1 . The

quotient N of F (1)⊗ (Q⊕k1 ) will be finitely generated. As it is locally finite it must be finite.

We finally come back to p-Noetherian groups and prove that the module of indecomposable

elements QH∗(BX; Fp) is as small as expected.

Theorem 3.3. Let X be a p-Noetherian group. Then

T̄QH∗(BX; Fp) ∼= QH∗(map∗(BZ/p,BX)c; Fp).

In particular the unstable module QH∗(BX; Fp) lies in U1.

Proof. The assumptions in Theorem 3.1 are satisfied by Corollary 2.9.

4. Fibrations over spaces with finite cohomology

In our study of H∗(BX; Fp), we have already managed to prove that QH∗(BX; Fp) lives in

U1, that is only one stage higher than where QH∗(X; Fp) lives. What is left to prove is that

H∗(BX; Fp) is finitely generated as an algebra over the Steenrod algebra. Therefore we analyze

the fibration K(P, 2)∧p → BX → BY of Theorem 1.9.

Let F → E → B be a fibration where both H∗(B; Fp) and H∗(F ; Fp) are finitely generated

Ap-algebras. In this situation, we ask whether the same finiteness condition holds for H∗(E; Fp).

When the fibration is one of H-spaces and H-maps we proved in [9] that this is true. But in general

some restrictions have to be imposed, even when the fiber is a single Eilenberg-Mac Lane space as

shown by the following example.

Example 4.1. Consider the folding map K(Z, 3) ∨ K(Z, 3) → K(Z, 3). An easy application of

Puppe’s theorem [33], shows that the homotopy fiber is ΣΩK(Z, 3) ' ΣK(Z, 2). Therefore there

exists a fibration

K(Z, 2)→ ΣK(Z, 2)→ K(Z, 3) ∨K(Z, 3).
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The mod 2 cohomology of the fiber is finitely generated as an algebra, the cohomology of the base

space is generated over A2 by the two fundamental classes in degree 3. However the cohomology of

ΣK(Z, 2) is not finitely generated over A2 (as it is a suspension it would be finitely generated as an

unstable module, and therefore would belong to some stage of the Krull filtration; by Schwartz’s

solution [35] to Kuhn’s non-realizability conjecture this would imply that the cohomology were

locally finite, which it is not).

This example indicates that we must impose stronger conditions on the base space of the fibration

to make sure that the cohomology of the total space is finitely generated as an algebra over Ap.
In this section we study fibrations F → E → B where π1B acts trivially on the cohomology of

the fiber. We will assume that H∗(B; Fp) is finite and the fiber F is a finite product of Eilenberg

Mac-Lane spaces
∏q
i=1K(Ai, ni) where Ai is a finitely generated abelian group for all i. Both

assumptions will play an essential role in the analysis of the cohomology of the total space. The

finiteness of the base forces the Serre spectral sequence to collapse at some finite stage and the

hypothesis on Ai implies that the cohomology of K(Ai, ni) is generated, as an algebra over the

Steenrod algebra Ap, by a finite number of fundamental classes ι1, . . . , ιm of degree n, and possibly

certain higher Bockstein on these classes. It is a free algebra by work of Serre at the prime 2, [37],

and Cartan at odd primes, [7].

Lemma 4.2. There exists a splitting H∗
(∏

K(Ai, ni); Fp
) ∼= F ∗ ⊗ G∗ of algebras where F ∗ is

finitely generated as an algebra, and G∗ consists of permanent cycles in the Serre spectral sequence.

Moreover G∗ is finitely generated as an algebra over Ap.

Proof. By Kudo’s transgression theorem, all classes obtained by applying Steenrod operations to

transgressive operations are transgressive. Let us choose therefore an integer r larger than the

dimension of the cohomology of the base. If {x1, . . . , xk} is a set of generators of H∗(F ; Fp) as an

Ap-algebra, the elements 1⊗ PIxk are permanent cycles for any sequence I of degree larger than

r − n− 1 and any k.

We will say that such generators PIxk have large degree and the others, of which there is

only a finite number, have small degree. We define now F ∗ to be the subalgebra generated by the

generators of small degree and G∗ by all other large degree generators. Then H∗(F ; Fp) ∼= F ∗⊗G∗.
The last claim is proven by looking at the inclusion of algebras G∗ ⊂ H∗(F ; Fp). At the level

of modules of indecomposable elements it induces an inclusion QG∗ ⊂ QH∗(F ; Fp), because of the

freeness of H∗(F ; Fp) and our choices of generators. Since the category U of unstable modules is

locally Noetherian, [34, Theorem 1.8.1], the unstable module QG∗ is finitely generated. Therefore,

G∗ is a finitely generated Ap-algebra.

The proof of the next proposition follows the line of the Dwyer-Wilkerson result [17, Proposi-

tion 12.4], see also Evens, [19].
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Proposition 4.3. The cohomology of the total space H∗(E; Fp) is finitely generated as a module

over H∗(B; Fp)[z1, . . . , zk]⊗G∗.

Proof. The free algebra F ∗ is finitely generated and we consider first all polynomial generators

a1, . . . , ak. We define zi = (ai)p
ni where ni is the smallest integer such that this power of ai

is a permanent cycle (it exists since these powers are transgressive, compare with the proof of

Lemma 4.2). Then F ∗ is a finitely generated module over Fp[z1, . . . , zk]. Chose now a finite set of

generators g1, . . . , gr of G∗ as an algebra over the Steenrod algebra.

The elements zi and the elements g1, . . . , gr are permanent cycles in the vertical axis of the

Serre spectral sequence, one can thus choose elements z′i and g′j in H∗(E; Fp) whose images in

H∗(K(A,n); Fp) are the zi’s and the g′j ’s. Better said, since both Fp[zi] and G∗ are free algebras,

we choose an algebra map s : Fp[zi]⊗G∗ ↪→ H∗(E; Fp). The elements in H∗(B; Fp) act on H∗(E; Fp)

via p∗ : H∗(X; Fp)→ H∗(E; Fp). This explains the module structure.

We see that E∞ = Er is finitely generated as a module over H∗(B; Fp)[z1, . . . , zk]⊗G∗. Therefore

so is H∗(E; Fp) by [?, Corollary VII.3.3].

The difficulty to infer information about the Ap-algebra structure from the module structure is

that the algebra map s is not a map of Ap-algebras. To circumvent this problem we will appeal to

the algebraic result proved in the appendix A.

Theorem 4.4. Consider a fibration
∏q
i=1K(Ai, ni) → E → B where H∗(B; Fp) is finite and Ai

is a finitely generated abelian group for all i. The cohomology H∗(E; Fp) is then finitely generated

as an algebra over Ap.

Proof. In the notation of the appendix, H∗(B; Fp)[z1, . . . , zk] is the connected and commutative

finitely generated algebra C∗, and B∗ = H∗(E; Fp). By Proposition 4.3, H∗(E; Fp) is a finitely

generated C∗ ⊗G∗-module. The action of C∗ ⊗G∗ on B∗ has been defined in the previous proof

via an algebra map (constructed from a section s : G∗ → B∗), thus B∗ is a C∗ ⊗ G∗-algebra.

Define now π : H∗(
∏
K(Ai, ni); Fp) ∼= F ∗ ⊗G∗ → G∗ to be the projection and p : B∗ → G∗ to be

the composite π ◦ i∗. This is a morphism of G∗-modules so that Proposition A.2 applies. Hence

H∗(E; Fp) is finitely generated as an algebra over Ap.

Remark 4.5. The nature of Theorem 4.4 is purely cohomological. Therefore the same statement

remains true if we relax the assumption on the fiber in the following way: The fiber F should be

homotopic, up to p-completion, to
∏q
i=1K(Ai, ni) where each Ai is a finitely generated abelian

group. This will allow us to include summands of the form Zp∞ or Z∧p . In fact the same proof

goes through with the assumption that H∗(F ; Fp) is a free algebra, finitely generated as an algebra

over Ap.
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As a byproduct we obtain the following result on highly connected covers of finite complexes.

For a mod p finite H-space B we proved in [9] that the mod p cohomology of B〈n〉 is finitely

generated for any integer n.

Corollary 4.6. Let n ≥ 2 and B be an (n − 1)-connected space with finite mod p cohomology.

Then H∗(B〈n〉; Fp) is finitely generated as an algebra over Ap. Moreover the unstable module of

indecomposable elements QH∗(B〈n〉; Fp) lies in Un−2.

Proof. The cohomology H∗(B〈n〉; Fp) is finitely generated as an algebra over Ap by a direct appli-

cation of Theorem 4.4. Now from Corollary 2.6 we infer that map(BZ/p,B〈n〉)c splits as a product

B〈n〉 × map∗(BZ/p,B〈n〉)c. Since B itself is BZ/p-local by Miller’s Theorem, [29], this pointed

mapping space is equivalent to map∗(BZ/p,K(πnX,n − 1)c. This is a product of Eilenberg-Mac

Lane spaces, the highest of them being K(A,n − 2) where A = Hom(Z/p, πnB). The module of

indecomposable elements of its cohomology lies in Un−3. Thus QH∗(B〈n〉; Fp) lies in Un−2, the

proof is analogous to that of Theorem 3.1.

5. The cohomology of p-Noetherian groups

We are about to conclude our study of the cohomology of classifying spaces of p-Noetherian

groups. We have seen that any p-Noetherian group is the total space of a fibration over a p-

compact group with fiber an Eilenberg-Mac Lane space. Recall from [17]’s main theorem that the

mod p-cohomology of the classifying space of a p-compact group is finitely generated as an algebra.

Our objective is to prove the following theorem, which together with Theorem 3.3 gives a very

accurate description for the cohomology of classifying spaces of p-Noetherian groups.

Theorem 5.1. Let (X,BX, e) be a p-Noetherian group. Then H∗(BX; Fp) is finitely generated as

an algebra over the Steenrod algebra.

The strategy is to use the fibration K(P, 2)∧p → BX → BY of Theorem 1.9. As we do not know

whether the Serre spectral sequence collapses at some finite stage, we reduce the problem in several

steps to the study of a spectral sequence over a finite base (in order to apply our results from the

previous section).

A p-compact toral group P is a p-compact group which is an extension of a p-compact torus

((S1)n)∧p by a finite p-group. Dwyer and Wilkerson in [17] show that any p-compact group Y

admits a maximal p-compact toral subgroup N ≤ Y such that the homotopy fiber Y/N of the map

Bi : BN → BY has finite mod p cohomology and Euler characteristic prime to p (see [17, Proof of

2.3]). A transfer argument (see [17, Theorem 9.13]) then shows that Bi induces a monomorphism
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in mod p cohomology. Consider now the pullback diagram

B̃N

��

Bĩ // BX

��
BN

Bi // BY.

First note that, by Proposition 1.8, B̃N is the classifying space of a p-Noetherian group because

we have a fibration K(P, 2)∧p → B̃N → BN . We will first show that H∗(B̃N ; Fp) is a finitely gen-

erated Ap-algebra by using this fibration, and then we will show that the cohomology H∗(BX; Fp)

is a finitely generated Ap-algebra by using the fibration Y/N → B̃N → BX. We start with a

technical result which will be used in both steps of the proof.

Proposition 5.2. Let F → E
q→ B be a fibration such that π1(B) acts nilpotently on H∗(F ; Fp).

Assume that q induces an isomorphism T̄QH∗B ∼= T̄QH∗E, H∗(F ; Fp) is locally finite, and

H∗(E; Fp) is a finitely generated Ap-algebra. Then, if Ker q∗ is a finitely generated ideal then

H∗(B; Fp) is a finitely generated Ap-algebra.

Proof. Let A be the algebra which is the quotient of H∗(E; Fp) by the ideal generated by the image

of q∗, that is, Fp ⊗H∗(B;Fp) H
∗(E; Fp). There is a coexact sequence

H∗(B; Fp)//Ker q∗
q∗→ H∗(E; Fp)→ A.

Since H∗(E; Fp) is a finitely generated Ap-algebra, the same is true for A. Therefore QA is a

finitely generated Ap-module, which is the the cokernel of Qq∗ by right-exactness of the functor

Q. Moreover, since by assumption T̄QH∗B ∼= T̄QH∗E, it follows from exactness of the reduced

T functor that T̄QA = 0. This means that QA belongs to U0, i.e. it is locally finite, hence finite.

Equivalently A is a finitely generated algebra.

We want to show that A is in fact a finite algebra. The fiber inclusion F → E of the fibration q

induces a morphism ι∗ : A→ H∗(F ; Fp). A careful study of the Eilenberg-Moore spectral sequence,

[28, Theorem 0.5] (for the prime 2) or [34, Theorem 8.7.8], shows that this morphism is an F -

monomorphism. Take now any element a ∈ A. Because H∗(F ; Fp) is locally finite, there exists

M > 0 such that ap
M ∈ Ker ι∗, which is nilpotent. There exists thus N > 0 such that ap

N+M

= 0.

Since all elements of A are nilpotent and it is a finitely generated algebra, A must be finite.

For the last statement, note that, as an H∗(B; Fp)-module, the cohomology H∗(E; Fp) is iso-

morphic to
(
H∗(B; Fp)//Ker q∗

)
{b1, . . . , bk}, where the bi’s are the generators of A as a (graded)

Fp-vector space. This description shows that the morphism Q(H∗(B; Fp)//Ker q∗)→ QH∗(E; Fp)

is an isomorphism in high degrees. That is, there exists K > 0 such that

(Q(H∗(B; Fp)//Ker q∗))>K ∼= (QH∗(E; Fp))>K ,
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which is an unstable submodule of QH∗(E; Fp). Since H∗(E; Fp) is a finitely generated Ap-
algebra, QH∗(E; Fp) is a finitely generated Ap-module. But then, as the category of unstable

modules over the Steenrod algebra is locally Noetherian, [34, Theorem 1.8.1], the same holds

for (Q(H∗(B; Fp)//Ker q∗))>K . In particular, Q(H∗(B; Fp)//Ker q∗) is a finitely generated Ap-
module since it is of finite type, that is H∗(B; Fp)//Ker q∗ is a finitely generated Ap-algebra.

Finally, H∗(B; Fp) is generated by H∗(B; Fp)//Ker q∗ and Ker q∗, it is therefore also finitely

generated as an algebra over the Steenrod algebra since Ker q∗ is a finitely generated ideal .

We apply next this result to the fibration Y/N → B̃N → BX.

Corollary 5.3. H∗(BX; Fp) is a finitely generated algebra if H∗(B̃N ; Fp) is so.

Proof. Consider the fibration Y/N → B̃N
Bĩ→ BX and the diagram of horizontal fibrations

map(BZ/p, Y/N)c //

ev'
��

map(BZ/p, B̃N)c

evr

��

// map(BZ/p,BX)c

evn

��
Y/N //

B̃N
// BX

where the left vertical arrow is an equivalence since the fiber Y/N is mod p finite. Therefore

Bĩ induces an equivalence map∗(BZ/p, B̃N)c → map∗(BZ/p,BX)c. Both BX and B̃N are p-

Noetherian groups and Theorem 3.3 implies then that T̄QH∗BX → T̄QH∗B̃N is an isomorphism.

We conclude now by Proposition 5.2, because π1(BX) is a finite p-group and q∗ is injective by

a transfer argument [17, Theorem 9.13] (the Euler characteristic χ(Y/N) is prime to p).

The key fact in the next argument is that any p-compact toral group satisfies the Peter-Weyl

theorem. That is, it admits a homotopy monomorphism into U(n)∧p for some n. This is shown for

example in [?, Proposition 2.2]. Let us choose then such a map ρ : BN → BU(n)∧p for the maximal

p-compact toral group BN . The mod p cohomology of the fibre F is hence Fp-finite.

Proposition 5.4. Let E0 be the homotopy pull-back of the diagram F → BN ← B̃N . Then

H∗(E0; Fp) is finitely generated as an algebra over the Steenrod algebra.

Proof. The space E0 fits by construction into a fibration K(P, 2)∧p → E0 → F . Since the mod p

cohomology of F is finite, Theorem 4.4 shows that H∗(E0; Fp) is a finitely generated Ap-algebra.

Let us now concentrate on the map E0 → B̃N . We will filter it by using the top left block

diagonal inclusions U(r − 1) ⊂ U(r) for 1 ≤ r ≤ n. At the level of classifying spaces these

inclusions induce oriented spherical fibrations

S2r−1 → BU(r − 1)→ BU(r).
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Let BU(r)→ BU(n) be the appropriate composite and define then Er to be the homotopy pullback

of B̃N
ρ−→ BU(n)∧p ← BU(r)∧p . Thus En = B̃N and, for 1 ≤ r ≤ n, we have spherical fibrations

(S2r−1)∧p → Er−1 → Er . We summarize next some important properties of these spaces.

Proposition 5.5. The component map(BZ/p,Er)c splits as a product Er ×map∗(BZ/p,Er)c for

any 0 ≤ r ≤ n.

Proof. Let us denote by evr : map(BZ/p,Er)c → Er the evaluation at the component of the

constant map and consider the following commutative square of horizontal fibrations of connected

spaces

map(BZ/p,H)c //

ev'

��

map(BZ/p,Er)c

evr

��

// map(BZ/p, B̃N)c

evn

��
H // Er //

B̃N

The homotopy fiber H has finite cohomology, and is thus equivalent via the evaluation map to the

homotopy fiber map(BZ/p,H)c of the top map. This shows that the right hand square is a pull-

back square. But evn is a trivial fibration by Proposition 2.9. Hence so is evr and map(BZ/p,Er)c
must split as a product Er ×map∗(BZ/p,Er)c.

Proposition 5.6. The morphism of Ap-modules T̄QH∗(B̃N ; Fp) → T̄QH∗(Er; Fp) induced by

Er → B̃N is an isomorphism.

Proof. We have seen in the previous proposition that the map Er → BX induces a weak equivalence

on the connected component of the constant map in the pointed mapping space map∗(BZ/p,−)c.

From this point on, the same argument as in the proof of Theorem 3.3 goes through.

Proof of Theorem 5.1. We know that H∗(E0; Fp) is finitely generated as an algebra over the Steen-

rod algebra. It is thus sufficient to prove that H∗(Er; Fp) is a finitely generated Ap-algebra if so is

H∗(Er−1; Fp). Denote by qr the map Er−1 → Er turned into a fibration. Since Ker q∗r is generated

by a single element, namely the Euler class, Proposition 5.2 applies.

Remark 5.7. In general, an unstable algebra which is finitely generated as an algebra over Ap may

contain unstable subalgebras which are not finitely generated over Ap. Such an example appears

in [9, Remark 2.2] as an unstable subalgebra B of H∗(BS1 × S2; Fp) ∼= Fp[x]⊗E(y), which is not

a finitely generated B-module. B is the ideal generated by y turned into an unstable algebra by

adding 1. The quotient is a polynomial algebra, in particular it is not finite.

Remark 5.8. To prove Theorem 5.1 one could also use the fact that p-compact groups satisfy the

Peter-Weyl theorem (see [3, Theorem 1.6] and [2, Remark 7.3]). This would slightly shorten the

proof and avoid the use of the maximal p-compact toral subgroup. But the Peter-Weyl theorem for

p-compact groups is proved using the classification of p-compact groups and we want to emphasize

that Theorem 5.1 does not depend on the classification.
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Corollary 5.9. Let G be a simply connected, simple, compact Lie group. Then H∗(BG〈4〉; Fp) is

finitely generated as an algebra over the Steenrod algebra and QH∗(BG〈4〉; Fp) belongs to U1. In

fact there exists a morphism QH∗(BG〈4〉; Fp)→ F (1)⊗Q1 with finite kernel and cokernel.

Proof. Recall that Q1 = QH∗(BZ/p; Fp). Since BG is 3-connected and π4BG ∼= Z, Proposition 3.2

yields a a morphism QH∗(BG〈4〉; Fp) → F (1) ⊗ Q1 (the elementary abelian group W appearing

there has rank one). The cokernel is finite and the kernel locally finite. But since QH∗(BG〈4〉; Fp)

is a finitely generated module over Ap, the kernel must be finite.

Example 5.10. Let X be a either any simply connected compact Lie group (such as Spin(10),

which is one of the smallest examples Harada and Kono could not handle at the prime 2) or

one of the p-compact groups number 2b, 23 or 30 in the Shephard-Todd list. For odd primes,

the exotic p-compact groups arising from this construction are again non-modular. Hence, in

all the cases, H∗(X; Z∧p ) is torsion free. The mod p cohomology is given by H∗(BX23; Fp) =

Fp[x4, x12, x20], H∗(BX30; Fp) = Fp[x4, x24, x40, x60], and H∗(BX2b,m; Fp) = Fp[x4, x2m]. Since all

examples are torsion free, the same techniques used by Harada and Kono in [24] and [23] show that

H∗(BX〈4〉; Fp) ∼= H∗(BX; Fp)/J ⊗Rh where J is the ideal generated by x4,P1x4, . . . ,Phx4 for a

certain h, and Rh is an unstable subalgebra of H∗(K(Z∧p , 3); Fp) which is finitely generated over Ap.
In fact Theorems 5.1 and 3.3 show directly that QH∗(BX〈4〉; Fp) is finitely generated as a module

over Ap and belongs to U1. From the last corollary we see for example that QH∗(BSpin(10)〈4〉; F2)

differs from ΣF (1) in only a finite number of “low dimensional” classes.

Our techniques also allow us to say something about the cohomology of some higher connected

covers.

Example 5.11. Let X be any exotic p-compact groups except those corresponding to number 2b,

23 or 30 in the Shephard-Todd list. They are (n−1)-connected for some integer n > 4 (for example

at the prime 2 the only exotic example is BDI(4), which is 7-connected). Consider the n-connected

cover of its classifying space, (BX)〈n〉. Theorem 5.1 implies then that QH∗((BX)〈n〉; Fp) is finitely

generated as a module over Ap. It belongs in fact to Un−2, compare with Corollary 4.6. For example

QH∗((BDI(4))〈8〉; F2) belongs to U6.

Appendix A. Modules and algebras

Let us consider an unstable algebra B∗. Assume there is another unstable algebra G∗ which is

finitely generated as an algebra overAp and which acts on B∗. Assume also that B∗ is finitely gener-

ated as a module over G∗, when can we conclude that B∗ is finitely generated as an algebra over Ap?
If the action of G∗ on B∗ is compatible with the action of the Steenrod algebra, it is obvious, but it

is not true in general as illustrated by the following example. Set G∗ = H∗(K(Z/2, 2); F2) and let

B∗ be isomorphic to G∗ as an algebra, but define the action of A2 to be trivial. Then B∗ is finitely
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generated as a G∗-module, but not as an A2-algebra. We propose a weak notion of compatibility

between the G∗-module and Ap-algebra structures.

Proposition A.1. Let G∗ be a connected and commutative finitely generated Ap-algebra, and let

B∗ be a connected commutative G∗-algebra which is a finitely generated as a G∗-module. Assume

there exists a morphism p : B∗ → G∗ of G∗-modules such that p(θ(g · 1)) = θg for all θ ∈ Ap and

g ∈ G∗. Then B∗ is also a finitely generated Ap-algebra.

Proof. Since B∗ is finitely generated as a G∗-module, let us choose a finite set of generators b1 =

1, . . . , bn, where the degree of bi is positive for i ≥ 2 by the connectivity assumption. In fact we

will assume that bi belongs to the kernel of p for i ≥ 2: replace bi by bi − p(bi) · 1 if necessary.

Let x be an element in B∗, so x can be written as a G∗-linear combination x =
∑n
i=1 λi · bi. If

{z1, . . . , zm} denote the Ap-algebra generators of G∗, then each λi can be expressed as a polynomial

on Steenrod operations θi applied to the generators, θizi (use the Cartan formula). Our claim is

that b1, . . . , bn and z1 · 1, . . . , zm · 1 generate B∗ as an algebra over Ap. Since B∗ is a unital G∗-

algebra, we need to prove that an element of the form θz · 1, for θ ∈ Ap and z ∈ {z1, . . . , zm}, can

be written as a polynomial in the θ(zi · 1)’s and the bk’s.

If the action of the Steenrod algebra were compatible with the module action, one would have

that θz·1 = θ(z·1). This is not the case, but it is sufficient to deal with the element ξ = θz·1−θ(z·1).

Note that ξ ∈ Ker p since p(θz ·1) = θz. We will proceed by induction on the degree. If ξ is in degree

zero, then the statement is clear since the algebras are connected. Assume that the statement is

true for degrees < |ξ| and write ξ = λ1 · 1 + λ2 · b2 + . . . λn · bn. By the induction hypothesis we

know that the elements λi · 1 can be expressed as polynomials in the θ(zi · 1)’s and the bk’s. So we

only need to deal with λ1 · 1. But λ1 = p(λ1 · 1) = p(ξ−λ2 · b2−· · ·−λn · bn) which is zero because

p is a morphism of G∗-modules and bi ∈ Ker p for i ≥ 2. This concludes the proof.

In Section 4 we need a slight generalization of this proposition.

Proposition A.2. Let G∗ be a connected and commutative finitely generated Ap-algebra, C∗ be a

connected and finitely generated algebra, and let B∗ be a connected commutative G∗ ⊗ C∗-algebra

which is a finitely generated as a G∗ ⊗ C∗-module. Assume there exists a morphism p : B∗ → G∗

of G∗-modules such that p(θ(g · 1)) = θg for all θ ∈ Ap and g ∈ G∗. Then B∗ is also a finitely

generated Ap-algebra.

Proof. Just as in the previous proof, the only problem is to write an element of the form (θz) · 1,

with θ ∈ Ap and z ∈ G∗, in terms of the generators zi, bk, and generators cm of the algebra C∗.

The proof is then basically the same.
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28. J. Lannes and L. Schwartz, À propos de conjectures de Serre et Sullivan, Invent. Math. 83 (1986), no. 3, 593–603.

29. H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87.

30. J. M. Møller, Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific J. Math. 130 (1987), no. 1, 171–186.

31. , N-determined 2-compact groups. I, Fund. Math. 195 (2007), no. 1, 11–84.

32. , N-determined 2-compact groups. II, Fund. Math. 196 (2007), no. 1, 1–90.

33. V. Puppe, A remark on “homotopy fibrations”, Manuscripta Math. 12 (1974), 113–120.

34. L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago

Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.
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