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Abstract. The interpretation of properties of compact Lie groups in purely ho-
motopic terms is the lei-motiv for studying properties of p-compact groups. The
Lie algebra is an analytic object that has not been interpreted in terms of ho-
motopy theory and it provides the complex and real adjoint representation of a
Lie group. We construct complex homotopy representations for a family of exotic
p-compact groups, that is maps into BU(n)∧p . These representations are the ho-
motopic analogues to the adjoint representation. In particular they are monomor-
phism hence they solve the problem of existence of monomorphisms from a simply
connected p-compact group into U(n)∧p (p odd).

1. Introduction

Since homotopy Lie groups (also called p-compact groups) were defined
[DW94], its homotopy behaviour has been investigated in connection with
homotopy properties of compact Lie groups. The basic lei-motiv in their
study is the interpretation of properties of compact Lie groups (for example,
the existence of maximal tori and the Weyl group) in purely homotopic
terms [DWb] and their generalization to p-compact groups.

A p-compact group is a triple (X, BX, e) where X is a loop space such
that X is Fp-finite and BX is p-complete. The first examples came from
the Lie group theory. If G is a compact Lie group then (G∧

p , BG∧
p , e) is a

p-compact group if π0(G) is a finite p-group.
But compact Lie groups possess an analytic object which has not been

interpreted in terms of homotopy theory: the Lie algebra. The Lie algebra
provides combinatorial information related to the root system associated to
the Lie group. This information appears in the adjoint representation of the
group.

Another approximation to the concept of the adjoint representation can
be done in terms of purely algebraic data. In [MS], Mitchell and Stong define
a particular Thom module associated to a polynomial algebra of invariants
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Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bel-
laterra, Spain, e-mail: natalia@mat.uab.es
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R: the adjoint Thom module AdR. In case of working with compact Lie
groups, their method provides a way of reconstructing the Thom module
associated to the adjoint representation in terms of its cohomology and Weyl
group.

The attempt of this paper is to use of the combinatorial data provided
by reflections in the Weyl group of a p-compact group in order to obtain
a homotopic adjoint representation for some families of exotic p-compact
groups. It is also shown that this concept fits nicely into the previous cited
approximation. That means that we are going to construct mod p spherical
fibrations over the p-compact groups X such that the cohomology of its
Thom space is isomorphic to AdH∗(BX;Fp) as a Thom module.

Another motivation for this work is the results in K-theory obtained
by Jeanneret and Osse. Recently Jeanneret and Osse [JO] have proved the
Atiyah-Segal theorem for p-compact groups. The Atiyah-Segal theorem [AS]
states that the complex K-theory ring K∗(BG; Z) is isomorphic to the I-
adic completion of the complex representation ring R(G). Assuming G con-
nected, this fact is equivalent to the following isomorphism:

K∗(BG; Z) ∼= K∗(BT ; Z)W

where T is a maximal torus of G and W the corresponding Weyl group.
The structure of p-compact groups is concentrated in a single prime p,

hence it is natural to consider K-theory with p-adic coefficients. Jeanneret
and Osse generalize the Atiyah-Segal theorem,

K∗(BX; Ẑp) ∼= K∗(BT ; Ẑp)

where X is a p-compact group, i : T ⊂ X a maximal torus and W the
corresponding Weyl group.

An important step in the proof is the fact that the K∗(BT ; Ẑp) is a
K∗(BX; Ẑp)-module finitely generated. If there exists a monomorphism
from the p-compact group into a unitary group U(N)∧p , the previous fact
can be easily deduced. This observation is explicitly stated in [JO]. In the
Lie group theory, it is known that every Lie group admits a monomorphism
into a unitary group. Hence, it remains to show that every exotic p-compact
group admits a monomorphism into some unitary group. We can general-
ize this question and we can ask for the existence of monomorphisms into
infinite generalized grassmannians.

Theorem 1.1. Every simply connected simple exotic p-compact group ad-
mits a monomorphism into U(n)∧p for some n.

Every simply connected p-compact group is homotopy equivalent to a
product of almost simple p-compact groups ([DWa]). We know the result is
known for compact Lie groups, hence we divide the proof in the study of the
three families of exotic simple p-compact groups: the Clark-Ewing spaces,
the Aguadé spaces and the infinite generalized grassmannians.

We also solve the question on the existence of a monomorphism into
infinite Quillen grassmannians.
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Theorem 1.2. Every simply connected simple exotic p-compact group ad-
mits a monomorphism into an infinite generalized Quillen grassmannian.

The close relation between some of these infinite Quillen grassmannians
and the classification of mod p spherical fibrations [C2] is the key step to
prove the following realization fact.

Theorem 1.3. Let X be an exotic p-compact group of Clark-Ewing, Aguadé
or an infinite generalized grassmannian of rank p. Then there exist mod p
spherical fibrations η ↓ BX such that

H̃∗(T (η); Fp) ∼= AdH∗(BX;Fp)

where AdR = Torn,∗
R⊗R(R,R) and n is the rank of X.

In Section 1 we review some standard facts on Thom modules and the con-
struction of the adjoint Thom module. Section 2 presents some preliminaries
on complex root systems and the description of the admissible morphism
associated to the adjoint representation. The complex homotopy represen-
tations for Clark-Ewing spaces are described in Section 4. We discuss the
complex representations of Xi in Section 5. In Section 6 we discuss the case
of extending admissible morphisms of SU(p) into unitary groups. Section 7
contains the proof of the main theorem in Section 5 with some consequences
and Section 8 contains the analogous result for infinite generalized grass-
mannians of rank p. Section 9 is devoted to the study of factorizations of
unitary representations through generalized grassmannians.

2. p-compact groups

A p-compact group is a p-local version of a finite loop spaces. Namely, a
p-compact group is a triple X = (X, BX, e) where BX is a p-complete
pointed space, such that H∗(X; Fp) is finite and where e : ΩBX → X is a
homotopy equivalence.

The first examples of p-compact groups are the p completions (in the
sense of Bousfield-Kan [BK]) of compact connected Lie groups and their
classifying spaces. Many properties of compact Lie group theory can be
reinterpreted as homotopy theoretic properties of the classifying spaces in
such a way that the concept extends to the category of p-compact groups
(see [DWb]). For example, they admit a concept of maximal torus and Weyl
group.

A p-compact torus is a triple (T∧p , BT∧p ,%) where T = (S1)n is a torus.
The dimension of the p-compact torus (T∧p , BT∧p ,%) is the dimension of T .
A p-compact toral group P is a compact Lie group such that its identity
component P0 is a p-compact torus and π0(P ) is a finite p-group.

A homomorphism f : X → Y between two p-compact groups is a pointed
map Bf : BX → BY . Given a homomorphism f : X → Y , we define the
homogeneous space Y/X associated to f as the homotopy fiber of Bf .
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A homomorphism f is said to be a monomorphism if the homotopy fiber
Y/X is mod p finite (that is, H∗(Y/X; Fp) is a finite Fp-vector space). Two
morphisms f, g : X → Y are conjugate if Bf and Bg are freely homotopic.

A maximal torus of a p-compact group X is a monomorphism f : TX →
X from a p-compact torus of maximal dimension into X. Dwyer and Wilk-
erson [?] show that every p-compact group X has a maximal torus and that
any two maximal tori are conjugate. The rank of X is defined as the dimen-
sion of TX . Given a maximal torus, there is a definition for its normalizer
and the Weyl group of a p-compact group ([?]). If X is connected, the Weyl
group is the group, under composition, of all homotopy classes of self maps
ω : BTX → BTX such that Bf ◦ ω % Bf .

If X is connected, the inclusion of the maximal torus induces an isomor-
phism

H∗(BX; Ẑp)⊗Q ∼= (H∗(BTX ; Ẑp)⊗Q)WX .

The induced representation WX → GL(H2(BTX ; Ẑp) ⊗ Q) is faithful and
represents WX as a pseudoreflection group over Ẑp ⊗ Q (as a finite group
generated by elements of finite order in GL(n, Ẑp ⊗ Q) fixing a hyper-
plane of codimension one. In fact, this representation is integral in the
sense that it is induced by the action of the Weyl group on the torus,
WX → GL(H2(BT∧p ; Ẑp)).

A classification of all irreducible pseudoreflection groups over Q̂p was
achieved by Clark and Ewing [?], using the classification of complex pseu-
doreflection groups by Shephard and Todd [?]. Each p-adic reflection group
admits a complex representation as a complex reflection group. They are
listed in a table that contains three infinite families and 34 exceptional
groups.

Introduce centers and kernels.

3. Maps between classifying spaces

This section is devoted to the problem of lifting admissible maps φT :
TSU(p) → TU(n(i)) previously defined in Section ??. Recall that in order
to construct maps out of BSU(p) we can use its description as a homotopy
colimit of p-compact toral subgroups over the corresponding p-stubborn
category.

Let G be a compact Lie group. A p-toral subgroup P ⊂ G is called p-
stubborn if NG(P )/P is finite and contains no nontrivial normal p-subgroups.
Rp(G) denotes the category whose objects are orbits G/P for each p-
stubborn P ⊂ G and Mor(G/P,G/P ′) is the set of all G-maps between
the orbits.

Theorem 3.1. [JMO1] The induced map

hocolim
P∈Rp(G)

EG/P → BG

is an Fp-homology equivalence.
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This is the main tool used to study maps between classifying spaces of
compact Lie groups.

Definition 3.1. [JMO2] An Rp(G)-invariant quasi representation of G into
G′, a compact Lie group, is ρ : Np(T )∞ → G′ which extends to

lim←−
0
Rp(G)

Rep(P∞, G′).

Moreover, any f : BG → (BG′)∧p gives, by restriction f |BNp(T )∞ % Bρ,
a unique Rp(G)-invariant quasi representation ρ (see [JMO2]).

The natural question is: when does an Rp(G)-invariant quasi represen-
tation extend to a map from BĜp? The setting for the answer is obstruction
theory.

Theorem 3.2. [JMO2] Let G′ be any compact, connected Lie group, ρ an
Rp(G)-invariant representation. Then

Map(BG, (BG′)∧p )[ρ] *= ∅ if Hi+1(−;Πi) = 0 for i ≥ 1,

Map(BG, (BG′)∧p )[ρ] is connected if Hi(−;Πi) = 0 for i ≥ 1,

where Map(BG, (BG′)∧p )[ρ] denotes the set of components Map(BG, (BG′)∧p )f

such that f % ρ.

From now on, we restrict our attention to the case G = SU(p). For p = 3
we can describe explicitly the orbit category of the 3-stubborns in SU(3).
Consider the matrices

A =




1 0 0
0 ξ 0
0 0 ξ2



 , B =




0 1 0
0 0 1
1 0 0





where ξ = exp( 2πi
3 ). The only 3-stubborns of SU(3) are (up to conjugacy)

N3(T ) = 〈T,B〉 , Γ = 〈A,B〉

with NSU(3)(N3(T ))/N3(T ) ∼= Z/2Z and NSU(3)(Γ )/Γ ∼= Sp2(F3).
For p > 3, the p-stubborn category of SU(p) contains three objects

corresponding to p-stubborns T , Np(T ) and Γ where T is a maximal torus,
Np(T ) is the p-normalizer of the maximal torus and Γ is generated by the
following matrices

A =





1 0 · · · 0
0 ξ · · · 0
... 0 . . . 0
0 0 · · · ξp




, B =





0 1 0 · · · 0
0 0 1 · · · 0

0 0 0 · · ·
...

...
...

... . . . 1
1 0 0 · · · 0





where ξ = exp( 2πi
p ). The automorphism groups are the following ones:

NSU(p)(T )/T = Σp, N(Np(T ))/Np(T ) = Z/(p−1)Z and N(Γ )/Γ = Sp2(Fp).
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Recall that (TSU(p))∞ ∼= (Z/p∞Z)p−1. Since

Ẑp−1
p

∼= Hom((Z/p∞Z)p−1, Z/p∞Z)

, any r ∈ Ẑp−1
p defines a morphism r : (Z/p∞Z)p−1 → S1. If we consider

the inclusion of the symmetric group Σp
∼= Σ ≤ Gi ≤ GLp−1(Ẑp), we can

use r ∈ R to define an admissible morphism (see Section 2) φT by

φT :=
∏

r∈RW

: B(Z/p∞Z)p−1 → (BS1)m(i)

with respect to φG|σ : Σ → Σni .
There are induced maps:

φN : NpT∞ → U(m(i)),

φΓ : Γ∞ → U(m(i))

where φΓ = φN |Γ∞ and φN is equivariant with respect the action of the
automorphisms Z/(p− 1)Z in NpT (it follows from the fact that φT is φW -
equivariant). In order to obtain an Rp(G)-invariant quasi representation, it
only remains to show that φΓ is invariant with respect the action of Sp2(Fp).

The following proposition shows how to obtain a Rp(G)-invariant quasi
representation under certain hypothesis.

Proposition 3.1. Let BfT : BT p−1
∞ → BTn be an admissible morphism

with respect to a group morphism fW : Σp−1 → Σn where

BfT =
∏

r∈R

Br

is defined by a set R ⊂ Hom((Z/p∞Z)p−1, S1). Assume that the p-Sylow
subgroup Sp of Σp−1 acts without fixed points on R (Tr(fW (B)) = 0) and
Tr(fT (A)) = −ap where a ∈ Z+. Then, the morphisms

f ′T := fT ⊕ Id(p−1)a,

f ′W := fW ⊕ aρ,

where ρ is a faithful representation of Σp of dimension p−1, define a complex
Rp(SU(p))-invariant quasi representation.

Proof. It is easy to see from the definition of f ′ that

Tr(f ′W (B)) = Tr(f ′T (A)) = −a.

Let us see that this is enough to prove that f ′Γ is Sp2(Fp)-invariant. The
other morphisms commute up to homotopy in the diagram by the defini-
tion of f ′T and f ′W . Using arguments of complex representation theory, it is
enough to see that the trace of the morphisms f ′Γ does not change by the
action of Sp2(Fp).
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The matrices of Γ are monomials and can be described as Σ ·D where
Σ is a permutation matrix and D is a diagonal matrix. Then

f ′Γ (ΣD) = f ′Γ (Σ)f ′Γ (D) =
(

fΓ (Σ) 0
0 aρ(Σ)

) (
fΓ (D) 0
0 Id

)
=

(
fΓ (Σ)fΓ (D) 0
0 aρ(Σ)

)
.

Notice that Tr(fΓ (ΣD)) = 0 (the p-Sylow subgroup of Wi acts in the
complex root system without fixed points) and Tr(ρ(Σ)) = −1.

It only remains to check what happens with the matrices in the centre of
Γ , but they are fixed by the action of Sp2(Fp) ∼= NW (Γ )/Γ by conjugation.
23

Remark 3.1. The proof of Proposition 3.1 also shows that the morphism
φN defines an Rp(SU(p))-invariant quasi representation depending only on
roots mod p because ξ is a p-th root of unity.

By Theorem 3.2, the next step is to look at higher limits for extension
and unicity of maps. Recall the following result in [JMO2] which computes
higher limits of functors over p-stubborn categories.

Proposition 3.2. Let F1 : Rp(G) → Z(p)−Mod and F2 : Rp(G) → p−Hgr
be functors from the orbit category of p-stubborns. If p2 does not divide |WG|,
then lim←−

2F2 = 0 and lim←−
nF1 = 0 for any n ≥ 2.

Corollary 3.1. Map(BSU(p), BU(N )̂p)[φN ] is nonempty and connected. That
is, there exists φ : BSU(p) → BU(Ni)̂p such that φ|BNT∞ % BφN and it is
unique up to homotopy satisfying this condition.

Proof. Recall that the obstruction to the existence lies in

lim←−
i+1πi(Map(BP∞, BU(Ni)ˆp)φN |P ),

and to unicity in

lim←−
iπi(Map(BP∞, BU(Ni)ˆp)φN |P ).

We are under the hypothesis of [JMO2] because p2 does not divide |Σp|
and

Πi(P ) := πi(Map(BP∞, BU(N)ˆp)φN |P ) ∈ Z(p) −mod for i ≥ 2;

then lim←−
jΠi = 0 for any i ≥ 2 and j ≥ 2. Moreover,

Π1(P ) = π1(BCU(Ni)(φN (P )) = π0(CU(Ni)(φN (P ))) = 0

because this centralizer CU(Ni)(φN (P )) is connected.
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By Theorems 3.2 and 3.1 we obtain an extension

φSU(p) : BSU(p)ˆp −→ BU(Ni)ˆp

of φT .

Corollary 3.2. φSU(p) is invariant under the action of Z(Wi) ∼= Z/(p−1)Z
via Adams’ operations.

Proof. As a consequence of the uniqueness property we have that φ is ho-
motopy equivariant with respect to the action of the Adams operations
{Ψ ξ} ∼= Z/(p − 1)Z on BSU(p). The reason is that [Ψ ξ ◦ φN ] = [φN ] ∈
Rep(N∞T,U(Ni)) and that the set Σ is invariant (that is the action of the
Adams’ operations on Σ corresponds to a permutation of the set of roots).

Remark 3.2. The method applied to construct a certain morphism from the
p-compact group SU(p) also applies for U(p) because the p-stubborn cat-
egories of SU(n) and U(n) are isomorphic [Oli]. The bijection is given by
the following:

P → 〈P,Z(U(n))〉 for P ⊂ SU(n);
P̃ → P̃ ∩ SU(n) for P̃ ⊂ U(n).

We can obtain extra information about the homotopy groups of the
mapping spaces πi(Map(BSU(p), BG∧

p )φ) using the Bousfield-Kan spectral
sequence of the fourth quadrant

lim←−
iΠ−j(BP∞) =⇒ π−i−j(Map(BSU(p), BGˆ

p)φ)

and the connectedness of centralizers. The vanishing of higher limits lim←−
jΠi =

0 for any i ≥ 2, j ≥ 2, and an analysis of the Bousfield-Kan spectral se-
quence:

lim←−
0 lim←−

1 lim←−
2 · · ·

Π0 , , , · · ·
Π1 lim←−

0Π1 lim←−
1Π1 0 0

Π2 lim←−
0Π2 lim←−

1Π2 0 0
...

...
... 0 0

Πi lim←−
0Πi lim←−

1Πi 0 0

shows that there exist short exact sequences for i ≥ 1

lim←−
1Πi+1(BP∞)!! πi(Map(BSU(p), BG∧

p )φ) !! lim←−
0Πi(BP∞).

Corollary 3.3. π1(Map(BSU(p), BG∧
p )φ) is abelian if CG(φ((NpT )∞)) and

CG(φ((Γ )∞)) (and CG(φ((T )∞)) for p ≥ 3) are connected.



The homotopic adjoint representation for exotic p-compact groups 9

Proof. Using the exact sequence obtained from the Bousfield-Kan spec-
tral sequence [BK] and the hypothesis of the corollary (i.e. Π1(BN3T ) =
Π1(BΓ ) = 0), we see that

π1(Map(BSU(p), BGˆ
3)φ) ∼= lim←−

1Π2(BP∞)

is abelian.

Remark 3.3. When G is a unitary group, it is well known that centralizers
of subgroups are connected (in fact, a product of unitary groups). The
hypothesis of Corollary 3.3 are satisfied.

4. Complex root systems

In this section we introduce the notion of complex root systems. We are
concerned with the description of Weyl groups of p-compact groups as Weyl
groups of complex root systems and we will use this information to define
admissible morphisms into unitary groups. Our motivation is the following
known result in Lie group theory (see [BrD]).

Theorem 4.1. Let G be a compact connected Lie group with maximal torus
T and let V ⊂ LT ∗ be the subspace generated by the set R of real roots of
G. Then R is a root system in V and the Weyl group W of G, viewed as a
subgroup of Aut(V ), is the same as the Weyl group of this root system.

In order to obtain a similar result using pseudoreflection groups, we
consider complex root systems. In fact, the Weyl groups of p-compact groups
we are considering are Weyl groups of complex root systems.

The notion of a complex root system was introduced by Cohen [Coh].
Let V = Cn with an hermitian, positive definite form.

Definition 4.1. A complex reflection in Cn is a linear transformation of
Cn of finite order with exactly n− 1 eigenvalues equal to 1.

A unitary root of a reflection is a unitary eigenvector corresponding to
the unique nontrivial eigenvalue of the reflection.

Notice that the definition of a complex reflection group does not depend
only on the group but also in a complex representation in some complex
vector space Cn.

Let r be a nonzero vector and ξ a root of the unity. With this data, we
can define a reflection Sr,ξ ∈ U(n) satisfying Sr,ξ(r) = ξr and Sr,ξ(x) = 0 if
〈x, r〉 = 0. In fact, we have

Sr,ξ(x) = x + (ξ − 1)
〈x, r〉
〈r, r〉 r.

We will write Sr,m when ξ is an m-th root of the unity and we say that r is
a root of S.
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A unitary root as associated to a reflection s defines a linear form which
vanishes in the hyperplane of the reflection, ls = (ξ − 1)〈x, as〉 where ξ
is a root of unity of order equal to the order of the reflection and s(v) =
v + ls(v)as.

The structure of finite complex reflection groups has been extensively
studied (see e.g. [Spr]).

Let W be a finite complex reflection group. Define the set P by

P = {C∗as | s ∈ W reflection}.

It is clear that there exists an action of W on P since the action of W
permutes the hyperplanes associated to the reflections in W .

Proposition 4.1. [Coh] The abelianization of W , Wab, is isomorphic to
the product of cyclic groups indexed by the W -orbits in P :

Wab
∼=

∏

O∈P/W

Z/o(O)Z,

where o(O) is the order of one of the reflections which defines the orbit O.

Next, we introduce the notion of a complex root system.

Definition 4.2. [Coh] Let Σ = (R, f) be a pair consisting of:

1. a finite set of nonzero elements in Cn,
2. a map f : R → N \ {1} such that for all a, b ∈ R

Sa,f(a)(R) = R and f(Sa,f(a)(b)) = f(b).

Σ is called a pre-root system and the group

W (Σ) = 〈Sa,f(a)|a ∈ R〉

is the Weyl group of this pre-root system.
A pre-root system is called a root system if, for all a ∈ R, there holds

ra ∈ R ⇐⇒ ra ∈ W (Σ)a,

for any r ∈ C.

If we consider Sr,f(r) for each r ∈ Σ as a unitary transformation of the
complex vector space, they generate a finite group W (Σ) called the Weyl
group of the root system (notice that they have a natural representation
into U(n) by means of the matrices defining the reflections as linear trans-
formations).

Example 4.1. If W is a finite complex reflection group acting on V = Cn as
linear transformations, then we consider a unitary root as for each reflection
s ∈ W . Let R0 = {as ∈ V | s reflection} and f0 : R0 → N \ {1} defined
by f0(as) = order(s). If we define R = W · R0 (i.e. the orbits of R0 by the
action of W ) and a function f : R → N \ {1} such that f(gas) = f0(as),
then we obtain a pre-root system Σ = (R, f).
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The following lemma contains some of the properties of complex (pre)root
systems we use later.

Lemma 4.1. [Coh] Let Σ = (R, f) be a pre-root system. Then,

1. {sj
a,f(a) | a ∈ R, 0 < j < f(a)} is the set of all reflections in W (Σ).

2. There exists a complex root system Φ = (S, g) such that W (Σ) = W (Φ),
S ⊂ R and g = f |S.

It is interesting for the subsequent discussion to sketch the proof of the
second statement in the lemma from [Coh]. Let U = {C∗u | u root of W (Σ)}
and u1, . . . , ul ∈ R such that {C∗u1, . . . , C∗ul} is a set of representatives of
W (Σ)-orbits in U . Define S = ∪l

i=1W (Σ)ui and g = f |S . Then Φ = (S, g)
is a root system and W (Φ) = W (Σ).

The following corollaries are direct consequences of Lemma 4.1.

Corollary 4.1. If W is a finite complex reflection group, then W is the
Weyl group of a complex root system ΦW .

Proof. If W is a finite complex reflection group, Example 4.1 shows how
to define a pre-root system such that W is the corresponding Weyl group.
The proof of Lemma 4.1 explains how to define a root system ΦW from a
pre-root system with the same Weyl group.

Corollary 4.2. If W is a finite complex reflection group, there exists a ho-
momorphism φW : W → Σ|ΦW | associated to the complex root system ΦW .

Proof. The homomorphism is defined by the permutation action of W on
the roots of the system ΦW which have been defined in the proof of Lemma
4.1.

Remark 4.1. [Coh] Let Σ = (R, f) a complex root system and A a subring of
C which contains e

2πi
m for every m ∈ f(Σ) and (a|a), (b|a)

(a|a) for any a, b ∈ Σ,
then Σ and W (Σ) are defined in the field of fractions of A.

Next we describe an example of a complex root system. Let us recall
the definition of groups G(q, r, n) of the family 2a in the list of Shephard
and Todd [ST]. Let q ≥ 1, and µq ⊂ C the group of qth roots of unity
(with a fixed isomorphism µq

∼= Z/qZ). For any q ≥ 1 such that r|q, n > 1,
define A(q, r, n) = {(z1, . . . , zn) ∈ µn

q | z1 · · · zn ∈ µr}. G(q, r, n) is a split
extension of A(q, r, n) by Σn. G(q, r, n) has a complex representation with
A(q, r, n) defined by diagonal matrices and Σn by permutation matrices:

G(q, r, n) ∼= A(q, r, n) ! Σn.

The groups in family 2b in the list correspond to G(e, 1, 2). And the
groups in family 3 in the list are the cyclic groups Z/nZ generated by roots
of unity.
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Example 4.2. Let G(m, r, n) = Σn " A(m, r, n). We describe this group as
the Weyl group of a complex root system. Let R(1,m, n) be the following
set:

R(m, 1, n) = µ2µm{e
2πil

m ei − ej | i, j, l ∈ N, i *= j, 1 ≤ i < j ≤ n}

and fm,1,n the function with constant value 2. Then (R(m, 1, n), fm,1,n) is a
root system with Weyl group W = G(m, 1, n) and |R(m, 1, n)| = m2n(n −
1)/g.c.d.(2,m).

Now, define R(m, r, n) = R(m, 1, n) ∪ µm{ei|1 ≤ i ≤ n} and fm,r,n as
the extension of fm,1,n determined by f(ei) = r. Then (R(m, r, n), fm,r,n)
is a root system with Weyl group G(m, r, n).

In this situation it is easy to prove that this root system can be defined
in Q(ξm) where ξm is a primitive mth root of unity.

Corollary 4.3. If W is a finite complex reflection group, W is the Weyl
group of a root system defined in the character field of W , Q(χ). Clearing
denominators, if necessary, we can assume that roots lie in Z[χ].

Proof. It is known that a finite complex reflection group admits a represen-
tation in the character field Q(χ) [CE]. If we consider the matrices of this
representation in Q(χ), we can build the root system associated considering
the vectors in this subfield of C.

Remark 4.2. Let as be a unitary root of W associated to a reflection s. Let
w ∈ W such that w · as = ξar. If we consider the root system defined in
Q(χ), then ξ has to be a unitary complex number in the subfield Q(χ).

The classification of finite p-adic reflection groups is based on the classi-
fication of finite complex reflection groups by using the following theorem.

Theorem 4.2. [CE] Let W be a finite group then W has a representation
as a p-adic reflection group if and only if the following two conditions are
satisfied:

1. W has a representation as a complex reflection group;
2. the character field Q(χ) ⊂ Q∧

p .

For the primes satisfying the condition above we obtain that the com-
plex root system can be represented by vectors in a Q∧

p -vector space and,
cancelling denominators if necessary, in Z∧p . So, roots lie in a Ẑp-module.

The Weyl groups of complex root systems have been recently studied
by means of generators and relations in [BMR]. These presentations ”á la
Coxeter” allow to compute Wab. The following table contains these compu-
tations and the order of the center of W (recall that the center of W is a
cyclic group by Schur lemma).
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5. The Clark-Ewing spaces

The Clark-Ewing spaces are p-compact groups X such that the order of
the Weyl group is prime to p. Let T be a fixed maximal torus of X and
W ⊂ GL(π1(T ) ⊗ Ẑp) the Weyl group endowed with a faithful p-adic rep-
resentation. W acts on (BT )∧p % (BT∞)∧p % K((Z∧p )r, 2) via the above
representation. These p-compact groups are homotopy equivalent to the
Borel construction:

X(W,p, T ) := ((BT )∧p ×W EW )∧p ,

where EW is a contractible space with a free action of W . The cohomology
of BX(W,p, T ) is H∗(BX;R) ∼= H∗(BT ;R)WX where R = Fp, Ẑp, Q∧

p .
Maps between Clark-Ewing spaces have been described in [Woj2]. Wo-

jtkowiak has also described maps between Clark-Ewing spaces and compact
Lie groups.

Definition 5.1. For maximal tori T and T ′ of X and X ′ respectively, a
map φ : π1T ⊗ Ẑp → π1T ′ ⊗ Ẑp is admissible if for all w ∈ WX there exists
w′ ∈ WX′ such that φ ◦ w = w′ ◦ φ.

Two admissible maps φ and ψ are equivalent if there exists w ∈ WX′

such that w ◦ φ = ψ.
AHomẐp

(T, T ′) is the set of classes of admissible maps from π1T ⊗ Ẑp

to π1T ′ ⊗ Ẑp.

Theorem 5.1. Let G be a connected compact Lie group and suppose that p
does not divide the order of WX . Then the natural map

χ : [BX,BG∧
p ] → AHomẐp

(TX , TG)

is a bijection.

That means that we can describe complex homotopy representations of
Clark-Ewing spaces. There is a bijection,

[BX,BU(n)∧p ] → AHomẐp
(TX , (S1)n).

Remark 5.1. If T and T ′ are tori of rank n, m respectively, we can identify

Hom(π1T ⊗ Ẑp, π1T
′ ⊗ Ẑp) = Hom(T∞, T ′∞) = Mm×n(Ẑp).

The first consequence of this description is the following property.

Corollary 5.1. A non irreducible complex representation of a Clark-Ewing
space splits in a sum of irreducible representations.

Proof. If a complex representation ρ : BX → BU(n)∧p is not irreducible,
the associated admissible map splits in the orbits by the action of the Weyl
group. Let ni be the cardinal of these orbits for i = 1, . . . , s. By Theorem
5.1, each of these orbits describes an admissible morphism which extends
to a homotopy complex representation ρi : BX → BU(ni)∧p unique up to
homotopy. This uniqueness property assures that ρ % ρ1 ⊕ · · · ⊕ ρs.
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The root system defined in Section ?? defines an admissible morphism
φ : TX → TU(n) with respect to the group morphism φW : W → Σn which
represents W as permutations of the set of roots (n is the number of elements
in ΦW ).

Each root r of the system defines a morphism r : BT∞ → BS1 (a p-
discrete approximation of the maximal torus is BT∞ = B(Z/p∞Z)rank X

is a p-discrete approximation of the maximal torus) because it lies in a
Ẑp-module.

We define a complex representation from the following admissible mor-
phism, ∏

r∈RW

Br : BT∞ → BTU(n)

where n = |RW |. The following corollary is a direct consequence of Theorem
5.1.

Corollary 5.2. The admissible map induced by the action of WX in the
complex root system extends to a complex homotopy representation which is
unique up to homotopy.

This representation is denoted by Ad.

Corollary 5.3. The representation Ad is faithful.

Proof. Notice that the p-discrete approximation of the kernel of Ad (see
[MN]) is a p-discrete approximation of the center of X (see [DW95]). That
is, Ad is defined by the linear forms which vanish on the hyperplanes of the
reflections of WX ; then,

PreKer(Ad) = ∩sσ(s),

because NpT = T and it follows that

BKerAd % BC∧
p % map(BX,BX)id.

The Clark-Ewing spaces are free of centre (Lemma 5.1), then Ad is a
monomorphism:

BKer(Ad) % ∗.

Lemma 5.1. If X is a Clark-Ewing space, then,

BZ(X) %p ∗.

Proof. If X is a Clark-Ewing space, then

π∗(BZ(X)) = π∗(map(BX,BX)id).

But, map(BX,BX)id % map(BT, BX)hWX
Bi % BThWX . From the Bousfield-

Kan spectral sequence [BK] which computes the homotopy groups of a ho-
motopy invers limit we obtain π∗(BZ(X)) ∼= π∗(BT∧p )WX . Then πi(BZ(X)) =
0 for i *= 2 and

π2(BZ(X)) ∼= H2(BT ; Ẑp)WX = 0.
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Corollary 5.4. Ad is irreducible if and only if Wab is cyclic.

Proof. Recall that Wab is a product of cyclic groups indexed by the orbits
of hyperplanes of reflections (Proposition 4.1). The order of each of these
cyclic groups is that of the reflection which defines the orbit.

If Wab is cyclic, there is only one orbit of hyperplanes and, by the defi-
nition of root system φW (see 4.1), φW is an irreducible W -set (recall that
ξas ∈ RW ⇔ ξas ∈ Was).

In particular, if W contain reflections of different orders, it is clear that
Ad is reducible.

Corollary 5.5. Ad is invariant by the action of unstable Adams operations
in BU(n)∧p of order e which divides the order of the center of WX .

Proof. The centre of WX consists of diagonal matrices ξId where ξ is a root
of unity, (recall that Z(WX) = Z/cZ) and it acts on the maximal torus as
unstable Adams’ operations.

Let ψ be an unstable Adams’ operation of order e such that e|c. From the
definition of admissible morphisms it is clear that ψAdT % AdT ψ. But, the
action of ψ on the source corresponds to the action of 〈ψ〉 ≤ W and there
exists w ∈ Σn such that ψAdT % AdT w. From the uniqueness property of
extensions of equivalent admissible maps, we prove that ψAd % Ad.

Remark 5.2. We can describe a standard method to construct complex ho-
motopy representations. Consider a vector e1 ∈ T∞ and its dual, which is
a vector in r1 ∈ Hom(T∞, Z/p∞Z). Let R1 be the orbit of r1 by the action
of W . This orbit defines an admissible morphism with respect to the mor-
phism between Weyl groups defined by the permutation of the elements in
the orbit, φW : W → Σ|R1|.

6. The Aguadé spaces

This section provides an exposition of the techniques used in the proof of
the main theorem. We start with a brief exposition without proofs of the
mod p homology decomposition of the p-compact groups Xi.

The p-compact groups Xi were described for the first time by means of
homotopy colimits by Aguadé [Ag]. The ones corresponding to groups of
number 12 and 31 were first described by Zabrodsky using other techniques
[Zab]. First of all, recall the following property that is satisfied by all of the
groups.

Lemma 6.1. [Ag] All the groups in the list contain a subgroup Σ isomorphic
to a symmetric group. For groups of number 12, 29, 31, 34, this subgroup is
isomorphic to Σp.
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These p-compact groups will be described as homotopy colimits over an
index category I with just two objects 0, 1 and morphisms Hom(0, 0) = Z,
Hom(1, 1) = W , Hom(1, 0) = W/Σ and Hom(0, 1) = ∅ where Z is the
center of W . Let F ′

i : I → HoTop be the functor defined by F ′
i (0) = BSU(p),

F ′
i (1) = BT p−1, and Z acting via unstable Adams’ operations. This functor

lifts to the topological category of spaces, Fi : I → Top, and we obtain the
following decomposition:

(hocolim
I

Fi)∧p = BXi.

This category is slightly different from the one used in [Ag] but the same
methods apply to compute higher limits of functors F : I → R−Mod. More
generally, the pair (W,Σ) satisfies the following lemma.

Lemma 6.2. [Ag] Let F : I → R −Mod and assume that |Z| is invertible
in R. Then we have,

1. lim←−
jF = 0 for j > 1,

2. there is an exact sequence

0 → lim←−
0F → F (0)Z → F (1)NW (Z×Σ)/F (1)W → lim←−

1F → 0.

Proposition 6.1. The p-compact groups Xi for i = 12, 29, 31, 34 are free
of centre.

Proof. We use the description of the centre as a mapping space Map(BXi, BXi)id.
The following homotopy equivalences describe this mapping space as a ho-
motopy limit:

Map(BXi, BXi)id % Map(hocolim
I

Fi, BX)id %p holim
I

Map(Fi, BX)inc

where inc is the inclusion of Fi(0) % BSU(p) and Fi(1) % BT in BXi %p

hocolimI Fi.
In order to compute the homotopy groups of the centre we use the fourth

quadrant Bousfield-Kan spectral sequence [BK] with E2-term

Ei,j
2 = lim←−

iπ−j(Map(Fi, BXi)inc),

which converges to π−i−j(holim Map(Fi, BXi)).
As a consequence of Proposition 4.6 in [Not2] and the homotopy unique-

ness of special unitary groups (see [Not2]), we obtain the following homotopy
equivalences:

Map(BSU(p), BXi)inc % Map(BSU(p), BSU(p)∧p )id % BZ(SU(p)∧p );

if BT is a maximal torus in BSU(p), then,

Map(BT, BXi)inc % map(BT, BSU(p)∧p )inc % BT∧p .
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The homotopy groups of these mapping spaces define a functor Πj which
take values in the category of Z(p)-modules. In fact, πj(BZ(SU(p))) ∼=
πj(BZ/pZ) and πj(BT ) = πj(K((Ẑp)p−1, 2)).

So, lim←−
jΠi = 0 for all j and i ≥ 3. By Lemma 6.2 we obtain lim←−

iΠj = 0
for i > 2 and j = 1, 2.

Finally, using the exact sequence in Lemma 6.2 it is easy to see that,

lim←−
0Π2 = 0

lim←−
1Π1 = 0.

As Z acts as translations, we have

lim←−
1Π2 = ((Ẑp)p−1)NW (Z×Σ)/((Ẑp)p−1)W = 0,

lim←−
0Π1 = (Z/pZ)W = 0.

Then πj(BZ(Xi)) = 0 for all j and i = 12, 29, 31, 34.

The main result of this section is the following description of complex
representations of the p-compact groups Xi.

Proposition 6.2. There is a bijection

[BXi, BU(N)ˆp] ∼= lim
I

[Fi, BU(N)ˆp]

for i = 12 (p = 3), 29 (p = 5), 32 (p = 5), 34 (p = 7).

Remark 6.1. The inverse limit over I of complex homotopy representations
can be described in the following way:

lim
I

[Fi, BU(N)ˆp] ∼= {[φ] ∈ [BSU(p), BU(N)ˆp] | [φT ] ∈ [BT, BU(N)ˆp]
Wi}.

Definition 6.1. An I-invariant representation of Xi into a connected p-
compact group X is a morphism of p-compact groups ρ : SU(p) → X which
extends to

lim←−
0

IRep(ΩFi, X).

The following proposition gives conditions to assure when an I-invariant
representation defines a representation of Xi.

Proposition 6.3. Let X be a connected p-compact group and φ an I-invariant
representation into X. Then the following hold:

1. If π1(map(BSU(p), BX)φ) is abelian then φ extends to a map φ : BXi →
BX.

2. Any morphism of p-compact groups f : BXi → BX such that π1(map(BSU(p), BX)f |SU
)

is abelian is unique up to homotopy (that is any other morphism of
p-compact groups g : BXi → BX such that g|SU(p) % f |SU(p) and
g|T % f |T satisfies g % f).
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Proof. The main tools used in the proof are obstruction theory and higher
limits computation.

1. The following diagram defined by the I-invariant representation φ:

BSU(p)ˆp
φSU(p)! BX

"""
φT

#

BT∞

$

lifts to the topological category (and consequently defines a map from
the homotopy colimit into BX) if the corresponding obstructions vanish.
These obstructions to the lifting live in

lim←−
i+1

Iπi(map(Fi(−), BX)φi),

for i ≥ 1.
Notice that the centralizer of a p-discrete torus in a connected p-compact
group is connected (see Dwyer-Wilkerson [DW95]), thus π1(map(BT∞, BX)φT ) =
0. Moreover, we are assuming that π1(map(BSU(p), BX)φ) is abelian,
thus in this situation we obtain a functor Πi : I → Ẑp-Mod for i ≥ 1
which takes the following values

Πi(SU) = πi(map(BSU(p), BX)Φ)

and
Πi(T∞) = πi(map(BT, BX)φT ).

We can apply Lemma 6.2 to compute these higher limits:

lim←−
i+1

Iπi(map(Fi(−), BX)φi) = 0

for i ≥ 1.
2. Let f : BXi → BX. If we restrict f to the diagram, we obtain an I-

representation of Xi into X. Recall that the obstruction to uniqueness
of extensions lies in

lim←−
i
Iπi(map(Fi(−), BX)φi ,

for i ≥ 1. Using the same arguments as above, we can infer that these
limits vanish for i ≥ 2 (Lemma 6.2).
Recall that π1(map(BT∞, BX)φT ) = 0. Thus, if π1(map(BSU(p), BX)φSU )
is abelian, we can apply Lemma 6.2 and we can deal with the following
exact sequence:

lim←−
0Π1

!! Π1(SU(p))Z/(p−1)Z ! Π1(T∞)NGi (Σp)/Π1(T∞)Gi !! lim←−
1Π1.

Clearly Π1(T∞) = 0 implies the vanishing of lim 1:

lim←−
1

Iπ1(map(Fi(−), BX)φi) = 0.



The homotopic adjoint representation for exotic p-compact groups 19

We are mainly interested in applying the above considerations to the
situation in which the target p-compact group X is the p-completion of a
unitary group.

Proposition 6.4. Let φ : BSU(p) → BU(N)∧p . Then π1(Map(BSU(p), BU(N))φ)
is abelian.

The proof of the above proposition is given at the end of the next section
where we describe some complex homotopy representations of the p-compact
group SU(p). The above discussion proves the following proposition.

Corollary 6.1. Any I-representation into U(N) extends in an unique way
to a complex representation on Xi.

Proof (Proof of Proposition 6.2).
We use the description of the inverse limit in the Remark 6.1.
On the one hand, it is clear that any f ∈ [BXi, BU(N )̂p] gives rise, by

restriction in the diagram, to maps fSU and fT satisfying the conditions
described on the right hand side of the equality.

On the other hand, by Proposition 6.1, we are reduced to proving that
for any map f : BSU(p) → BX satisfying conditions on the right hand
side we can define an I-representation into U(N). But this is clear since
fT is equivariant with respect to the action of Wi and since the action of
unstable Adams’ operations on BSU(p) corresponds to the action of the
center Z(Wi) ∼= Z/(p− 1)Z.

Lemma 6.3. φΓ is not equivariant with respect to the action of Sp2(Fp).

Proof. Notice that A and B are conjugate in SU(p) but Tr(φΓ (A)) *=
Tr(φΓ (B)).

i Tr(φΓ (A)) Tr(φΓ (B))
12 −3 0
19 −10 0
31 −10 0
34 −21 0

Thus, by representation theory arguments on characters, φΓ cannot be
equivariant. Recall that B is a generator of the 3-Sylow subgroup of Wi,
thus Tr(φΓ (B)) = 0 because φΓ (B) acts on the set of roots as a permu-
tation matrix without fixed points (see Lemma A.2). Using the computer
system MAGMA, we have computed the following traces, Tr(φΓ (A)) =
(−p|Z(Wi)|)/2.

In order to solve this problem we modify the morphisms to obtain an
Rp(G)-invariant representation.

Recall the complex representations of Wi, ρi : Wi → U(p−1), described
in Section 2. One can check that Tr(ρi(B)) = −1 (and det(ρi(B)) = 1).
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Then, we can add this representation to our morphism in the following
way:

φ′T := φT ⊕ Id
(p−1) |Z|

2
,

φ′W := φW ⊕ |Z|
2

ρi.

Both maps describe an admissible map φ′T : BT → BU(Ni) with re-
spect to φ′W on Ni = m(i) + (p − 1)|Z|/2. Our particular situation can be
generalized.

We have constructed the maps φT defined by means of complex roots
(see section ??) and the extension φSU . They provide an I-representation
into U(Ni) where Ni = Z(Wi)

2 ((p−1)+2N) and N is the number of complex
reflections in Wi.

BSU(p)ˆp
φSU(p)! BU(Ni)ˆp

"""
φT

#

BT∞

$

By Proposition 6.1, these I-representations extend to complex represen-
tations

Adi : BXi → BU(Ni)

where

i 12 29 31 34
Ni 26 168 248 774

Corollary 6.2. The morphisms of p-compact groups Adi are monomor-
phisms (that is Adi is a faithful representation) and irreducible.

Proof. Notice that a p-discrete approximation of the kernel of Adi (see
[MN]) is a p-discrete approximation to the centre of Xi (see [DW95]). That
is, the admissible morphism is defined by linear forms which vanish in the
reflecting hyperplanes. The p-Sylow subgroup acts without fixed points on
the complex root system, then we have

PreKer(Ad) = ∩sσ(s),

BKerAd % BC∧
p % map(BX,BX)id.

These p-compact groups are free of centre (Lemma 6.1), hence Adi is a
monomorphism (recall that BKer(Ad) % ∗).

The representations Adi are irreducible by definition.

Corollary 6.3. Adi : BXi → BU(Ni)∧p is invariant with respect to the
action of unstable Adams’ operations of order q such that q||Z| = p − 1
acting on BU(Ni)∧p .
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Proof. Let ψ be an unstable Adams’ operation of order q such that q||Z|
acting on BU(Ni)∧p . From the definition of the admissible morphism it is
clear that ψAdT % AdT ψ. The action of ψ corresponds to the action of
〈ψ〉 ≤ W and ψAdT % AdT w for some w ∈ ΣNi .

From the uniqueness property of extension of admissible morphisms out
of BSU(p), we obtain that ψAdT extends to an I-invariant representation
homotopy equivalent to the I-invariant representation Ad. Using the same
argument of the uniqueness property of extensions we obtain that ψAd %
Ad.

7. Complex representations of infinite generalized
grassmannians of rank p

The existence of faithful complex homotopy representations for generalized
grassmannians is solved in [C2]. In this section we describe the existence of
such a monomorphism for generalized grassmannians of rank p given by the
combinatoric of the complex root system.

In Section ?? there is a description of the Weyl groups of this family of
p-compact groups as the Weyl groups of a complex root systems as well as
the action on the set of complex roots. Recall the description of the complex
root system in Example 4.2.

Definition 7.1. The set of roots R(q, r, n) decomposes in the following two
orbits by the action of G(q, r, n):

R1 = µ2µq{e
2πil

q ei − ej | i, j, l ∈ N, i *= j, 1 ≤ i < j ≤ n},

R2 = µq{ei|1 ≤ i ≤ n}.

Each one of these orbits gives rise to an admissible map

φi
T =

∏

r∈Ri

: BT∞ → BT |Ri|

with respect to the action of G(q, r, n) as permutations of the roots.
In order to extend these admissible morphisms we have to deal with

extending it to unitary groups of type U(pk) and products of them. For this
reason we concentrate in infinite generalized grassmannians of rank p.

These p-compact groups have a decomposition over an index category
with two objects, BU(p) and BT . More precisely, let I be the category
with two objects {0, 1} and morphisms Hom(0, 0) = NG(q,r,n)(Σp)/Σp

∼=
Z(G(q, r, n)), Hom(1, 1) = G(q, r, n), Hom(0, 1) = G(q, r, n)/Σp, Hom(1, 0) =
∅. These p-compact groups are described as homotopy colimits of a func-
tor F : Iop → HoTop such that F (1) = BT∧p and F (0) = BU(p)∧p with
natural definitions for the morphisms (Z = Z(G(q, r, n)) acting via Adams’
operations in U(p)):
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BX(q, r, p) % (hocolim
I

F )∧p .

With this decomposition and obstruction theory we prove the existence
of the desired representation.

Proposition 7.1. BX(q, r, p) has complex homotopy representations ex-
tending the admissible morphisms φi

T for i = 1, 2.

The complexification map [C2] is an extension of φ2
T . In fact, it exists for

any infinite generalized grassmannnian. It remains to prove the existence of
the extension for the admissible map φ1

T .
First of all, we have to deal with the extension to BU(p)∧p . By the

observation in Remark 3.2, it is clear that we can apply the same technique
used for SU(p), hence all the information we need is in Tr(φ(A)) and the
fixed points for the action of B in the root system.

Lemma 7.1. 1. The p-Sylow subgroup Sp of Σp acts without fixed points
in the orbit R1.

2. Tr(φ(A)) = −p q
g.c.d.(2,q) .

Proof. 1. It is easy to check that the action of Sp does not fix any ξaei−ξbej

for 1 ≤ i, j ≤ p, 0 ≤ a, b ≤ q − 1.
2. Recall that the matrix of A is

A =





1 0 · · · 0
0 ξ · · · 0
... 0 . . . 0
0 0 · · · ξp





and R1 is

R1 = {ξaei − ξbej | 1 ≤ i, j ≤ p, 0 ≤ a, b ≤ q − 1}.

The computations for Tr(φ(A)) reduce to the following sum:

q−1∑

l=0

p−1∑

i,j=0,i )=j

ξαli−j
p

where ξq = α mod p. Consider the morphism φα,l : Fp×Fp → Fp defined
by φα,l(i, j) = αli− j. We see that φα,l is an epimorphism if αl ∈ F∗p. If
l = 0 then the kernel of φα,l is the diagonal in Fp×Fp and it is not onto
since the image of elements is not in the diagonal. If l *= 0 then it is an
epimorphism out of the diagonal.
This sum is −p if l = 0, and 0 if l *= 0.
Finally, the required computation of the trace reduces to that of how
many factors of each type appears in the trace. From the definition of the
complex root system we see that there are as many factors as elements
in µ2µq, that is, q

g.c.d.(2,q) .
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In this situation we can use a modification of the arguments used in
Proposition 3.1 considering the complex representation of the group G(q, r, p)
restricted to Σ, ρ : Σp → U(p) in order to define an Rp(U(p))-invariant
quasi representation:

φ′T = φ1
T ⊕ Idp q

g.c.d.(2,q)
,

φ′Γ = φ1
Γ ⊕

q

g.c.d.(2, q)
ρ.

Corollary 7.1. The morphisms φ′T and φ′Γ define an Rp(U(p))-invariant
quasi representation into U(N) where N = q2p(p−1)

mcd(2,q) + pq
mcd(2,q) .

Proposition 7.2. The set Map(BU(p), BU(N)∧p )[φN ] is non empty and con-
nected, that is, there exists φU : BU(p) → BU(N)∧p such that φ|BNT∞ %
BφN and it is unique up to homotopy satisfying this condition.

Corollary 7.2. φU is invariant with respect to the action of Z(G(q, r, n))
on BU(p)∧p via unstable Adams’ operations.

Hence we have defined an OH-representation into BU(N)∧p .

Proof (Proof of Proposition 7.1). The obstructions to the existence of the
morphism of p-compact groups extending theOH-representation into BU(N)∧p
lie in

lim←−
i+1πi(Map(BG,BU(N))φ).

Using the same arguments as in the last section, we see that these higher
limits vanish for i ≥ 2 (Lemma 6.2) and π1(Map(BU(p), BU(N))φU ) is
abelian (Proposition 6.4). Moreover, notice that π1(Map(BT, BU(N))φU ) =
0, because the centralizer of a torus in a unitary group is connected. Then
these higher limits vanish for i = 1. Notice that we also have the vanishing
of the following higher limits:

lim←−
iπi(Map(BG,BU(N))φ)

and then the extension is unique up to homotopy.

Let Ad1 be the complex representation just constructed which extends
the admissible map φ1

T uniquely up to homotopy. The proof of the following
corollary is the same as the one for Corollary 6.3.

Corollary 7.3. The complex homotopy representation Ad1 is invariant by
the action of unstable Adams’ operations on BU(N)∧p of order e such that
e||Z|.

Corollary 7.4. Ad1 is faithful and irreducible.
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Proof. Notice that the p-Sylow subgroup of W acts without fixed points in
the root system and that the representations ρ are faithful; then Ad1 is a
monomorphism if and only if Ad1

T is a monomorphism.
(Ad1

T )∗ is an epimorphism in cohomology mod p (the set R1 contains a
basis of Fn

p ). Hence, Ad1
T is a monomorphism.

Ad1 is irreducible by definition.

These complex homotopy representations defined by using the complex
root system are closely related to the centre of the p-compact group. Let
Ad := Ad1 ⊕Ad2.

Proposition 7.3. Ad is a monomorphism if q > 1.

Proof. BKer(Ad) % (BPreKer(Ad))∧p % BC∧
p % ∗. By the definition and

the proof of the above corollary we know that

BPreKer(Ad) % ∩sσ(s) % Z(X),

and then BKer(Ad) % BZ(X). The proposition follows from the fact that
these p-compact groups are free of cente for q > 1.

8. Thom modules and mod p spherical fibrations

In this section we summarize without proofs the relevant material on the no-
tion of the adjoint module introduced in [MS]. Previously, we have compiled
some basic facts on Thom modules.

The notion of a Thom module appears for the first time in Handel [Han].
Let R be an unstable algebra over the Steenrod algebra A.

Definition 8.1. A Thom module M over R is a free R ◦ A-module of rank
1 as an R-module where R ◦ A denotes the semi-tensor product. A Thom
module is unstable if it is unstable as an A-module.

The natural example of a Thom module is the cohomology of the Thom
space associated to an oriented vector bundle. Another example comes from
the theory of invariants. Let χ : G → F∗p be a character of a finite group
G. Then the module of relative invariants P (V )G

χ is a Thom module over
P (V )G. But the most relevant example for the subsequent discussion in the
paper is provided by the theory of mod p spherical fibrations. A mod p
spherical fibration is an orientable Hurewicz fibration π : E → B whose
fibre has the homotopy type of a p-complete sphere. The associated Thom
space is the homotopy cofiber of π and its reduced mod p cohomology is
also an example of an H∗(B; Fp)-Thom module.

Definition 8.2. Let M be a Thom module over R. A Thom class is a ho-
mogeneous generator of M as an R-module. If U is the Thom class of M ,
we define the q-class q = 1 + q1 + q2 + · · · ∈ R by the formula P(U) = qU
where P = P0 + P1 + · · · , qi ∈ R2i(p−1).
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The q-class of M determines its structure as a module over the Steenrod
algebra and then its isomorphism class.

The classification theorem for Thom modules involves the q-classes de-
fined above. In order to state it, we have to introduce the following modules
over the Steenrod algebra:

S(n) = Fp[q1, . . . , qn] = Fp[t1, . . . , tn]G(p−1,p−1,n),

where qi = σi(tp−1
1 , . . . , tp−1

n ), | qi |= 2i(p − 1) and G(p − 1, p − 1, n) =
Σn " µn

p−1, (µq is the group of qth roots of unity). Let S be the module
defined by

S = lim
n→∞

S(n) = Fp[q1, q2, . . .].

The q-class associated to a Thom module M over R determines an al-
gebra homomorphism over the Steenrod algebra

qM : S −→ R.

Consider the Thom modules T (n) over S(n) with Thom class E =
t1 · · · tn, T (n) = E · S(n) ⊂ Fp[t1, . . . , tn]. The q-class of T (n) is 1 + q1 +
· · ·+ qn ∈ S(n).

Recently, Notbohm [Not2] has described p-compact groups, namely infi-
nite generalized grassmannians, realizing S(n) as cohomology algebras (the
realizability of these algebras as the cohomology of spaces was known since
[Qui] by Quillen). Moreover, there exist mod p spherical fibrations over the
corresponding generalized grassmannians whose Thom space realizes T (n)
as the cohomology of a Thom space [C2] (the non-modular case was pre-
viously obtained by Broto in [Bro]). That means that there exist universal
mod p spherical fibrations over generalized grassmannians whose character-
istic classes are 1 + q1 + · · ·+ qn.

If M and N are Thom modules over R, then M ⊗R N is also a Thom
module over R. Moreover, if M is a Thom module over R and φ : R → S is
a morphism of algebras over the Steenrod algebra, then S⊗R M is a Thom
module over S.

The main classification result can be stated in the following form. Let
Th(R) be the group of classes of isomorphic Thom modules over R.

Theorem 8.1. [Bro] The natural transformation

q : Th(R) −→ HomK(S, R)

is an equivalence of functors.

Mitchell and Stong [MS] describes a purely algebraic method of recon-
structing the Thom module associated to the adjoint representation of a
connected compact Lie group.

Definition 8.3. Let R be an unstable algebra over the Steenrod algebra. The
adjoint Thom module over R is AdR = HnR where H∗R is the Hochschild
homology H∗(R) = TorR⊗R(R,R).
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When R is polynomial, we can explicitly describe the Hochschild homol-
ogy of R and therefore the adjoint Thom module.

Lemma 8.1. [MS] H∗R ∼= Ω∗
R as an R ◦ A-algebra where Ω∗

R is the R-
module of differential forms.

Notice that Ω∗
R is an exterior algebra on Ω1

R and Ω1
R is a free R ◦

A-module on generators dz1, . . . , dzn (z1, . . . , zn are the generators of the
polynomial ring R).

Corollary 8.1. [MS] If R is a polynomial ring with generators z1, . . . , zn,
then HnR ∼= Ωn

R is a Thom module over R with Thom class dz1 · · · dzn.

The following theorem describes the main properties of this Thom mod-
ule related to the Thom module of the adjoint representation of a compact
connected Lie group.

Theorem 8.2. [MS] Let R be a polynomial algebra of rank n and dimension
m over A. Then AdR satisfies the following properties:

1. If R = H∗(BG) where G is a compact connected Lie group or O(n),
then AdR = H∗(T (adG ↓ BG)).

2. dimAdR ≤ m (the dimension of a Thom module M is i if qi is the
biggest class such that qi(M) *= 0).

3. If T is abelian and i : R → T is a non-singular injection with Jacobian
J , then AdR

∼= R · J ⊂ T .

The first assertion in the theorem justifies the name for this particular
Thom module and the last one allows us to make explicit computations in
the case we are working with polynomial algebras.

Let R = Fp[V ]G = Fp[z1, . . . , zn] be a polynomial algebra of invari-
ants where G is a finite group generated by pseudoreflections. Recall that
an injection R → T is non-singular if and only if the induced morphism
HnR → HnT is nonzero. In this situation, the injection defines an isomor-
phism HnR ∼= R · (Jdy1 · · · dyn) where y1, . . . , yn are the generators of the
polynomial algebra T and J is the Jacobian of the injection, J = det( ∂zi

∂yj
).

Corollary 8.2. AdR
∼= R ·J ⊂ Fp[y1, . . . , yn] is a Thom module with Thom

class J .

The Jacobian is closely related to the structure of G as a reflection group,

Lemma 8.2. [Ben] Let G be a finite group generated by pseudoreflections
and let k a field such that (order(g)−1, ch(k)) = 1 for any pseudoreflection
g ∈ G. Then J is a scalar multiple of the product of all α

rg−1
g where αg ∈

k[V ] is of degree 2 such that it vanishes in the hyperplane V g and r is the
order of g:

J = c
∏

g∈G,pseudoreflection

αrg−1
g .
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Thus, in the case in which the above lemma is satisfied, a reflection
group is completely determined by its ring of invariants. The classification
theorem asserts that the q-class of this Thom module over R determines
it up to isomorphism (see Theorem 8.1). The q-class of the Thom module
AdR can be computed as follows

P(J) = P(c
∏

g∈G,pseudo

αrg−1
g ) = c

∏

g∈G,pseudo

(αg+αp
g)

rg−1 = cJ
∏

g∈G,pseudo

(1+αp−1
g )rg−1,

that is, elementary symmetric polynomials in the set ∪g∈G{αp−1
g , rg−1. . . , αp−1

g }.
An easy consequence of the Lemma 8.2 is the following formula for the

dimension of a p-compact group which generalizes the known formula for
compact Lie groups.

Recall that the dimension of a compact Lie group satisfies the following
equality:

dim G = rank (G) + 2m,

where 2m is the number of roots of G (or, m is the number of reflections in
the Weyl group). This formula follows directly from the decomposition of
L(G) as a T -module:

LG ∼= LT ⊕ (⊕r∈R+R2),

where R+ is the set of positive real roots of G.
In the situation of p-compact groups, we have also a concept of dimen-

sion. Let (X, BX, ∗) be a p-compact group and W its Weyl group which is
generated by pseudo reflections. We know that its rational p-adic cohomol-
ogy is polynomial:

H∗(BX; Ẑp)⊗Q ∼= Q∧
p [f1, . . . , fn],

where n is the rank of X. We define the dimension of a p-compact group as
the cohomological dimension of the loop space X:

dimp X =
n∑

i=1

deg(fi)− 1.

Generalizing the situation for compact Lie groups, we can state a relation
between this definition and the number and order of the pseudo reflections
in the Weyl group.

Corollary 8.3.

dim X = rank X + 2(
∑

g∈W

(o(g)− 1)).

where the sum is over g ∈ G pseudo reflection and o(g) is its order.
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Proof. Notice that dim X = |J |+ rank X and use the decomposition of the
Jacobian in Lemma 8.2.

In this section we will restrict our attention to the factorizations of the
adjoint complex representations through generalized grassmannians. The
crucial fact is the following description of certain generalized grassmanians
as homotopy fixed points on unitary groups (see [C1]).

Proposition 8.1. [C1]

BU(nq)hZ/qZ %p BX(q, q, n).

Corollary 8.4. [C1] If X is a p-complete space, then

[X, BU(N)]hZ/qZ ∼= [X, BX(q, q,
[

n
q

]
)].

Proof. It is an easy consequence of Proposition 8.1 and the Bousfield-Kan
spectral sequence [BK] for the homotopy groups of homotopy inverse limits.

Definition 8.4. Let X be a p-compact group. The adjoint homotopy rep-
resentation of X is a homotopy representation of X into an infinite gen-
eralized grassmannian of type X(p − 1, p − 1, n) such that the Thom space
T associated to the mod p spherical fibration induced over BX satisfies
H∗(T ; Fp) % AdH∗(BX;Fp).

The non-modular case has been studied by C. Broto in [Bro]. The main
result of this section is the following one.

Theorem 8.3. [Bro] Let M be a Thom module over P (V )G where G is a
non-modular subgroup of GLn(Fp). There exist a space X such that H∗(X; Fp) =
P (V )G and a mod p spherical fibration η such that

H̃∗(T (η); Fp) ∼= M

as a Thom module.

Corollary 8.5. Let X be a Clark-Ewing space. There exists a mod p spher-
ical fibration η over X such that

H̃∗(T (η); Fp) ∼= AdH∗(BX;Fp).

In Section ?? we have constructed complex homotopy representations of
Aguadé spaces invariants for the action of unstable Adams’ operations on
BU(n)∧p of order e such that e | |Z| = p− 1. Let dimCXi be the rank of the
complex homotopy representation defined in Section ??, where

i 12 29 31 34
dimCXi 26 168 248 774

The following is a direct consequence of Corollary 6.3.



The homotopic adjoint representation for exotic p-compact groups 29

Corollary 8.6. If Z = Z(Wi) ∼= Z/niZ then for each e|ni such that e|p−1,
the representation Ad factors through an infinite generalized grassmannian,

BXi → BX(e, e, Ni
e ).

Corollary 8.7. There exists a mod p spherical fibration ηAdi over BXi

such that the cohomology of the corresponding Thom space is isomorphic
to AdH∗(BXi;Fp) for each i = 12, 29, 31, 34.

Proof. For i = 12, 29, 31, 34, recall that Z(Wi) ∼= Z/(p − 1)Z, then, using
Corollary 8.6 we see that there exist representations

GAdi : BXi → BX(p− 1, p− 1, Ni
(p−1) ).

The pullback along GAdi of the mod p spherical fibration over BX(p−1, p−
1, n) (see [C2]) induces a mod p spherical fibration over BXi such that the
q-classes 1 + q1 + · · ·+ q Ni

p−1
satisfies

P(J) = J(1 + q1 + · · ·+ q Ni
p−1

).

It is easy to see by construction that the Thom class decomposes as a
product of linear forms vanishing in the reflecting hyperplanes.

The following relation is satisfied:

dimCX =
|Z|

mcd(|Z|, 2)
dimpX.

Next we will deal with infinite generalized grassmannians of rank p. In
this situation the Jacobian decomposes as a product of orbits of vanishing
forms on the reflecting hyperplanes.

First of all, notice that the homotopy representations defined from the
root system in Section ?? factor through infinite generalized grassmannians
of type X(p− 1, p− 1, N).

Corollary 8.8. If Z(Wi) ∼= Z/niZ, then, for each e|ni such that e|p − 1,
the complex homotopy representation

Ad1 : BX(q, r, p) → BU(N)

factors in the following way:

Ad1
e : BX(q, r, p) → BX(e, e, N

e ).

Corollary 8.9. The adjoint representation of X(q, r, p) is the composition
Adp = Φ(Ad1

p × (r − 1)i) where Ad1
p is the composition of Ad1

|Z| with the
inclusion BX(|Z|, |Z|, N/|Z|) → BX(p− 1, p− 1, N/|Z|),

BX(q, r, p)
Ad1

p×(r−1)i
−→ BX(p− 1, p− 1, N1)×BX(p− 1, p− 1, p)r−1,

BX(p−1, p−1, N1)×BX(p−1, p−1, p)r−1 Φ→ BX(p−1, p−1, N1+(r−1)p).

It is an irreducible representation if r *= 1.
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Proof. We can reproduce the same arguments in the situation for Aguadé
spaces to prove that the Thom class of the mod p spherical fibration induced
by the pullback along the representations is the Jacobian. Notice that |Z| |
p− 1)
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A. APPENDIX: On complex reflection groups 12, 29, 31, 37.

These p-compact groups correspond to the groups of number 12 (p = 3), 29
(p = 5), 31 (p = 5), 34 (p = 7), 36 (p = 5, 7) and 37(p = 7) in the Clark-
Ewing list. They are described by means of homotopy colimits by Aguadé
[Ag]. Among them, only those of number 12, 29, 31 and 34 correspond to
exotic p-compact groups (the groups of number 36 and 37 are realized by
the exceptional Lie groups E7 and E8). Zabrodsky [Zab] described spaces
realizing groups of number 12 and 31 by other means.

Notice that each representation of the complex reflection groups of num-
ber 12, 29, 31, 34 lies, in fact, in the character ring Q(ξn(i)); thus we can
restrict ourselves to the subfield Q(ξn(i)) in C (two proportional roots are
proportional up to a unitary vectors in Q(ξn(i)), i.e. up to 〈ξn(i)〉).

i 12 29 31 34
χ-field Q(

√
2) Q(ξ4) Q(ξ4) Q(ξ6)

|Z| 2 4 4 6
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Let ∆ ⊂ (Ẑp)n = Hom((Z/p∞Z)n, S1) be the subset containing the
unitary normal vectors associated to the reflecting hyperplanes. W acting
on ∆ defines a complex root system Σ(∆, W ) := W · ∆ with Weyl group
W .

Lemma A.1. Let W be one of the groups of number 12, 29, 31, 34.

1. The complex root system lies in the subfield Q(χ) ⊂ C.
2. RW = W · e, that is RW consists of a single orbit. RW is an irreducible

W -set.
3. If Z is the center of W , then RW = Z ·∆ thus |ΦW | = |Z| · |∆| = |Z| ·N ,

where N is the number of reflections in W .

12 29 31 34
N 12 40 60 126

Proof. 1. It is a consequence of the fact that these groups admit complex
representations in the character field (see corollary 4.3).

2. First of all recall that Wab is a finitely generated abelian group which is
a product of cyclic groups. The product is indexed by the W -orbits of
hyperplanes associated to the reflections in W and each one has order
equal to the order of a reflection defining the orbit (Proposition 4.1).
These computations can be found in Section ??.
We can check that Wab

∼= Z/2Z, then there is only one orbit of hyper-
planes. Then RW is an irreducible W -set, i.e., RW = W · e.

3. Clearing denominators, if necessary, we can assume that all roots in RW

lie in Z[χ]. These complex root systems are described in the following
subsections. With these explicit computations it is easy to check that
2〈e, as〉/〈e, e〉 ∈ Z[χ]. If ras ∈ RW then r ∈ Z[χ] and it is unitary. Then,
in fact, r = ξn(i) where ξn(i) is an n(i)-th root of unity, n(i) = 2, 4, 4, 6
for i = 12, 29, 31, 34. Observe that these multiples are obtained by the
action of the centre of W in each case.

We will study the groups in the list by Aguadé in [Ag] as Weyl groups
of complex root systems (the groups of number 12 (p = 3), 29 (p = 5), 31
(p = 5) and 34 (p = 7)).

The description of the groups Wi for i = 12, 29, 31, 34 as Weyl groups
of complex root systems allows us to describe admissible morphisms (see
subsections A.1,A.2 and A.3) because they act on roots as permutation
groups.

From the previous discussion, the following lemma is straight forward.

Lemma A.2. For each i in the table, there exists a homomorphism φW :
Wi → Σn(i) describing the permutation action of the roots such that the
p-Sylow subgroup S acts without fixed points on the set RW . Let We be the
stabilizer of a root e ∈ RW .
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i 12 29 31 34
n(i) 24 160 240 756
|We| 2 24 · 3 26 · 3 27 · 34 · 5
p 3 5 5 7

Proof. First part is clear from the description of the groups as Weyl groups
of complex root systems (see subsections A.1,A.2 and A.3), second part
comes from the fact that Σ(W,∆) = W · e and that p does not divide |We|.
If S = 〈g〉 and gr = r then there exists h ∈ G such that ghe1 = he1 and
h−1gh ∈ We but o(h−1gh) = p.

|We| are computed with the following formula. We know that there is
only one orbit of hyperplanes and that each hyperplane determines a re-
flection. Let e be a unitary root which determines a generator of the orbit,
then |W : We| = N · |Z| where N is the number of reflections in W .

Each r ∈ RW lies in Q(ξn(i))n. If we consider the p-adic representation
of each of these groups, we can assume r ∈ Ẑp. It induces a map at the level
of classifying spaces Br : B(Z/p∞Z)n → BS1. The whole set of roots define
a map

φT :=
∏

r∈RW

Br : B(Z/p∞Z)n → (BS1)n(i).

Corollary A.1. The map φT is admissible with respect to φW .

A.1. Group of number 12

Looking at Clark-Ewing list [CE], we notice that this group can be realized
as a 3-adic reflection group. As an abstract group it has 48 elements and
all reflections are of order 2 (i.e. reflections). It contains exactly twelve
reflections and it is generated by 3 of them (so it is not the Weyl group of
a root graph).

dim |G| degrees χ-field |Z|
12 2 48 6, 8 Q(

√
−2) 2

We are going to study this group using its faithful representation into
GL2(Ẑ3). Let us start with some notation. Consider the following matrices
in GL2(Ẑ3):

S =
(

w 1
2

− 1
2 w̄

)
, T =

(
0 1
1 0

)
, A =

(
0 1
−1 0

)
, B =

( √
2i
2 −

√
2i
2

−
√

2i
2 −

√
2i
2

)

where w = −1+
√
−2

2 ∈ Ẑ3.
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Lemma A.3. [Smi] G12 contains exactly the following twelve reflections:

±RX1 = ±
(

0 1
1 0

)
,±RX2 = ±

(
1 0
0 −1

)
,±RX3 = ±

(
− 1

2 w̄
w 1

2

)

±RX4 = ±
(

1
2 w
w̄ − 1

2

)
,±RX5 = ±

(
− 1

2 w
w̄ 1

2

)
,±RX6 = ±

(
1
2 w̄
w − 1

2

)
.

Each of the above reflections has an associated complex unitary root. A
complex unitary root defines a linear form vanishing in the fixed hyperplane,
−2 〈x,r〉

〈r,r〉 . Here we have the list of these unitary root vectors associated to
the above reflections:

r1 = (
√

2i

2
,−
√

2i

2
), r2 = (0, 1), r3 = (w̄,−1

2
), r4 = (

1
2
,−w̄),

r5 = (w,−1
2
), r6 = (

1
2
,−w),

r1n = (
√

2i

2
,

√
2i

2
), r2n = (1, 0), r3n = (

1
2
, w), r4n = (w,

1
2
),

r5n = (
1
2
, w̄), r6n = (w̄,

1
2
).

Remark A.1. Clearing denominators (multiplying by 2), notice that the roots
lie in a Z[

√
−2]-module generated by the roots of generating reflections.

The action of W12 on unitary roots up to sign is described in the following
table:

R1 R2 R3 R4 R5 R6
r1 -r1 r1n r6 r5 -r4 -r3
r2 r2n -r2 r4n r3 r6n r5
r3 -r4 r6n r3n r2 -r3 -r1
r4 -r3 r5n -r2n -r4n -r1 -r4
r5 -r6 r4n -r5 r1 r5n r2
r6 -r5 r3n r1 -r6 -r2n -r6n
r1n r1n r1 r6n r5n -r4n -r3n
r2n r2 r2n -r4 r3n -r6 r5n
r3n r4n r6 r3 r2n r3n -r1n
r4n r3n r5 r2 -r4 -r1n r4n
r5n r6n r4 r5n r1n r5 r2n
r6n r5n r3 r1n r6n r2 -r6

This action allows us to define a morphism φW : W12 → Σ24 describing the
permutation (up to sign) action of G12 on RW12 = ∆12 ∪ −∆12.
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A.2. Groups of number 29,31

Groups of number 29 and 31 in the Shephard-Todd list can be realized as
a 5-adic reflection groups (Gi → GL4(Ẑ5)).

dim |G| degrees χ-field |Z|
29 4 7680 4, 8, 12, 20 Q(ξ4) 4
31 4 64 · 6! 8, 12, 20, 24 Q(ξ4) 4

W29 is generated by four reflections and contains exactly 40 reflections.
W31 is generated by five reflections and contains 60 reflections.

W29 is generated by




1/2 −1/2 −1/2 −1/2
−1/2 1/2 −1/2 −1/2
−1/2 −1/2 1/2 −1/2
−1/2 −1/2 −1/2 1/2



 ,





0 −i 0 0
i 0 0 0
0 0 1 0
0 0 0 1



 ,





0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



 ,





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 .

W31 is generated by the above reflections plus




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1



 .

Group of number 29 is the Weyl group of a complex root system denoted
by N4 [Coh] and it corresponds to the Weyl group of a root graph;

◦e3

""" %&&&
−2+2i

◦e4 ◦e2 '−2i ◦e1

where
e1 = (1, 1, 1, 1),

e2 = (−1 + i, 1 + i, 0, 0),
e3 = (1 + i,−1− i, 0, 0),
e4 = (0, 1 + i,−1− i, 0).

Notice that all the roots have norm 2, hence, in order to obtain unitary
roots we have to divide all of them by 2.

Remark A.2. Recall that RW consists of a single orbit W ·e1. As 2〈e1, e〉/〈e, e〉 ∈
Z[i] for all root e, it is clear that the Z[i]-module generated by the roots is∑4

i=1 Z[i]ei.

These root system N4 admits a neat extension EN4 (RW31 = RW29 ∪
W31 · (0, 0, 1, 0)) as it is described in [Coh] and its Weyl group is the group
of number 31. In this case, W (EN4) is not the Weyl group of a root graph.

Notice that the action of Gi on RWi = Z(Wi) ·∆i for i = 29, 31 defines
morphisms φW : W29 → Σ160 and φW : W31 → Σ240 respectively.
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A.3. Group of number 34

The group of number 34 in the Shephard-Todd list can be realized as a
7-adic reflection group (W34 → GL6(Ẑ7)).

dim |G| degrees χ-field |Z|
34 6 108 · 9! 6, 12, 18, 24, 30, 42 Q(ξ3) 6

W34 is generated by six reflections and contains exactly 126 reflections.
The generating reflections are the following ones:





2/3 −1/3 −1/3 −1/3 −1/3 −1/3
−1/3 2/3 −1/3 −1/3 −1/3 −1/3
−1/3 −1/3 2/3 −1/3 −1/3 −1/3
−1/3 −1/3 −1/3 2/3 −1/3 −1/3
−1/3 −1/3 −1/3 −1/3 2/3 −1/3
−1/3 −1/3 −1/3 −1/3 −1/3 2/3




,





0 ω2 0 0 0 0
ω 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,





0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,





1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1




,

where ω is a 3rd primitive root of unity. This group is the Weyl group of a
complex root system denoted by K6 [Coh] and it corresponds to the Weyl
group of a root graph.

◦e3

"""1+ω # &&&
◦e1

1−ω̄
! ◦e2

−ω
! ◦e4 ◦e5 ◦e6

where
e1 = (1, 1, 1, 1, 1, 1),

e2 = (1,−ω, 0, 0, 0, 0),

e3 = (1,−1, 0, 0, 0, 0, )

e4 = (0, 1,−1, 0, 0, 0),
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e5 = (0, 0, 1,−1, 0, 0),

e6 = (0, 0, 0, 1,−1, 0).

Remark A.3. Recall that RW consists of a single orbit W ·e1. As 2〈e1, e〉/〈e, e〉 ∈
Z[ξ6], where ξ6 is a primitive 6th root of unity, for all roots e, it is clear that
the Z[ξ6]-module generated by the roots is

∑4
i=1 Z[ξ6]ei.

The action of W34 on RW34 = Z ·∆34 defines a morphism φW : W34 →
Σ756.
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B. Table of Wab

Number Wab |Z(W )|

1 Z/2Z
{

1 n ≥ 2
2 n = 1

2a Z/2Z× Z/rZ r(n, m
r )

2b

{
Z/2Z e odd

Z/2Z× Z/2Z e even
(2, e)

3 Z/nZ n
4 Z/3Z 2
5 Z/3Z× Z/3Z 6
6 Z/2Z× Z/3Z 4
7 Z/2Z× Z/2Z× Z/3Z 12
8 Z/4Z 4
9 Z/2Z× Z/4Z 8
10 Z/3Z× Z/4Z 12
11 Z/2Z× Z/3Z× Z/4Z 24
12 Z/2Z 2
13 Z/2Z× Z/2Z 4
14 Z/2Z× Z/3Z 6
15 Z/2Z× Z/2Z× Z/3Z 12
16 Z/5Z 10
17 Z/2Z× Z/5Z 20
18 Z/3Z× Z/5Z 30
19 Z/2Z× Z/3Z× Z/5Z 60
20 Z/3Z 6
21 Z/2Z× Z/3Z 12
22 Z/2Z 4
23 Z/2Z 2
24 Z/2Z 2
25 Z/3Z 3
26 Z/2Z× Z/3Z 6
27 Z/2Z 6
28 Z/2Z× Z/2Z 2
29 Z/2Z 4
30 Z/2Z 2
31 Z/2Z 4
32 Z/3Z 6
33 Z/2Z 2
34 Z/2Z 6
35 Z/2Z 1
36 Z/2Z 2
37 Z/2Z 2


