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Abstract

Fix a prime p. Since their definition in the context of Localization Theory, the ho-
motopy functors PBZ/p and CWBZ/p have shown to be powerful tools to understand
and describe the mod p structure of a space. In this paper, we study the effect of these
functors on a wide class of spaces which includes classifying spaces of compact Lie
groups and their homotopical analogues. Moreover, we investigate their relationship
in this context with other relevant functors in the analysis of the mod p homotopy,
such as Bousfield-Kan completion and Bousfield homological localization.

1 Introduction

Let A and X be two connected topological spaces. The study of the homotopical proper-
ties of X that are visible through the mapping space map (A,X) is called the A-homotopy
theory of X and was proposed by E. Dror-Farjoun in [Far96]. In this context, it is partic-
ularly important to describe the behaviour of the nullification PΣiA and the cellularization
CWΣiA (see definitions in Section 2), which are functors that play in A-homotopy theory
the same role as the connected covers and Postnikov pieces play in classical (S0-) homo-
topy theory. Given a prime p, we will call both CWBZ/p and PBZ/p primary homotopy
functors if the prime p is understood, or simply BZ/p-homotopy functors.

Let p be a prime. If X is a space and we are interested in describing the p-primary part
of X through its A-homotopy theory for some space A, there are some choices of A that
become apparent. Probably the easiest one are the Moore spaces M(Z/pn, 1) and their
suspensions; this task was undertaken in the nineties by Rodriguez-Scherer in the case of
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cellularization [RS01] and Bousfield [Bou97], who did not only described PM(Z/pm,n)X

for a wide number of spaces, but remarked the close relationship between these functors
and the vn-periodic homotopy theory.

In this paper we deal with the case A = BZ/p. After Miller’s solution of Sullivan
conjecture [Mil84], and subsequent work of Lannes, Dwyer-Zabrodsky and others, a num-
ber of new powerful tools were available to researchers attempting to study the mapping
space map (BZ/p,X), and overwhelming success was reached, particularly for nilpo-
tent spaces X . In the framework we are interested in, we should emphasize the work of
Neisendorfer [Nei95], where the author proves that the functor PBZ/p can often recover
the p-primary homotopy of X from that of its connected n-cover, or [CCS07], about the
BZ/p-homotopy of H-spaces.

The first motivation for our work came from two different sources: the study under-
taken by W. Dwyer in [Dwy96] concerning BZ/p-nullification of classifying spaces of
compact Lie groups whose group of components is a p-group, and its relationship with the
homotopy decomposition of BG; and Question 11 in Farjoun’s book ([Far96, page 175]),
where he asked about the cellularity of the p-completion of BG. This seemed a natural ex-
tension of the problems considered by the second author concerning BZ/p-homotopy of
finite groups (see [Flo07], [FS07], and [FF]), so it was natural to investigate this structure
with similar methods.

When dealing with compact Lie groups in this context, one quickly realizes that the
effect of the BZ/p-homotopy functors on their classifying spaces depends sometimes
on properties of the space that are somehow independent of the group structure of the
corresponding loop space. In this sense, we focus in a much more general class of spaces,
whose BZ/p-homotopy is accessible because two different kinds of restrictions hold.
First, we should assume that these spaces show a nice behavior from the point of view
of Bousfield-Kan completion (i.e. we focus on simply-connected, nilpotent or p-good
spaces). These hypotheses are strong enough to undertake the problem of understanding
whether the image of the p-completion map under these homotopy idempotent functors
is itself a mod p equivalence or not. Surprisingly, the answer is affirmative for both PBZ/p

and CWBZ/p under quite mild restrictions (Propositions 3.9 and 3.14), and shows a way
of reducing the computations to the p-primary part of the spaces which will be crucial in
the remaining of the paper.

A space X is called A-null if the inclusion of constant maps X ↪→ map (A,X) is a
weak equivalence. The rest of restrictions which make possible our approach to the effect
of the BZ/p-homotopy functors concern the ΣBZ/p-nullity of the target space and the
structure of the mapping space from connected covers of X to null spaces. These condi-
tions are natural in our context, in the sense that they always hold for classifying spaces
of compact Lie groups and, more generally, for p-local compact groups (see [BLO07]),
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and already appear in our first main result, a Serre-type dichotomy theorem which extends
Proposition 2.3 in [FS07] to this wider class of spaces.

Theorem 4.1. Let X be a connected nilpotent ΣBZ/p-null space. Then the BZ/p-
cellullarization of X has the homotopy type of a K(G, 1), or else it has infinitely many
nonzero homotopy groups. Moreover, if X is 1-connected of finite type, then the funda-
mental group π1(CWBZ/p(X)) is a finite elementary abelian p-group.

This result opens the way to describe with precision (up to p-completion) the BZ/p-
cellularization of BG for an ample class of Lie groups which includes p-toral groups
and their discrete approximations, the 3-sphere, extensions of elementary abelian groups
by groups of order prime to p -which generalize [FS07, Corollary 3.3]-, or BSO(3). In
particular, we find examples of both cases of the dichotomy statement. It is interesting to
remark here that we use intensively the fact that CWA preserves nilpotent spaces (Lemma
2.5), a fact that was conjectured in [Far96], but which to our knowledge has not been so
far exploited in the literature.

The second part of the paper is devoted to BZ/p-nullification. Generalizing the tools
of [Flo07] to the continuous case -which in turn take a different approach to Dwyer’s, and
do not assume restrictions over the fundamental group- we characterize the effect of this
functor by means of a covering fibre sequence.

Theorem 5.1. Let X be a connected space with finite fundamental group and such that
map ∗(X⟨1⟩, Z) ≃ ∗ for any connected BZ/p-null p-complete space Z. Then there is a
fibration

LZ[ 1
p
](Xp)→ PBZ/p(X)→ B(π1(X)/Tp(π1(X)))

where Xp is the covering of X whose fundamental group is Tp(π1(X)), and LZ[ 1
p
](Xp)

denotes Bousfield homological localization of Xp with respect to H∗(−;Z[1
p
]).

This result is quite general, and in fact describes in a single statement a phenomenon
which was previously known for finite groups, p-compact groups and some compact Lie
groups but not for p-local compact or Kač-Moody groups, and which can be read then as
a common property of a big family of homotopy meaningful spaces. We also obtain some
interesting consequences of these results, including a detailed analysis of the relationship
between the BZ/p-nullification and Z[1/p]-localization of these spaces -which is very
much in the spirit of [Dwy96, Section 6]- and the commutation of nullity functors on
them, a situation that was discussed in [RS00] in a general framework.

Notation: Let R be a commutative ring, R∞(X) denotes Bousfield-Kan p-completion
of a space X ([BK72]). When R = Z/p for a prime p, R∞(X) will be used instead of
X∧

p . Moreover, LR(X) denotes the HR-localization of Bousfield ([Bou75]). All spaces
are assumed to have the homotopy type of a CW -complex.
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2 The cellularization and nullification functors

Let A be a connected space. In this section we will define the functors CWA and PA,
which are the main tools we use to describe the p-primary structure of the spaces of
interest in our work. Only some particular features of these functors, that will be crucial
in our further developments, will be described while their relationship with Bousfield-Kan
completion will be studied in the next section. A thorough account to these constructions
can be found in [Far96].

Definition 2.1. Let A and X be spaces. Then X is called A-null if the inclusion of con-
stant maps X ↪→ map (A,X) is a weak equivalence.

This is equivalent to the condition that map ∗(A,X) is weakly contractible when X is
connected. Dror-Farjoun defines a coaugmented and idempotent functor PA : Spaces→
Spaces where PAX is A-null for every X , and such that the coaugmentation X → PAX

induces a weak equivalence map (PAX,Y )→ map (X, Y ) for every A-null space Y . The
corresponding definitions in the pointed context are completely analogous. Note that in
the language of homotopy localization, PA is the localization with regard to the constant
map A → ∗, and the notation comes from Postnikov sections, which are in fact Sn-
nullifications. Moreover, a space X such that PAX ≃ ∗ is called A-acyclic.

Now we consider the cellular construction, which is somewhat dual of the previous
construction, although not completely (see Theorem 2.3 below).

Definition 2.2. Given pointed spaces A and X , X is said A-cellular if it can be built
from A by means of pointed homotopy colimits, possibly iterated. Moreover, a map
X → Y is said to be an A-equivalence if it induces a weak equivalence map ∗(A,X) →
map ∗(A, Y ).

The A-cellularization (or A-cellular approximation) is a canonical way of turning ev-
ery space into an A-cellular space from the point of view of A-equivalences, which gener-
alizes the classic process of cellular approximation. There exists an augmented endofunc-
tor CWA of the category of pointed spaces, such that for every space X the augmentation
CWAX → X is an A-equivalence, and in initial among all maps Y → X which induce
A-equivalence. Unlike PA, this functor only makes sense in the pointed context ([Cha96,
7.4]), and can be characterized in several ways [Far96, 2.E.8].

The remaining of the section is devoted to describe some properties of these functors
that we will frequently use later. We begin with a theorem of W. Chachólski that can be
considered the most powerful tool to compute cellularization of spaces in an explicit way.
The proof can be found in [Cha96, 20.3].
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Theorem 2.3. Let A and X be pointed spaces, and let C be the homotopy cofibre of the
evaluation

∨
[A,X]∗

A → X , where the wedge is taken over all the homotopy classes of
maps A→ X . Then CWAX has the homotopy type of the fibre of the map X → PΣAC.

Next we will describe two preservation properties, that will be used extensively as
we will frequently focus our interest in simply connected spaces and, more generally,
nilpotent spaces.

Lemma 2.4. [Bou94, 2.9] If X is 1-connected then PA(X) is also 1-connected.

In particular, note that, according to a famous result of Neisendorfer [Nei95, Thm 0.1],
there is no analogous result for higher degrees of connectivity.

The second preservation property concerns to cellularization and it answers question
7 stated by Dror-Farjoun in his book [Far96, p.175]. It is remarkable that the analogous
problem in the category of groups was solved in [FGS07].

Lemma 2.5. If X is a nilpotent space then CWA(X) is also nilpotent.

Proof. Apply [BK72, V.5.2] to the fibration CWA(X) → X → PΣAC of Theorem 2.3.

From the definitions, one can check that if X is A-null then CWA(X) ≃ ∗ since
∗ ↪→ X is an A-equivalence. In general, the A-cellularization functor also preserves ΣnA-
nullity for n ≥ 1.

Lemma 2.6. Let X be a space which is ΣnA-null for some n ≥ 1 then CWA(X) is also
ΣnA-null.

Proof. Again from Theorem 2.3 we have a fibre sequence CWA(X) → X → PΣA(X).
Since the base space is ΣA-null, it is also ΣnA-null for any n ≥ 1. The result follows
since the nullification functor PΣA preserves then the fibration [Far96, 3.D.3].

If we specialize now to A = BZ/p, which is the case of interest in this paper, and we
turn our attention to Eilenberg-MacLane spaces, it is interesting to observe that given an
arbitrary group G, the BZ/p-nullity properties of K(G, n) for small values of n imply
the BZ/p-nullity for every value of n, as well as some group-theoretic features of G.

Lemma 2.7. Let G be an abelian discrete group. K(G, 2) is BZ/p-null if and only if p is
invertible in G and K(G, n) is BZ/p-null for all n ≥ 1.

Proof. We only need to show that if K(G, 2) is BZ/p-null then p is invertible in G

and K(G, n) is BZ/p-null for all n ≥ 1. Since K(G, 1) ≃ ΩK(G, 2) is BZ/p-null,
Hom(Z/p,G) = [BZ/p,BG]∗ = 0. Therefore G has no elements of order p. Then, mul-
tiplication by p gives rise to a short exact sequence 0 → G

p→ G → G/pG → 0. Now
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consider the induced fibration K(G, 1)→ K(G/pG, 1)→ K(G, 2). Since both K(G, 1)

and K(G, 2) are BZ/p-null, by [Far96, 3.D.3], we see that B(G/pG) is also BZ/p-null.
Therefore G/pG has no elements of order p, so it must be trivial. That is G

p→ G is an
isomorphism and p is invertible in G.

A standard transfer argument (see e.g. [Bro82, Prop III.10.1]) shows that H̃∗(BZ/p;G)

is trivial. In particular, map ∗(BZ/p,K(G, n)) is weakly contractible for all n ≥ 1.

We finish this preliminary section by describing a context in which we can obtain
information about the homology and homotopy groups of the cellularization.

Lemma 2.8. If R is a ring of coefficients and H̃∗(A;R) = 0, then H̃∗(CWA(X);R) = 0.
If X is nilpotent and R ⊂ Q then πi(CWA(X))⊗R = 0 for i > 0.

Proof. Under the hypothesis of the theorem, K(R, n) is A-local for n > 0, then the space
map ∗(CWA(X), K(R, n)) is weakly contractible. By Lemma 2.5, we can apply [BK72,
V.3.1].

3 BZ/p-homotopy and p-completion

We devote this section to the description of the behaviour of the functors CWA and PA

with respect to the p-completion functor of Bousfield and Kan. In particular, if η : X →
X∧

p is the p-completion, we want to characterize when the maps CWA(η) and PA(η) are
mod p equivalences. This will be fundamental in our approach to the BZ/p-nullification
and BZ/p-cellularization of classifying spaces, which will be undertaken in the last two
sections and is the main goal of our note.

A first approximation to these kind of questions appears in the work of Miller in the
solution of the Sullivan Conjecture, which implies immediately a statement about BZ/p-
nullity.

Theorem 3.1. [Mil84, Thm 1.5] Let W be a connected space with H̃∗(W ;Z[1
p
]) = 0 and

let X be a nilpotent space. Then η : X → X∧
p is a W -equivalence.

Corollary 3.2. If X is a nilpotent space, the p-completion η : X → X∧
p is a BZ/p-

equivalence.

Observe that if X is 1-connected, we can p-complete our target space, if necessary,
before computing CWBZ/pX . This statement, and the fact that the BZ/p-cellularization
is constructed using copies of BZ/p as pieces, may lead to think that CWBZ/pX is always
a p-complete space. Next lemma shows that this is true in certain cases but, as we will see
in Example 3.4, not always.



Homotopy idempotent functors on classifying spaces 7

Lemma 3.3. If X is a nilpotent space, then CWBZ/p(X) is p-complete if and only if
H̃∗(CWBZ/p(X)∧p ;Q) = 0.

Proof. Since BZ/p is both Q-acyclic and Fq-acyclic for q ̸= p, CWBZ/p(X) is so ([Far96,
D.2.5] or Lemma 2.8), and then the rationalization and q-completions of CWBZ/p(X) are
trivial. By Lemma 2.5, CWBZ/p(X) is also a nilpotent space, so it admits a Sullivan
arithmetic square decomposition. The result follows.

Example 3.4. Consider the space X = K(Z/p∞, 2). X is BZ/p-cellular by [CCS07,
Lemma 3.3], but it is not p-complete since X∧

p ≃ K(Z∧
p , 3) and H̃∗(X∧

p ;Q) ̸= 0. In
fact, the p-completion η : K(Z/p∞, 2)→ K(Z∧

p , 3) induces a BZ/p-cellular equivalence,
then CWBZ/p(X

∧
p ) ≃ X . On the other hand, taking for example p = 2 and X = BΣ3,

the classifying space of the symmetric group in three letters, it is not nilpotent, and the
cellularization is not complete. See [FS07, Example 2.6] for details.

We proceed now to a systematic study of the induced map CWBZ/p(η) : CWBZ/p(X)→
CWBZ/p(X

∧
p ) where, as before, η : X → X∧

p denotes p-completion. We want to show
under which conditions it becomes a mod p equivalence. The first step is a reduction
concerning the fundamental group, for which we need a previous definition.

Definition 3.5. We say that an element x ∈ π1(X) lifts to X if there exists a homotopy
lift

X

��

B(⟨x⟩)

88qqqqqqqqqqq i⟨x⟩
// B(π1(X)).

Proposition 3.6. Let X be a connected space. There is a fibration

CWBZ/p(X)→ X → Z

with π1(Z) ∼= π1(X)/S, where S is the normal subgroup generated by the elements of
order p which lift to X .

Proof. The fibration in the proposition is the one constructed by Chachólski (see Theorem
2.3) where Z = PΣBZ/p(CX). The subgroup S is constructed in [CCS07, Prop. 2.1] in a
way that E → X is a BZ/p-cellular equivalence, where E is the homotopy pullback

E //

��

X

��

BS
Bi// B(π1(X)).

By construction π1(E) ∼= S is generated by elements of order p which lift to E. Then
the Chachólski’s cofibre CE (see Theorem 2.3) is 1-connected and PΣBZ/p(CE) is too
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by Lemma 2.4. Since E → X is a BZ/p-equivalence, from the following diagram of
fibrations

CWBZ/pE
≃ //

��

CWBZ/pX

��

E //

��

X

��

PΣBZ/p(CE) // PΣBZ/p(C).

where C is Chachólski’s cofibre for X , we see that the fundamental group of PΣBZ/p(C)

is π1(X)/S.

Corollary 3.7. Let X be a connected space such that π1(X) is generated by elements of
order p which lift to X . There is a bijection [BZ/p, CWBZ/p(X)] ∼= [BZ/p,X] between
unpointed homotopy classes of maps.

Proof. Since CWBZ/p(X) → X is a BZ/p-homotopy equivalence, there is a bijection
[BZ/p, CWBZ/p(X)]∗ ∼= [BZ/p,X]∗ between pointed homotopy classes of maps. The
following diagram

[BZ/p, CWBZ/p(X)]∗ //

��

[BZ/p,X]∗

��

[BZ/p, CWBZ/p(X)] // [BZ/p,X]

shows that the quotient map is also a bijection since the induced morphism on fundamen-
tal groups π1(CWBZ/p(X))→ π1(X) is an epimorphism by Proposition 3.6.

We can get information about the fundamental group of the cellularization since being
BZ/p-cellular imposes some restrictions on the fundamental group of the space.

Lemma 3.8. If X is a BZ/p-cellular space, its fundamental group is generated by ele-
ments of order p which lift to X . Moreover, if X is a finite type 1-connected space,then
π1(CWBZ/p(X)) is a finitely generated abelian generated by elements of order p which
lift to CWBZ/p(X).

Proof. Let S be the normal subgroup of π1(X) generated by elements of order p which
lift to X . Consider the pullback diagram

E

��

// X

��

BS
Bi // Bπ1(X).

By [CCS07, Prop 2.1], the map E → X is a BZ/p-cellular equivalence. Since X

is BZ/p-cellular, there exists a map f : E → CWBZ/p(E) such that i ◦ f ≃ id where
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i : CWBZ/p(E) → E. In fact, this implies that p : E → PΣBZ/p(CE) is nullhomotopic,
p ≃ p◦i◦f ≃ ∗◦f ≃ ∗, therefore CWBZ/p(E) ≃ E×PBZ/p(ΩCE). But this implies that
E is BZ/p-cellular since CWBZ/p(E) is BZ/p-acyclic, and then E ≃ X . In particular,
π1(X) = S.

To prove the second statement, it remains to prove that π1(CWBZ/p(X)) is a finitely
generated abelian group. Since X is 1-connected, then the Chachólski’s cofibre CX is 1-
connected and PΣBZ/p(CX) is too by Lemma 2.4. Then, we see that π2(PΣBZ/p(CX)) ∼=
H2(PΣBZ/p(CX);Z) is a quotient of H2(CX ;Z), which in turn is a quotient of the finitely
generated group H2(X;Z).

Next we need a technical lemma which describes the somewhat intrincate relationship
between completion and nullification and which is a key result to understand under which
conditions PA(η) : PA(X)→ PA(X

∧
p ) is a mod p equivalence (Corollary 3.11).

Lemma 3.9. Let A be a connected space, and let X such that PA(X
∧
p ) and PA(X)

are p-good spaces. Assume that PA(X)∧p and PA(X
∧
p )

∧
p are A-null spaces. Then the p-

completion map ηX : X → X∧
p induces a mod p equivalence PA(η) : PA(X)→ PA(X

∧
p ).

Proof. Let ϵ : PA(X
∧
p ) → (PA(X))∧p be the unique map up to homotopy such that the

right square of the following diagram commutes:

X
ηX //

ιX

��

X∧
p

id //

ιX∧
p

��

X∧
p

(ιX)∧p
��

PA(X)
PA(ηX)

// PA(X
∧
p )

ϵ // PA(X)∧p .

Note that ϵ exists because PA(X)∧p is A-null by hypothesis. The left square commutes
by naturality, so (ιX)

∧
p ◦ ηX ≃ ϵ ◦ PA(ηX) ◦ ιX . But also, (ιX)∧p ◦ ηX ≃ ηPA(X) ◦ ιX

by naturality of the completion. Because of the universal property of the nullification
functor, ϵ ◦ PA(ηX) ≃ ηPA(X). Since PA(X) is p-good, η∗PA(X) is an isomorphism in mod
p cohomology. In particular, ϵ∗ is a monomorphism and PA(ηX)

∗ is an epimorphism.
Now consider the following commutative diagram:

X∧
p

id //

ιX∧
p

��

X∧
p

(ηX)∧p
//

(ιX)∧p
��

X∧
p

(ιX∧
p
)∧p

��

PA(X
∧
p )

ϵ // PA(X)∧p
PA(ηX)∧p

// PA(X
∧
p )

∧
p .

That is (ιX∧
p
)∧p ◦(ηX)∧p ≃ PA(η)

∧
p ◦ϵ◦ιX∧

p
. But we also have (ιX∧

p
)∧p ◦(ηX)∧p ≃ (ηPA(X∧

p ))◦
ιX∧

p
. By hypothesis PA(X

∧
p )

∧
p is A-null, then the universal property of the nullification

functor implies that PA(ηX)
∧
p ◦ ϵ ≃ ηPA(X∧

p ). Since PA(X
∧
p ) is p-good, (ηPA(X∧

p ))
∗ is an

isomorphism and hence (PA(ηX)
∧
p )

∗ is a monomorphism. Therefore PA(ηX)
∗ is so, and

we are done.



10 Natàlia Castellana and Ramón Flores

Remark 3.10. If X has finite fundamental group, then both PA(X
∧
p ) and PA(X) are

p-good spaces since they also have finite fundamental groups.

Corollary 3.11. If X is a 1-connected space and A is such that H̃∗(A;Z[1p ]) = 0 then
PA(η) : PA(X)→ PA(X

∧
p ) is a mod p equivalence.

Proof. If X is 1-connected then X∧
p is also 1-connected and both spaces are p-good.

Moreover the BZ/p-nullification of a 1-connected space is also 1-connected. Miller’s
theorem [Mil84, Thm 1.5] implies that the spaces PA(X)∧p and PA(X

∧
p )

∧
p are A-null. The

hypothesis of Lemma 3.9 are then satisfied.

We can also describe a general situation in which the nullification of a mod p equiva-
lence is so.

Corollary 3.12. Let A be a space such that H̃∗(A;Z[1p ]) = 0. If f : X → Y is a mod
p equivalence between 1-connected spaces then PA(f) : PA(X) → PA(Y ) is a mod p

equivalence.

Proof. If f is a mod p equivalence, then f∧
p is an equivalence. Then the following diagram

commutes

PA(X)

PA(ηX)
��

PA(f)
// PA(Y )

PA(ηY )
��

PA(X
∧
p )PA(f∧

p )
// PA(Y

∧
p )

By Corollary 3.11, the two vertical arrows are mod p equivalences and the bottom hori-
zontal map is an equivalence. Then PA(f) is a mod p equivalence.

Remark 3.13. Note that Corollaries 3.11 and 3.12 hold when A = BZ/p. In fact, in
Corollary 3.12, one can relax the assumptions on 1-connectivity by checking that both
spaces X and Y satisfy the assumptions of Lemma 3.9.

Now we follow the parallelism giving a condition for the analogous equivalence be-
tween cellularizations to hold. According to Proposition 3.6, the hypothesis of lifting
elements in the fundamental group is not a real restriction.

Proposition 3.14. Let X be a space whose fundamental group π1(X) is finite and gener-
ated by elements of order p which lift to X . Assume that there is a bijection [BZ/p,X] =

[BZ/p,X∧
p ], then the map induced by the p-completion

CWBZ/p(η) : CWBZ/p(X)→ CWBZ/p(X
∧
p )

is a mod p equivalence.
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Proof. Since π1(X) is finite, X is p-good [BK72, VII.5.1]. There is an epimorphism
π1(X) → π1(X

∧
p ) and, by assumption, [BZ/p,X] ∼= [BZ/p,X∧

p ]. In order to compute
the cellularization, we first analyze Chachólski’s cofibres

∨BZ/p h1 //

id
��

X

η

��

// C

g

��
∨BZ/p h2 // X∧

p
// D.

Since π1(X) is finite and generated by elements of order p which lift to X , the maps h1

and h2 induce epimorphisms on the fundamental group and then C and D are 1-connected
spaces. Moreover g is a mod p equivalence. Now, the cellularization fits in the following
diagram of fibrations:

CWBZ/p(X) //

CWBZ/p(η)

��

X

η

��

// PΣBZ/p(C)

PΣBZ/p(g)

��

CWBZ/p(X
∧
p ) // X∧

p
// PΣBZ/p(D),

where PΣBZ/p(C) and PΣBZ/p(D) are 1-connected. All the spaces in the previous diagram
are p-good. Therefore, to show that CWBZ/p(η) is a mod p equivalence, it is enough to
prove that PΣBZ/p(g) is so. This follows from the previous Corollary 3.12 since g is a mod
p-equivalence.

Remark 3.15. We note in Example 3.4 that CWBZ/p(X
∧
p ) does not need to be p-complete

and a condition for this to be true was stated in Lemma 3.3. If X satisfies the hypothesis
of Proposition 3.14, we see from the proof that CWBZ/p(X

∧
p ) is p-complete if PΣBZ/p(D)

is so. This last space is 1-connected and, using an arithmetic Sullivan square argument,
we see that this is the case if X∧

p → PΣBZ/p(D)∧p is a rational equivalence. Examples of
this situation are provided by classifying spaces of finite groups, since (BG∧

p )Q ≃ ∗ and
PΣBZ/p(D)∧p ≃ PΣBZ/p(C)∧p is homotopic to the p-completion of the classifying space of
a finite group by [FS07, Proposition 5.5] and [FF, Theorem 4.3].

Remark 3.16. The hypothesis of Proposition 3.14 are satisfied if π1(X) is a finite p-group
generated by elements of order p which lift to X (see [DZ87, Proof of 3.1]).

Remark 3.17. Let P be a p-toral group. Then P is an extension of a finite p-group π

by a torus (S1)n. Assume that π is generated by elements of order p which lift to BP .
The arguments of [DZ87, proof of 3.1] applied to the fibration B(S1)n → BP → Bπ

show that [BZ/p,BP ] = [BZ/p,BP∧
p ]. Then BP∧

p is a p-compact toral group, and
CWBZ/p(η) : CWBZ/p(BP )→ CWBZ/p(BP∧

p ) is a mod p equivalence.
By [DW94, Proposition 6.9], there exists a discrete p-toral group P∞, that is, an

extension of a finite p-group π by a finite sum of Prüfer groups (Z/p∞)n, such that



12 Natàlia Castellana and Ramón Flores

BP∞ → BP∧
p is a mod p equivalence. Moreover, [BZ/p,BP∞] ∼= [BZ/p, (BP∞)∧p ] by

[DW94, Remark 6.12], so we should study, up to p-completion, the BZ/p-cellullarization
of discrete p-toral groups. See Example 4.14.

4 BZ/p-cellularization of classifying spaces

In this section we will give a Serre-type general dichotomy theorem (Theorem 4.1), which
is very much in the spirit of [FS07]. Then, we will use this statement to describe several
examples concerning the BZ/p-cellularization of some families of classifying spaces of
remarkable groups, such as p-toral groups, finite groups with a p-subgroup of p′-index,
BS3 or BSO(3) (at the prime 2). Our considerations are also based in the results of the
previous sections relating cellularization, nullification and completion.

4.1 The dichotomy theorem

We begin by stating our dichotomy theorem for nilpotent ΣBZ/p-null spaces, which will
be proved at the end of the subsection.

Theorem 4.1. Let X be a connected nilpotent ΣBZ/p-null space. Then the BZ/p-cellulla-
rization of X has the homotopy type of a K(G, 1) or it has infinitely many nontrivial ho-
motopy groups. Moreover, if X is 1-connected of finite type, then π1(CWBZ/p(X)) is a
finite elementary abelian p-group.

Even if the statement is similar to the one in [FS07, Proposition 2.3], the authors deal
with the situation in which the space is torsion, and this is not the case for BG where G

is a compact connected Lie group. The strategy used in [FS07] for classifying spaces of
finite groups can be summarized as follows.

Proposition 4.2. Let X be a torsion Postnikov piece whose fundamental group is gener-
ated by elements of order p which lift to X . Assume there exists a prime q ̸= p such that
X∧

q is torsion and it has infinitely many non-trivial homotopy groups. Then CWBZ/p(X)

also has infinitely many non-trivial homotopy groups.

Proof. Consider the fibration CWBZ/p(X)→ X → PΣBZ/p(C) from Theorem 2.3. Note
that PΣBZ/p(C) is 1-connected since C is so. To prove the statement, we will show that
PΣBZ/p(C) has infinitely many non-trivial homotopy groups. We apply Sullivan’s arith-
metic square to PΣBZ/p(C) to obtain a pullback diagram

PΣBZ/p(C) //

��

(
∏

r ̸=pX
∧
r )× (PΣBZ/p(C))∧p

��

* // (
∏

r ̸=q,p X
∧
r )Q × ((PΣBZ/p(C))∧p )Q.
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which allow us to construct a map s : X∧
q → PΣBZ/p(C) such that η ◦ s ≃ id. That is s is

a section of the q-completion. Then for n ≥ 2 we have that πn(X
∧
q ) is a direct summand

of πn(PΣBZ/p(C)).

For example, by Levi’s work in [Lev95], the previous theorem applies when X is the
classifying space of a finite group.

Now we need to state some general results concerning to the cellularization of ΣBZ/p-
null spaces, that deal with the consequences of imposing that CWBZ/p(X) is a Postnikov
piece for a certain space X . Note that this is the “forbidden” case in Theorem 4.7.

Proposition 4.3. Let X be a connected nilpotent ΣBZ/p-null space such that Z[1
p
]∞(X) ≃

∗. Then X has the homotopy type of a K(G, 1) or it has infinitely many nonzero homotopy
groups.

Lemma 4.4. Let P [n] be a connected ΣBZ/p-null Postnikov piece with n ≥ 3 then p is
invertible in πn(P [n]).

Proof. Note that if P [n] is ΣBZ/p-null then ΩP [n] is BZ/p-null, and also Ωn−1P [n] is
so. Since the connected component of the constant in Ωn−1P [n] is an Eilenberg-MacLane
space K(πn(P [n]), 1), we see that K(πn(P [n]), 1) is also BZ/p-null.

Similarly, the connected component E of Ωn−2P [n] is BZ/p-null. There is a fibra-
tion K(πn(P [n]), 2) → E → K(πn−1(P [n]), 1). Since the pointed mapping spaces
map ∗(BZ/p,K(πn−1(P [n]), 1))c and map ∗(BZ/p, E) are weakly contractible, we ob-
tain from the previous fibration that map (BZ/p,K(πn(P [n]), 2)) is also weakly con-
tractible. That is K(πn(P [n]), 2) is BZ/p-null. The conclusion now follows from Lemma
2.7.

Proof of Proposition 4.3. Assume that X ≃ P [n] is a finite Postnikov piece. First we
show that n ≤ 2. Since Z[1

p
]∞(X) is weakly contractible (see Lemma 2.8), then πi(P [n])⊗

Z[1
p
] = 0 for all i > 0 ([BK72, V.4.1]). But if n ≥ 3, p is invertible in πn(P [n]) by the

previous Proposition 4.4, then πn(P [n]) = 0. We can apply this argument as long as
n ≥ 3.

From now on we assume n = 2. Next we prove that π2(P [2]) has no p-torsion.
There is a fibration K(π2(P [2]), 2) → P [2] → K(π1(P [2]), 1), which induces a cov-
ering K(π1(P [2]), 0) → K(π2(P [2]), 2) → P [2]. If π2(P [2]) had p-torsion, then a non-
trivial homomorphism Z/p → π2(P [2]) would induce a nontrivial map f : ΣBZ/p →
K(π2(P [2]), 2) which is nullhomotopic when composed with K(π2(P [2]), 2) → P [2]

since P [2] is ΣBZ/p-null (see Lemma 2.6). Then we obtain a contradiction since f must
be nullhomotopic. So π2(P [2]) has no p-torsion, and this is again a contradiction since
π2(P [2])⊗ Z[1

p
] = 0.
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Proof of Theorem 4.1. By Lemma 2.5, CWBZ/p(X) is also nilpotent. Moreover, we have
that Z[1

p
]∞(CWBZ/p(X)) ≃ ∗ by Lemma 2.8, and then we can apply Proposition 4.3 to

CWBZ/p(X).

The next question we need to refer concerning Theorem 4.7 is when the cellularization
of a classifying space is again a classifying space, not necessarily of a discrete group. This
is important to understand the first part of the previous dichotomy.

Proposition 4.5. Let X be a space. If CWBZ/p(X) ≃ BH for some compact Lie group
H , then it must be a finite p-group generated by order p elements.

Proof. Since the pointed homotopy colimit of acyclics is acyclic for any cohomology
theory ([Far96, 2.D.2.5]), it is clear that H̃∗(BH;Q) = H̃∗(CWBZ/pX;Q) = 0. On the
other hand, it is well-known that the rational cohomology of BH are the invariants of the
rational cohomology of the classifying space of the maximal torus T under the action of
the Weyl group W . In fact H̃∗(BH;Q) = 0 if and only if H is a finite group. Finally, the
functor CW is idempotent, so BH must be BZ/p-cellular. Thus, we can apply [Flo07,
Prop 4.14 ] to finish the proof.

Remark 4.6. The arguments in Proposition 4.5 also work if CWBZ/p(X) ≃ (BH)∧p
where H is a compact Lie group. It is clear then that H̃∗(BH;Z∧

p ) ⊗ Q = 0. But again
this is only possible if H is discrete. If H is in particular finite, conditions are known (see
[FS07, Corollary 3.3]) under which (BH)∧p is BZ/p-cellular. See Example 4.12 below.

4.2 Examples

In this subsection we concentrate in the description of the BZ/p-cellularization of clas-
sifying spaces of compact Lie groups, generalizing to the continuous case work of the
second author in the finite case ([Flo07] and [FS07]). In the study of the homotopy type
of classifying spaces of Lie groups, a very useful strategy is to isolate the information at
every prime.

Theorem 4.1 implies automatically the following dichotomy theorem for classifying
spaces of compact Lie groups.

Theorem 4.7. Let G be a compact connected Lie group, p a prime. Then the BZ/p-
cellularization of BG is the classifying space of a p-group generated by order p elements,
or else it has an infinite number of non-trivial homotopy groups.

Proof. As G is assumed to be connected, BG is simply connected. Moreover it is of
finite type, and ΣBZ/p-null because of Miller’s solution of the Sullivan conjecture since
ΩBG ≃ G is a finite complex. Finally, apply Theorem 4.1.
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In the continuous case, there are paradigmatic examples of BG whose cellularization
is again a classifying space.

Example 4.8. If X = BS1 = K(Z, 2), it is clear comparing pointed mapping spaces that
CWBZ/pBS1 = BZ/p since map ∗(BZ/p,BS1) is homotopically discrete with compo-
nents Hom (Z/p, S1). Let us now consider BS3 the classifying space of the 3-sphere.
Lemma 3.2 reduces the computation of CWBZ/p(BS3) to that of CWBZ/p((BS3)∧p ). The
mapping space from BZ/p into (BS3)∧p has been well studied. If p = 2, the inclusion
of the centre BZ/2 → BS3 induces a homotopy equivalence map (BZ/2, BZ/2) →
map (BZ/2, (BS3)∧2 ) since map (BZ/2, (BS3)∧2 )f ≃ (BCS3(f))∧2 (see [DMW87]), and
therefore CWBZ/2(BS3) ≃ BZ/2. If p is odd, then (BS3)∧p ≃ BN(T )∧p , and this case
will be studied in Example 4.13.

Sometimes, if we are unable to describe CWBZ/pBG, we can at least identify it with
another classifying space at a prime.

Example 4.9. Let BO(2) be the classifying space of the orthogonal group O(2). There
is a mod 2 equivalence BD2∞ → BO(2) where D2∞ = colimnD2n . Moreover BD2∞

is BZ/2-cellular by [Flo07, Example 5.1]. Since π1(BO(2)) = Z/2 is generated by an
element of order 2 which lifts to BO(2), we are in the situation of Remark 3.17. This will
be used in particular in Proposition 4.15.

We devote the remaining of the section to study some families of Lie groups which
show different and interesting features in this context. We begin with extensions of ele-
mentary abelian p-groups by a finite group of order prime to p, which provide an example
in which Proposition 3.14 does not hold. Compare with [FS07]. We start with a situation
which deals with fibrations.

Proposition 4.10. Let F → E → B be a fibration of p-good connected spaces such that
F is BZ/p-cellular, B is BZ/p-null and, B∧

p is ΣBZ/p-null. Assume that [BZ/p, E] →
[BZ/p, E∧

p ] is exhaustive and π1(F )→ π1(E
∧
p ) is an epimorphism. Then (CWBZ/p(E

∧
p ))

∧
p

is the homotopy fiber of E∧
p → B∧

p .

Proof. First of all, note that since B is BZ/p-null, then F → E is a BZ/p-equivalence,
and thus F ≃ CWBZ/p(E). To compute the cellularization of E∧

p we proceed by applying
Chachólski’s strategy (Theorem 2.3, see also [Cha96, Section 7] for the slightly general
formulation we use here). Consider the following diagram of horizontal cofibrations,

F

��

// E

��

// C

g

��

F
i // E∧

p
// D
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where D is 1-connected since i is an epimorphism on fundamental groups. Since E is
p-good, g induces an homotopy equivalence C∧

p ≃ D∧
p , and therefore C∧

p is also 1-
connected.

Zabrodsky’s Lemma (see [Dwy96, Prop 3.4]) applied to the fibration F → E →
B and the composite map E → C → PΣBZ/p(C) implies that there is a map B →
PΣBZ/p(C) which fits in a diagram of fibrations:

F

��

// E

��

// B

��

CWBZ/p(E) // E // PΣBZ/pC.

where the first vertical map is a homotopy equivalence, CWBZ/p(E) ≃ F . The long
exact sequence for homotopy groups shows that the last vertical arrow is also a homotopy
equivalence. Now consider the diagram of fibre sequences

F

��

// E

��

// PΣBZ/pC ≃ B

��

CWBZ/p(E
∧
p ) // E∧

p
// PΣBZ/pD.

The spaces PΣBZ/p(C) ≃ B and PΣBZ/p(C
∧
p ) are p-good spaces (note that PΣBZ/p(C

∧
p )

is 1-connected by Lemma 2.4) and Miller’s theorem apply to show that PΣBZ/p(C
∧
p )

∧
p is

ΣBZ/p-null. Also PΣBZ/p(C)∧p ≃ B∧
p is ΣBZ/p-null by hypothesis. Applying Lemma

3.9 and the proof of Corollary 3.12, we obtain that the composite PΣBZ/p(C) ≃ B →
PΣBZ/p(D) is a mod p equivalence, and therefore we conclude that the p-completion
(CWBZ/p(E

∧
p ))

∧
p is the homotopy fiber of E∧

p → B∧
p is a mod p equivalence by p-

completion of the fibration CWBZ/p(E
∧
p )→ E∧

p → PΣBZ/p(D).

Corollary 4.11. Let F → E → B be a fibration of connected spaces such that F is
BZ/p-cellular, B is BZ/p-null and B∧

p ≃ ∗. Assume that [BZ/p, E] → [BZ/p, E∧
p ] is

exhaustive, π1(F )→ π1(E
∧
p ) is an epimorphism and πi(E) are finite groups for all i ≥ 1.

Then E∧
p is BZ/p-cellular.

Proof. By Proposition 4.10, we know that (CWBZ/p(E
∧
p ))

∧
p ≃ E∧

p . We will prove that
CWBZ/p(E

∧
p ) is p-complete. Since πi(E) are finite groups for all i ≥ 1, πi(E

∧
p ) are all

finite p-groups and E∧
p is nilpotent ([BK72, VII.4.3]). Therefore CWBZ/p(E

∧
p ) is nilpotent

by Lemma 2.5. A Sullivan’s arithmetic square argument shows that CWBZ/p(E
∧
p ) is p-

complete since ((CWBZ/p(E
∧
p ))

∧
p )Q ≃ (E∧

p )Q ≃ ∗.

Example 4.12. Let G be a finite group which is an extension H → G→ W where BH is
BZ/p-cellular and (|W |, p) = 1. Then CWBZ/p(BG) ≃ BH and BG∧

p is BZ/p-cellular
by the previous result. Note that G does not need to be generated by elements of order



Homotopy idempotent functors on classifying spaces 17

p; compare with [FS07, Section 4]. Other examples are provided by nilpotent Postnikov
pieces whose fundamental group is of order prime to p and the 1-connected cover is p-
torsion.

Example 4.13. Let N be an extension of a finite group of order prime to p with a torus,
that is, we have a fibration BT → BN → BW where T ∼= (S1)n and (|W |, p) = 1. From
this fibration we see that CWBZ/p(BN) ≃ CWBZ/p(BT ) ≃ BV where V ∼= (Z/p)n, as
BW is BZ/p-null and BT → BN is a BZ/p-equivalence.

Next we compute the cellularization of (BN)∧p . First, by [BK02, Prop. 7.5], there is
a bijection [BZ/p,BN ] ∼= [BZ/p,BN∧

p ]. Consider the following diagram of horizontal
cofibrations,

BV

��

// BN

��

// C

g

��

BV
i // BN∧

p
// D.

where D is 1-connected since BN∧
p is also 1-connected. Therefore PΣBZ/p(D) is also

1-connected by Lemma 2.4. Since π1(C) is finite, C is p-good. Moreover, g is a mod p

equivalence, therefore C∧
p is 1-connected. Now consider the following diagram of fibra-

tions:

BV

��

// BN

��

// PΣBZ/pC

��

CWBZ/p(BN∧
p )

i // BN∧
p

// PΣBZ/pD.

We will show that PΣBZ/p(g) : PΣBZ/pC → PΣBZ/pD is a mod p equivalence. Since g

is a mod p equivalence, and also PΣBZ/p(ηD) : PΣBZ/p(D) → PΣBZ/p(D
∧
p ) by Corollary

3.11, we only need to prove that PΣBZ/p(ηC) : PΣBZ/p(C) → PΣBZ/p(C
∧
p ) is also a mod

p equivalence by checking that C satisfies the hypothesis of Lemma 3.9.
Consider the following diagram of fibrations

T/V //

��

BV //

��

BT

��
E(T/V ) //

��

BN //

��

BN

��
B(T/V ) // PΣBZ/p(C)

f
// BW.

where f exists by Zabrodsky’s Lemma (see [Dwy96, Prop 3.4]) applied to the fibration
BV → BN → PΣBZ/p(C) and the map BN → BW . It implies that there is a map
PΣBZ/p(C) → BG which fits in a diagram of fibrations. The bottom fibration shows that
PΣBZ/p(C) is homotopy equivalent to the classifying space of a compact Lie group whose
fundamental group is G.
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Now we check that C satisfies the hypothesis of Lemma 3.9. First, C and PΣBZ/p(C)

are p-good since they have finite fundamental groups ([BK72, VII.5.1]), PΣBZ/p(C
∧
p ) is

1-connected and therefore it is also p-good. It remains to check that PΣBZ/p(C)∧p and
PΣBZ/p(C

∧
p )

∧
p are ΣBZ/p-null spaces. Since PΣBZ/p(C) is homotopy equivalent to the

classifying space of a compact Lie group, its p-completion is ΣBZ/p-null (see e.g. [BK02,
Prop 7.5]). Finally PΣBZ/p(C

∧
p )

∧
p is also ΣBZ/p-null since PΣBZ/p(C

∧
p ) is 1-connected by

Theorem 3.1.
Summarizing, (CWBZ/p(BN∧

p ))
∧
p is the homotopy fiber of BN∧

p → BK∧
p where K

is an extension of W by T/V where V is the maximal elementary abelian p-subgroup in
the torus T .

Our next example concerns p-toral groups. Recall that a p-toral group is an extension
of a torus by a finite p-group. A p-compact toral group is an extension of a p-compact
torus by a finite p-group, and a discrete p-toral group is a group P with normal subgroup
T such that T is isomorphic to a finite product of copies of Z/p∞ and P/T is a finite
p-group.

Since CWBZ/p(BT∧
p ) ≃ CWBZ/p(BT ) by Lemma 3.2 and CWBZ/p(BT ) ≃ BV

where V is the subgroup of elements of order p, the following is also true for p-compact
toral groups.

Example 4.14. Let P be a p-toral group with group of components π. First of all, by
[CCS07, Proposition 2.1], we can assume that π is a finite p-group generated by elements
of order p which lift to BP . By Proposition 3.14 and Remark 3.17, there is a mod p

equivalence CWBZ/p(BP ) → CWBZ/p(BP∧
p ). Dwyer and Wilkerson show in [DW94]

that there exists a discrete p-toral group P∞ such that BP∞ → BP is a mod p equivalence.
We are reduced then to study the cellularization of discrete p-toral groups.

Following [FS07, Section 4], we consider Ω1(P∞), the subgroup generated by the
elements of order p. Since a subgroup of a p-toral discrete group is also a p-toral dis-
crete group and the map BΩ1(P∞) → BP∞ is a BZ/p-cellular equivalence (note that
map ∗(BZ/p,BP∞) ≃ Hom(Z/p, P∞)), we can assume that P∞ is generated by ele-
ments of order p. For any p-discrete toral group there is an increasing sequence P0 ≤
P1 ≤ · · · such that P∞ = ∪Pn. Take a countable set of generators of order p for P∞,
{gi|i = 1, . . . , n}; then the subgroups Qn = ⟨g1, . . . , gn⟩ satisfy that P∞ = ∪Qn and
each Qn is a finite p-group generated by elements of order p, so by [Flo07, Prop 4.14,
Prop 4.8], BQn is BZ/p-cellular and therefore BP∞ is so.

Finally the space BΩ1(P∞) is BZ/p-cellular, so it remains to check that BΩ1(P∞)→
CWBZ/p(BP∧

p ) is a mod p equivalence. Let CBP∞ and CBP∧
p

be the corresponding Chach-
ólski’s cofibres. Zabrodsky’s Lemma (see [Dwy96, Prop 3.4]) applied to the fibration
BΩ1(P∞)→ BP∞ → PΣBZ/p(CBP∞) and the map BP∞ → B(P∞/Ω1(P∞)) shows that
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there is a homotopy equivalence PΣBZ/p(CBP∞) ≃ B(P∞/Ω1(P∞)). In particular, CBP∞

satisfies the hypothesis of Lemma 3.9. Moreover, CBP∧
p

is 1-connected.
The map g : CBP∞ → CBP∧

p
is a mod p equivalence and, by Remark 3.13 and Corol-

lary 3.12, PΣBZ/p(g) is a mod p equivalence. Finally, Proposition 3.14 combined with the
previous results, show that BΩ1(P∞)→ CWBZ/p(BP∧

p ) is a mod p equivalence.
In particular, from Example 4.9 we obtain that there are mod 2 equivalences BD2∞ →

CWBZ/2(BO(2)) → CWBZ/2(BO(2)∧2 ), and hence a chain of homotopy equivalences
CWBZ/2(BO(2))∧2 ≃ CWBZ/2(BO(2)∧2 )

∧
2 ≃ BO(2)∧2 .

We finish the section with a last example in which we can observe a completely dif-
ferent pattern, and where the cellularization is obtained by combining in an adequate way
some nice push-out decompositions.

Proposition 4.15. The BZ/2-cellularization of BSO(3) fits in a fibration

(CW BZ/2BSO(3))∧2 → BSO(3)∧2 → (BSO(3)∧2 )Q.

Proof. Since SO(3) is connected, by Lemma 3.2 the p-completion induces a homotopy
equivalence CWBZ/pBSO(3) ≃ CWBZ/p(BSO(3)∧p ). According to [DMW87, Cor 4.2],
BSO(3) is equivalent at the prime 2 to the pushout X of the following diagram:

BD8
f2 //

f1
��

BO(2)∧2

g

��

(BΣ4)
∧
2

// X,

where f1 is induced by inclusion of the 2-Sylow subgroup, and f2 is given by the map of
extensions

Z/4

��

// D8

f2
��

// Z/2

��

SO(2) // O(2) // Z/2.
Our strategy will be to cellularize the previous diagram, and compare the respective

pushouts. Now, recall that BD8 is BZ/2-cellular ([Flo07, 4.14]) and moreover the 2-
completion of BΣ4 is so ([FS07, Thm 4.4]). On the other hand, D2∞ is a 2-discrete
approximation of O(2) -i.e.BD2∞ → BO(2) is a mod 2 equivalence-, so the previous
Example 4.14 implies BD2∞ → CWBZ/2(BO(2)) is a mod 2 equivalence. Moreover, by
Proposition 3.14 and Remark 3.17, there is also a mod 2 equivalence CWBZ/2(BO(2))→
CWBZ/2(BO(2)∧2 ). So, we can consider another pushout diagram by applying the functor
CWBZ/2 to the previous one,

BD8
//

f1
��

CWBZ/2(BO(2)∧2 )

h

��
(BΣ4)

∧
2

// Y
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There exists a map g : Y → X induced by the augmentation map from the cellulariza-
tion which is a mod 2 equivalence since CWBZ/2(BO(2)∧2 )→ BO(2)∧2 is so.

Now we attempt to compute the BZ/2-cellularization of X∧
2 by using the cofibre of the

map k : Y → X∧
2 . In order to do this, a result of Chachólski [Cha96, Thm 20.3] together

with [FS07, Thm 1.1] tells us that we need to check that [BZ/2, Y ] → [BZ/2, Y ∧
2 ] ∼=

[BZ/2, X∧
2 ] is exhaustive and Y is BZ/2-cellular. Y is BZ/2-cellular since it is a pushout

of BZ/2-cellular spaces. It remains to check that [BZ/2, Y ]→ [BZ/2, Y ∧
2 ] is exhaustive.

Let P be the category 1← 0→ 2 describing a pushout diagram, and let F : P→ Top

be the functor describing the pushout for Y , that is, F (1) = (BΣ4)
∧
2 , F (0) = BD8 and

F (2) = CWBZ/2(BO(2)∧2 ) with the corresponding morphisms. There is a commutative
diagram of sets

lim−→[BZ/2, F ] //

(ηF )∗
��

[BZ/2, Y ]

η∗

��

lim−→[BZ/2, F∧
2 ] // [BZ/2, Y ∧

2 ]

where the vertical maps are induced by 2-completion of the target. Since the spaces
map (BZ/2, F∧

2 ) are 2-complete (see [BK02, Proposition 7.5]), by [BLO03, Lemma 4.2]
the bottom horizontal map is a bijection. To prove that η∗ is exhaustive, it is enough
to show that (ηF )∗ is so. But then, looking at the diagram, it reduces to check that
[BZ/2, CWBZ/2(BO(2)∧2 )] → [BZ/2, CWBZ/2(BO(2)∧2 )

∧
2 ]
∼= [BZ/2, BO(2)∧2 ] is ex-

haustive (see Example 4.14) and this follows from Corollary 3.7.
Let C be the cofibre of k. We know that C is mod 2 acyclic and 1-connected. Now if

q is an odd prime, since Y is BZ/2-cellular, Y is mod q acyclic and C∧
q ≃ (BSO(3)∧2 )

∧
q

is contractible. Finally CQ ≃ (BSO(3)∧2 )Q. Then, by a Sullivan arithmetic square argu-
ment, C ≃ (BSO(3)∧2 )Q which is, in turn, BZ/2-null. In particular C is ΣBZ/2-null.
Therefore, the fibration of the theorem follows from Chachólski’s fibration describing the
cellularization (Theorem 2.3).

Remark 4.16. Note that if p is an odd prime, then BSO(3)∧p ≃ BN(T )∧p , where N(T )

is the normalizer of the maximal torus, and we analyzed this case in Example 4.13.

It seems natural to ask if the problem of computing CWBZ/p(BG) for any compact
Lie group G is accessible at this point. A strategy was developed for finite groups in [FF],
based in the description of the strongly closed subgroups of G, which are classified. Re-
cent research has remarked the role of the strongly closed subgroups of discrete p-toral
groups in the homotopy theory of compact Lie groups and, more generally, p-local com-
pact groups [Gon10], but to our knowledge there is no available classification of these
objects. On the other hand, the nontrivial rational homotopy of BG seems an important
obstacle to generalize the arithmetic square arguments of the strategy. We plan to un-
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dertake these issues in subsequent work, and, in particular, an intriguing question which
arises in a natural way from the last example:

Question: For which class of classifying spaces of compact Lie groups (or spaces in
general) is the BZ/p-cellularization equivalent to the homotopy fibre of the rationaliza-
tion, up to p-completion?

5 Nullification

In this section, we are concerned with BZ/p-nullification. The original motivating ex-
ample for our study were classifying spaces of compact Lie groups, for which Dwyer
computed in [Dwy96] the value of PBZ/pBG for the case in which π0(G) is a (finite)
p-group. For this sake, he used an induction principle based on the centralizer decompo-
sition of BG, a method that also solve the problem when we take a p-compact group X

instead of G. However, the hypothesis over the fundamental group is essential and cannot
be removed from his proof, so we need to follow a completely different path to solve the
general case. In fact, our new strategy was useful to describe PBZ/pX for a bigger family
of spaces, which in particular need not to be classifying spaces.

Recall that, if S is a set of primes, the S-radical subgroup TS(G) of a finite group G

is the smallest normal subgroup of G which contains all the S-torsion. This is the last
ingredient we need to state the main result of this section.

Theorem 5.1. Let X be a connected space with finite fundamental group and such that
map ∗(X⟨1⟩, Z) ≃ ∗ for any connected BZ/p-null p-complete space Z. Then there is a
fibration

LZ[ 1
p
](Xp)→ PBZ/p(X)→ B(π1(X)/Tp(π1(X)))

where Xp is the covering of X whose fundamental group is Tp(π1(X)), and LZ[ 1
p
](Xp)

denotes the homological localization of Xp in the ring Z[1
p
].

This Theorem 5.1 will be a consequence of the following result.

Theorem 5.2. Let X be a connected space with finite fundamental group generated by
p-torsion elements which lift to X and such that map ∗(X⟨1⟩, Z) ≃ ∗ for any connected
BZ/p-null p-complete space Z. Then there is an equivalence PBZ/p(X) → LZ[ 1

p
](X),

where LZ[ 1
p
](X).

Now in order to prove Theorem 5.2 we follow the strategy of the second author in
[Flo07] when dealing with classifying spaces of finite groups, although now there is ra-
tional information that is absent in the finite case. Before, however, we will be deal with
some issues concerning to the fundamental group of X which will be crucial in the proof.
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Lemma 5.3. Let G be a finite group and S a set of primes that divide the order of G. If
G = TSG, then G is S−1-perfect. In particular, if X is a space with finite fundamental
group such that π1X = TS(π1(X)), then LZ[S−1](X) is simply-connected.

Proof. The first statement follows from the fact that, since G is generated by S-torsion,
Gab is an abelian finite S-torsion subgroup, and then Z[S−1]⊗Gab = 0.

For the second statement, observe that as G is S−1-perfect, then X is a Z[S−1]-good
space, and the Z[S−1]-completion of X is 1-connected, by [BK72, VII.3.2]. But for a
connected Z[1

p
]-good space X , the Z[1

p
]-completion is an H∗(−;Z[1p ])-localization (see

[BK72, page 205]).

In particular, if X is a connected space such that its fundamental group is finite and
equal to its Z/p-radical, then LZ[1/p]X is a simply-connected space.

Lemma 5.4. Let X be a connected space and p a prime. Then the coaugmentation X →
LZ[1/p]X is an Fq-equivalence and a Q-equivalence where q is a prime such that (q, p) =
1. If LZ[1/p]X is 1-connected then LZ[1/p]X is Fp-acyclic.

Proof. By universal coefficient theorem (e.g. see [Spa66, 5.2.15]), the coaugmentation
X → LZ[1/p]X is a G-equivalence for any Z[1

p
]-module G. The last statement follows

form [Dwy96, Lemma 6.2].

Lemma 5.5. Let Z be a BZ/p-null space and X be a connected space such that π1(X) is
a finite group generated by p-torsion elements which lift to X . Then for any f : X → Z,
the composite X → Z → Bπ1(Z) is nullhomotopic.

Proof. Let f : X → Z be any map. We must check that π1(f) is the trivial morphism. It
is enough to show that the map between unpointed homotopy classes [S1, X] → [S1, Z]

is trivial.
Let x ∈ π1(X) be a generator, ⟨x⟩ ∼= Z/pn ⊆ π1(X), we need to show that the

composite BZ/pn → Bπ1(X)→ Bπ1(Z) is nullhomotopic for any generator x.
By hypothesis, there is a lift

X //

��

Z

��

BZ/pn

88rrrrrrrrrrr
// Bπ1(X) // Bπ1(Z).

But since Z is BZ/p-null and PBZ/p(BZ/pn) ≃ ∗, it follows that the top composite
BZ/pn → X → Z is nullhomotopic, and therefore π1(f)(x) = 0.

The hypothesis in Theorem 5.1 concerning the pointed mapping space from the uni-
versal cover of X is also satisfied by connected covers of X .
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Lemma 5.6. Let X be a connected space with finite fundamental group and Y be a
connected cover of X . If Z is a connected BZ/p-null and p-complete space, then the
equivalence map ∗(Y, Z) ≃ ∗ implies map ∗(X,Z) ≃ ∗.

Proof. There is a fibration Y → X → BG where G is a finite group. Since map ∗(Y, Z) ≃
∗, Zabrodsky’s Lemma (see [Mil84, 9.5]) tells us that there is an equivalence of pointed
mapping spaces map ∗(X,Z) ≃ map ∗(BG,Z). Finally, this mapping space is con-
tractible since we have weak homotopy equivalences map ∗(BG,Z) ≃ map ∗(BG∧

p , Z)

and PBZ/p((BG)∧p ) ≃ ∗ by [Flo07, 3.14].

Now we are ready to undertake the proof of Theorem 5.2.

Proof of Theorem 5.2. By hypothesis, π1(X) has no quotients whose order is prime to p,
which amounts to say that π1(X) is equal to its Z/p-radical Tp(π1(X)).

First of all, notice that LZ[1/p]X is BZ/p-null by Lemma 5.3 and [Dwy96, Lemma
6.2]. In order to show that PBZ/p(X) → LZ[ 1

p
](X) is a weak equivalence, since LZ[1/p]X

is BZ/p-null, we must show that for every BZ/p-null space Y the natural coaugmentation
X −→ LZ[1/p]X gives a weak equivalence map ∗(LZ[1/p]X,Y ) ≃ map ∗(X,Y ).

So let Y be a BZ/p-null space. Assume first that Y is simply-connected. By Miller’s
Theorem 3.1, Y ∧

p is also BZ/p-null. According to Bousfield-Kan fracture lemmas ([BK72,
V.6]), we must prove that, for every prime q, there is a weak homotopy equivalence
map ∗(LZ[1/p](X), Y ∧

q ) ≃ map ∗(X,Y ∧
q ), and map ∗(LZ[1/p](X), YQ) ≃ map ∗(X, YQ).

By Lemmas 5.4 and 5.6, this is a consequence of the assumption of the theorem, so we
finish the situation in which Y is simply connected.

Now let Y be a BZ/p-null space and Ỹ its universal cover. The coaugmentation X −→
LZ[1/p]X induces a diagram of fibrations over the component of the constant map

map ∗(LZ[1/p](X), Ỹ )
≃ //

��

map ∗(X, Ỹ )

��

map ∗(LZ[1/p](X), Y ){c} //

ρ

��

map ∗(X,Y ){c}

ρ

��

map ∗(LZ[1/p](X), Bπ1(Y ))c // map ∗(X,Bπ1(Y ))c

where map ∗(LZ[1/p](X), Y ){c} and map ∗(X, Y ){c} are those components such that ρ in-
duce the constant map when composing with Y → Bπ1(Y ).

The top horizontal map is an equivalence because of the previous argument since Ỹ is
a simply connected BZ/p-null space. For any connected space A and a discrete group H ,
map ∗(A,BH) is a homotopically discrete space, and then map ∗(LZ[1/p](X), Bπ1(Y ))c

and map ∗(X,Bπ1(Y ))c are contractible. Thus, the bottom horizontal arrow in the dia-
gram is also a weak equivalence.
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To finish the proof we need to show that there are weak homotopy equivalences
map ∗(LZ[1/p](X), Y ){c} ≃ map ∗(LZ[1/p](X), Y ) and map ∗(X, Y ){c} ≃ map ∗(X, Y ).
The first equivalence follows now from the fact that LZ[1/p](X) is simply connected by
Lemma 5.3, while the second follows from Lemma 5.5.

Proof of Theorem 5.1. Theorem 5.2 applied to the universal cover of X implies that the
map in [Dwy96, 1.6], PBZ/p(X⟨1⟩)→ LZ[ 1

p
](X⟨1⟩), is an equivalence.

Let Xp be the covering space of X with fundamental group Tp(π1(X)). There is a
fibration Xp → X → B(π1(X)/Tp(π1(X))). Since the base space of this fibration
B(π1(X)/Tp(π1(X))) is BZ/p-null, the nullification functor preserves the fibration by
[Far96, 3.D.3] and there is another fibration

PBZ/p(Xp)→ PBZ/p(X)→ B(π1(X)/Tp(π1(X))).

To prove the theorem we shall show that the natural map PBZ/p(Xp)→ LZ[ 1
p
](Xp), which

exists because BZ/p is HZ[1
p
]-acyclic and then LZ[ 1

p
](Xp) is BZ/p-null, is a homotopy

equivalence. Note also that (Xp)⟨1⟩ ≃ X⟨1⟩. Therefore Xp also satisfies the hypothesis
of the theorem.

From now on we assume that π1(X) has no quotients whose order is prime to p, which
amounts to say that π1(X) is equal to its Z/p-radical Tp(π1(X)).

Consider the fibration X⟨1⟩ → X → Bπ1(X) and its fibrewise nullfication (see
[Far96, 1.F]) which gives a diagram of fibrations

X⟨1⟩ //

ξ
��

X //

ξ̄

��

Bπ1(X)

��

PBZ/p(X⟨1⟩) // X̄ // Bπ1(X).

where ξ̄ is an equivalence after BZ/p-nullification. Then, by [Dwy96, 1.6], ξ̄ is a Z[1
p
]-

equivalence. Note that it is enough to show that the map PBZ/p(X̄) → LZ[ 1
p
](X̄) is an

equivalence since there is a chain

PBZ/p(X)
≃→ PBZ/p(X̄)→ LZ[ 1

p
](X̄)

≃← LZ[ 1
p
](X).

Moreover, π1(X̄) ∼= π1(X) because the fibre PBZ/p(X⟨1⟩) is 1-connected, then the
universal cover of X̄ is PBZ/p(X) and π1(X̄) = Tp(π1(X̄)). For each generator x ∈
π1(X̄), the obstructions to lift the map B(⟨x⟩) ≃ BZ/pn → Bπ1(X̄) to X̄ lie in the
twisted cohomology groups H i+1(BZ/pn;πi(PBZ/p(X⟨1⟩))) for i ≥ 1, and these groups
are trivial since the homotopy groups πi(PBZ/p(X⟨1⟩)) ∼= πi(LZ[ 1

p
](X⟨1⟩)) are Z[1

p
]-

modules. That is, X̄ is a connected space with finite fundamental group generated by
p-torsion whose generators lift to X̄ .
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In order to apply Theorem 5.2, it remains to check that map ∗(X̄⟨1⟩, Z) ≃ ∗ for
any connected BZ/p-null p-complete space Z. Recall that X̄⟨1⟩ ≃ PBZ/p(X⟨1⟩). Then
map ∗(PBZ/p(X⟨1⟩), Z) ≃ map ∗(X⟨1⟩, Z) ≃ ∗ where the last equivalence follows by
hypothesis.

Remark 5.7. The proof of Theorem 5.1 also holds if we replace the analysis at one prime
p for a set of primes S and imposing that the hypothesis on pointed mapping spaces are
satisfied for any prime p in the set S. In that case we have to replace LZ[ 1

p
] by LZ[S−1], and

PBZ/p by PW where W = ∨p∈SBZ/p.

We want to explore the implications of these results on classifying spaces of Lie
groups, which was the original motivation for our work. For this sake we need the fol-
lowing Lemma, which was proved by Dwyer [Dwy96, Theorem 1.2] using an induction.
We include here a shorter proof, based on the homology decomposition of BG via p-toral
subgroups. The key point here is that this decomposition is indexed over an mod p acyclic
category, and this opens the way for computing PBZ/p for a more general class of p-good
spaces (see Corollary 5.11).

Lemma 5.8. Let Z be a connected BZ/p-null and p-complete space. Let F : C → Top

be a functor such that for each object c ∈ C, F (c) is connected and PBZ/p(F (c)∧p ) is mod
p acyclic. If |C|∧p ≃ ∗, then map ∗(hocolimC F (c), Z) ≃ ∗.

Proof. The statement follows from a sequence of equivalences:

map (hocolim
C

F (c), Z) ≃ holim
C

map (F (c), Z) ≃ holim
C

map (PBZ/p(F (c)∧p ), Z).

Under the hypothesis of the lemma, this last mapping space is homotopy equivalent to
map (|C|, Z) ≃ Z if |C|∧p ≃ ∗.

Corollary 5.9. Let p be a prime. If G is a compact Lie group and X is a connected
p-complete BZ/p-null space, then map ∗(BG∧

p , X) is weakly contractible.

Proof. The proof is divided into two steps. In the first one we assume that G is a p-
toral group, and then we use the existence of mod p homology decompositions of BG

with respect to certain families of p-toral subgroups of G, see [JMO90], to undertake the
general case.

Consider first when G = T = (S1)n. In this case, BT∧
p ≃ K(Z∧

p , 2)
n ≃ (B(Z/p∞)n)∧p .

As X is a p-complete space, we have the weak homotopy equivalence map ∗(BT∧
p , X) ≃

map ∗(B(Z/p∞)n, X). This mapping space is contractible because Z/p∞ ∼= limZ/pr de-
fined by inclusions Z/pn ⊂ Z/pn+1, and since Z/pr is a p-group, BZ/pr is BZ/p-acyclic
and map ∗(BZ/pr, X) ≃ ∗, and we can apply Lemma 5.8. Now, if G = P is a p-toral
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group given by a group extension T n ↪→ P→→π, Dwyer and Wilkerson show that BG ad-
mits a p-discrete approximation [DW94, Prop 6.9]. There is a sequence of finite p-groups
P0 ⊂ P1 ⊂ . . . such that BP ≃ hocolimBPn. Again, by Lemma 5.8, we obtain that
map ∗(BP,X) ≃ ∗.

Let us go now through the general case. Our goal will be to prove that the inclusion
of constant maps induces an equivalence X ≃ map (BG∧

p , X). By work of Jackowski-
McClure-Oliver ([JMO90, Thm 4]), the space BG is mod p equivalent to hocolimOpG F ,
where OpG is the orbit category of stubborn p-toral subgroups of G and F is a functor
whose values have the homotopy type of classifying spaces of stubborn p-toral subgroups
of G. Since the statement holds for p-toral groups, by Lemma 5.8 it is enough to observe
that OpG is Fp-acyclic, see [JMO90, Prop 6.1], and we are done.

Now we are ready to prove the desired result, which was previously known for finite
groups ([Flo07, Theorem 3.5]).

Theorem 5.10. Let G be a compact Lie group and π its group of components. Let Gp be
the subgroup of G whose group of components is Tp(π). Then the BZ/p-nullification of
BG fits in the following covering fibration:

LZ[1/p]BGp −→ PBZ/pBG −→ B(G/Tpπ)

Proof. We have to check that the assumptions on Theorem 5.1 are satisfied when X =

BG. Since the universal cover of BG is BG0 is again the classifying space of a compact
Lie group, by Corollary 5.9 the hypothesis of Theorem 5.2 are satisfied.

The proof of Corollary 5.9 applies to other type of spaces which admits mod p ho-
mology decompositions. The theory of p-local compact groups introduced by Broto, Levi
and Oliver in [BLO07] includes both the theory of p-compact groups [DW94] and p-local
finite groups [BLO03]. Roughly speaking, a p-local compact is a triple (S,F,L) where
S is a discrete p-toral group and F and L are categories which model conjugacy relations
among subgroups of S. The classifying space of a p-local compact group is |L|∧p , and one
of the main features of p-local compact groups is that this space admits mod p-homology
decompositions in terms of classifying spaces of p-compact toral subgroups over mod p

acyclic orbit categories (see [BLO07, Proposition 4.6] and [BLO07, Corollary 5.6]).

Proposition 5.11. Let p be a prime, and (S,F,L) a p-local compact group. Then there is
an equivalence LZ[1/p](|L|∧p ) ≃ PBZ/p(|L|∧p ).

Proof. First of all, π1(|L|∧p ) is a finite p-group by [BLO07, Proposition 4.4], therefore
Tp(π1(|L|∧p )) = π1(|L|∧p ). Then, we only need to check the hypothesis in Theorem 5.2.
That is, map ∗(X⟨1⟩, Z) ≃ ∗ for any connected BZ/p-null p-complete space Z.
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The same argument used in the proof of Corollary 5.9 using mod p homology decom-
positions can be applied and it shows that map ∗(|L|∧p , Z) ≃ ∗ for any connected BZ/p-
null p-complete space Z. But it is not known in general if the universal cover |L|∧p ⟨1⟩ is
the classifying space of a p-local compact group. Instead, we will check that the proof of
Corollary 5.9 applies by showing that |L|∧p ⟨1⟩ admits a description, up to p-completion,
as a homotopy colimit of BZ/p-acyclic spaces over a mod p-acyclic category.

Let P ≤ S be an object in O(F0) (see [BLO07, Proposition 4.6]) and let EP≤S be
the pullback of |L|∧p ⟨1⟩ → |L|∧p along B̃P → BS. Then, by naturality there is a map
hocolimO(F0)EP≤S → |L|∧p ⟨1⟩ which fits in a diagram of fibrations by Puppe’s theorem
(e.g. [Far96, Appendix]),

|L|∧p ⟨1⟩ // |L|∧p // Bπ1(|L|∧p )

hocolimO(F0) EP≤S
//

OO

hocolimO(F0) B̃(P ) //

OO

Bπ1(|L|∧p ).

id

OO

Since the middle vertical arrow is a mod p-equivalence, it follows that the left vertical
arrow is also a mod p-equivalence. Moreover, (B̃P )∧p is the classifying space of a p-
compact toral group, so it follows from the fibration EP≤S → B̃P → Bπ1(|L|∧p ) that
(EP≤S)

∧
p is also the classifying space of a p-compact toral group, and therefore BZ/p-

acyclic. Then the proof of Corollary 5.9 applies.

We finish with a somewhat different example.

Corollary 5.12. Let p be a prime. Let K be a Kač-Moody group with a finite group of
components. Then there is a fibration

LZ[1/p]BKp −→ PBZ/pBK −→ B(π1(BK)/Tp(π1(BK))

Proof. First of all, the universal cover of BK is BK0 where K0 is the connected compo-
nent of the unit in K. It is shown in Nitu Kitchloo thesis (see [BK02]) that BK is homo-
topy equivalent to a colimit over a contractible category of classifying spaces of compact
Lie groups. Then Corollary 5.9 and its proof apply to show that map ∗(BK,Z) ≃ ∗ for
any connected BZ/p-null p-complete space Z.

6 Relation with completion and localization

In this last section we compare the effect of nullification PBZ/p on spaces which satisfy
the hypothesis of Theorem 5.1 with the effect of some completions or localizations on it.
We analyse both functors that are supposed to kill the p-torsion, like LZ[1/p] or Z[1/p]∞,
and functors that usually preserve it, as LZ[1/q] and p-completion do.



28 Natàlia Castellana and Ramón Flores

Lemma 6.1. Let X be a connected space with finite fundamental group, p and q different
primes. Then (X∧

p )
∧
q is contractible.

Proof. If X is 1-connected the case of Fq-completion is described in [BK72, VI.5.1]. If
X is not simply-connected, consider the fibration X∧

p ⟨1⟩ → X∧
p → Bπ1(X

∧
p ) and its

fibrewise q-completion,
(X∧

p ⟨1⟩)∧q → Y → Bπ1(X
∧
p ).

Since the fibre is a 1-connected p-complete space completed at q it is contractible,
then Y ≃ Bπ1(X

∧
p ). But then (X∧

p )
∧
q ≃ Y ∧

q ≃ Bπ1(X
∧
p )

∧
q which is contractible since

Bπ1(X
∧
p ) is the classifying space of a finite p-group.

We start by showing some direct direct consequences of Theorem 5.1.

Proposition 6.2. Let X be a space which satisfies the hypothesis of Theorem 5.1. Then
π1(PBZ/p(X)) = π1(X)/Tp(π1(X)) and (PBZ/p(X))∧p ≃ ∗. Moreover PBZ/p(X

∧
p ) ≃

LZ[ 1
p
](X

∧
p ) ≃ (X∧

p )Q is 1-connected.

Proof. Since LZ[ 1
p
](Xp) is 1-connected by Lemma 5.3, it is clear from the fibration in

Theorem 5.1 that π1(PBZ/p(X)) = π1(X)/Tp(π1(X)). The space LZ[ 1
p
](Xp) is mod p

acyclic by [Dwy96, Lemma 6.2] and the order of π1(X)/Tp(π1(X)) is prime to p, it
follows that (PBZ/p(X))∧p is weakly contractible.

The second statement follows from applying Theorem 5.1 to X∧
p . Observe that if X

satisfies the hypothesis of the theorem, then X∧
p also does. Moreover, π1(X

∧
p ) is a finite

p-group, then PBZ/p(X
∧
p ) ≃ LZ[ 1

p
](X

∧
p ). It remains to prove that they are equivalent to

(X∧
p )Q. Since they are 1-connected we can apply Sullivan’s arithmetic square.
We have proved that (PBZ/p(X

∧
p ))

∧
p is weakly contractible. Moreover, if q ̸= p then

(PBZ/p(X
∧
p ))

∧
q ≃ (X∧

p )
∧
q which is weakly contractible by Lemma 6.1. Then PBZ/p(X

∧
p ) ≃

PBZ/p(X
∧
p )Q ≃ (X∧

p )Q.

We start by showing that BZ/p-nullification and p-completion behave like opposite
functors in this context.

Remark 6.3. If we complete in one prime q and BZ/p-nullify with regard to a different
prime p, then X∧

q is BZ/p-null and the coaugmentation X → PBZ/pX is an equivalence
after q-completion if X satisfies the hypothesis of Lemma 3.9.

Remark 6.4. Note that in general a connected space X could be Z[1/p]-bad if X is not
1-connected, and then it is not possible in general to replace completion by localization
in the previous results. If we know in advance that X is Z[1/p]-good (this happens, for
example, if its fundamental group is Z[1/p]-perfect) then we can do the replacement, and
moreover Z[1/p]∞X ≃ LZ[1/p]X . See for example ([Far96, 1.E]) for more information
about the relation between R-localization and R-completion.
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Proposition 6.5. Let X be a space which satisfies the hypothesis of Theorem 5.1 and such
that π1(X) ∼= Tq(π1(X)). Then there are homotopy equivalences

PBZ/pLZ[1/q]X ≃ LZ[1/p,1/q]X ≃ LZ[1/p]PBZ/qX.

Proof. Since π1(X) ∼= Tq(π1(X)), LZ[ 1
q
](X) ≃ PBZ/q(X) is 1-connected. Then, by

Theorem 5.1, we have PBZ/p(PBZ/q(X)) ≃ PBZ/p(LZ[ 1
q
](X)) ≃ LZ[ 1

p
](LZ[ 1

q
](X)) ≃

LZ[ 1
p
](PBZ/q(X)).

We finish by establishing the commutativity of the functors PBZ/p and PBZ/q. The
problem of commutation of localization functors was extensively studied in [RS00].

Proposition 6.6. Let X be a connected space, p and q two different primes. Assume that X
satisfies the hypothesis of Theorem 5.1 for both primes p and q. Then there are homotopy
equivalences

PBZ/pPBZ/qX ≃ PBZ/p∨BZ/qX ≃ PBZ/qPBZ/pX.

Proof. It is enough to show the first equivalence since the other one will follow by sym-
metry.

Consider the set of primes S = {p, q}. By pulling back the universal fibration, there is
a fibration XS → X → B(π1(X)/(TS(π1(X))), where π1(XS) = TS(π1(X)). Since the
order of π1(X)/TS(π1(X)) is prime to both p and q, the space B(π1(X)/(TS(π1(X))) is
both BZ/p-null and BZ/q-null (in particular it is also BZ/p∨BZ/q-null) the composite
of functors PBZ/p ◦ PBZ/q and PBZ/p∨BZ/q preserve the fibration [Far96, 3.D.3], and there
is a diagram of fibrations

PBZ/p(PBZ/q(XS)) //

��

PBZ/p(PBZ/q(X)) //

��

B(π1(X)/(TS(π1(X)))

id
��

PBZ/p∨BZ/q(XS) // PBZ/p∨BZ/q(X) // B(π1(X)/(TS(π1(X))).

where the first two vertical maps exist because if a space Y is BZ/p ∨ BZ/q-null, and
then it is also BZ/p-null and BZ/q-null. Then we can assume that the group π1(X) =

TS(π1(X)), which we simply denote by π in the sequel, is generated by p and q torsion.
By [RS00, Prop 1.1], we need to show that PBZ/p(PBZ/q(X)) is BZ/q-null and con-

versely PBZ/q(PBZ/p(X)) is BZ/p-null. In our situation, by symmetry, it is enough to
check one of the two conditions.

Let’s see first that PBZ/p(PBZ/q(X)) is 1-connected. We can apply the fibrewise BZ/p-
nullification to the fibration in Theorem 5.1,

LZ[ 1
q
](Xq) //

��

PBZ/q(Xq) //

��

B(π/Tq(π))

id

��
PBZ/p(LZ[ 1

q
](Xq)) // P̄ // B(π/Tq(π)),
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where LZ[ 1
q
](Xq) is 1-connected and PBZ/p(P̄ ) ≃ PBZ/p(PBZ/q(Xq));ˇ then P̄ has fun-

damental group π/Tq(π) which is generated by p torsion. If P̄ satisfies the hypothesis of
Theorem 5.1 for the prime p then PBZ/p(P̄ ) ≃ LZ[ 1

p
](P̄ ) is 1-connected. We need to check

that for any connected space Z which is p-complete and BZ/p-null, map ∗(P̄ ⟨1⟩, Z) is
weakly contractible. Note that P̄ ⟨1⟩ ≃ PBZ/p(LZ[ 1

q
](Xq)), and then

map∗(PBZ/p(LZ[ 1
q
](Xq)), Z) ≃ map∗(LZ[ 1

q
](Xq), Z) ≃ map∗(PBZ/q(Xq), Z) ≃

≃ map∗(Xq, Z),

where the last equivalence follows because (PBZ/q(Xq))
∧
p ≃ (Xq)

∧
p and Z is p-complete.

Finally Lemma 5.6 tells us that this last mapping space is weakly contractible.
We denote by Y the space PBZ/p(PBZ/q(X)), and we finally should check that it is

BZ/q-null. Since it is a 1-connected space, we can use Sullivan’s arithmetic square and
check that the mapping spaces map ∗(BZ/q, YQ) and map ∗(BZ/q, Y ∧

r ) are weakly con-
tractible for any prime r.

If r ̸= q, map ∗(BZ/q, Y ∧
r ) ≃ ∗ because (BZ/q)∧r ≃ ∗. Also, since (BZ/q)Q ≃ ∗,

map ∗(BZ/q, YQ) ≃ ∗. We are left to the case r = q, and Y ∧
q = (PBZ/p(PBZ/q(X)))∧q ≃

(PBZ/q(X))∧q ≃ ∗ by Proposition 6.2. So we are done.

For example, given a compact Lie group, BG satisfies the hypothesis of Theorem 5.1
for any prime p.

Remark 6.7. The same proof remains valid if we apply in succession over X a finite
number of BZ/p-nullification functors for different primes assuming X satisifes the hy-
pothesis of Theorem 5.1 for each prime. On the other hand, it is likely that that the nullifi-
cation of X with regard to the wedge of the classifying spaces of all primes is homotopy
equivalent to the rational localization of X . See [Flo07, Section 3.2] for details.

Acknowledgements. We would like to thank Carles Broto and Jérôme Scherer for
interesting conversations on this subject.
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