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Abstract. Given two finite p-local finite groups and a fusion preserving mor-

phism between their Sylow subgroups, we study the question of extending it
to a continuous map between the classifying spaces. The results depend on

the construction of the wreath product of p-local finite groups which is also

used to study p-local permutation representations.

1. Introduction

The concept of a p-local finite group (S,F ,L) was introduced in [7] by Broto, Levi
and Oliver and a short exposition is given in §2. It consists of a finite p-group S and
two categories F and L whose objects are subgroups of S. This structure is suitable
for studying p-completed classifying spaces of finite groups whose Sylow p-subgroup
is S. Every finite group has an associated p-local finite group [7, Proposition 1.3,
page 786] but the converse is not true.

In this paper we study maps between classifying spaces of p-local finite groups.
Suppose that (S,F ,L) and (S′,F ′,L′) are p-local finite groups. Given a group
homomorphism ρ : S → S′ it is natural to ask if Bρ : BS → BS′ can be extended, up
to homotopy, to a map f̃ : |L|∧p → |L′|

∧
p such that the following square is homotopy

commutative where Θ and Θ′ are the natural maps described in §2

BS
Θ //

Bρ

��

|L|∧p

f̃

��
BS′

Θ′
// |L′|∧p .

Recall that given fusion systems F and F ′ on S and S′ respectively, a homomor-
phism ψ : S → S′ is called fusion preserving if for every ϕ ∈ F(P,Q) there exists
some ϕ′ ∈ F ′(ψ(P ), ψ(Q)) such that ψ ◦ϕ = ϕ′ ◦ψ. Ragnarsson shows in [19] that
stably, namely in the homotopy category of spectra, f̃ in the diagram above exists
if and only if ρ is fusion preserving. Unstably this is unknown.

The content of Theorem 1.3 below is that f̃ exists provided the target L′ is
replaced with its wreath product with some symmetric group Σn, a construction
which we now describe.

Let X be a space, then G ≤ Σn acts on Xn by permuting the factors. The
wreath product of X with G, denoted X o G, is the homotopy orbit space (Xn)hG
(see Definition 3.4). This construction is equipped with a map ∆: X → X o G
which factors through the diagonal map X → Xn. For example, we prove in 3.6
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below that if X is an Eilenberg-MacLane space K(H, 1) then there is a homotopy
equivalence X oG ' K(H oG, 1) such that ∆ is induced by the diagonal inclusion
H ≤ H oG.

1.1. Theorem. Fix a p-local finite group (S,F ,L) where S 6= 1. Let K be a
subgroup of Σn and let S′ be a Sylow p-subgroup of S oK. Then there exists a p-local
finite group (S′,F ′,L′) which is equipped with a homotopy equivalence |L| oK ' |L′|
such that the composition

BS′
Bincl−−−→ B(S oK) ' (BS) oK ΘoK−−−→ |L| oK ' |L′|

is homotopic to the natural map Θ′ : BS′ → |L′|. Moreover, (S′,F ′,L′) satisfying
these properties is unique up to an isomorphism of p-local finite groups.

In Remark 5.3 we show that when Theorem 1.1 is applied to a p-local finite group
(S,F ,L) of a finite group G then (S′,F ′,L′) is the p-local finite group of G oK.

We prove Theorem 1.1 in §5 which is highly technical, however, the remainder
of the paper is completely independent of it.

1.2. Definition. We call the p-local finite group (S′,F ′,L′) in the theorem above
the wreath product of (S,F ,L) with K and denote its fusion system and linking
system by F o K and L o K respectively. Let ∆: |L| → |L| o K ' |L′| denote the
diagonal inclusion followed by the homotopy equivalence in Theorem 1.1.

If S = 1 we cannot apply Theorem 1.1, but in this case |L| = ∗ and we choose
(S′,F ′,L′) to be the p-local finite group associated to K and the map ∆: |L| → |L′|
is any map ∗ → |L′|.

1.3. Theorem. Let (S,F ,L) and (S′,F ′,L′) be p-local finite groups and suppose
that ρ : S → S′ is a fusion preserving homomorphism. Then there exists some
m ≥ 0 and a map f̃ : |L|∧p → |L′ o Σpm |∧p such that the diagram below commutes up
to homotopy

BS
η◦Θ //

Bρ

��

|L|∧p
f̃

$$JJJJJJJJJJ

BS′
η◦Θ′

// |L′|∧p
∆∧

p

// |L′ o Σpm |∧p .

A permutation representation of a finite group G is a homomorphism ρ : G→ Σn.
The rank of ρ is n. In this paper we shall call ρ simply a “representation”. Clearly
G acts on itself by left (or right) translations giving rise to Cayley’s embedding

regG : G→ Σ|G|

which is called the regular permutation representation of G.
Two representations ρ1, ρ2 : G→ Σn are equivalent if they are conjugate in Σn,

that is, if they differ by an inner automorphism of Σn. The set of equivalence classes
of representations of G of rank n is denoted Repn(G). The inclusions of subgroups
Σn×Σm ≤ Σn+m and Σn×Σm ≤ Σnm obtained by taking the disjoint union and the
product of the sets [n] = {1, . . . , n} and [m] = {1, . . . ,m} give rise to commutative,
associative and unital binary operations + and × on the set

∐
n≥0 Repn(G). We

shall write k · ρ for the k-fold sum ρ+ · · ·+ ρ.
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A classical result which goes back to Hurewicz states that the classifying space
functor induces a bijection

Repn(G) ≈ [BG,BΣn], (ρ 7→ Bρ).

When the target is p-completed, a theorem of Dwyer and Zabrodsky [12] shows that
there is also a bijection Repn(P ) ≈ [BP, (BΣn)

∧
p ] when P is a p-group. Therefore,

given a map f : |L| → (BΣn)
∧
p , f admits a representation ρ : S → Σn, unique up

to equivalence, which renders the following square homotopy commutative

BS
Θ−−−−→ |L|

Bρ

y yf
BΣn −−−−→

η
(BΣn)

∧
p .

1.4. Definition. A permutation representation of a p-local finite group (S,F ,L)
is a homotopy class of maps f : |L| → (BΣn)

∧
p . We say that f is S-regular if

n = m · |S| for some m ≥ 0 and ρ in the diagram above is equivalent to m · regS .

We shall deduce from Theorem 1.3 the following result which is a p-local form of
Cayley’s theorem. Recall from [6, Definition 2.2] that a map f : X → Y of spaces
is a homotopy monomorphism at p if H∗(X; Fp) is a finitely generated module over
H∗(Y ; Fp) via f∗.

1.5. Theorem. Every p-local finite group (S,F ,L) admits an S-regular permutation
representation f : |L| → (BΣpm)∧p which is a homotopy monomorphism at p.

The reason we didn’t define permutation representations as maps |L| → BΣn
(without p-completing the target) is that in general there is little hope to expect
to find “interesting” such maps. For example, the nerve of the linking system
of the Solomon p-local finite group, constructed by Levi and Oliver in [14], was
shown to be simply connected in [10] and therefore [21, Theorem 8.1.11] implies
that [|LSol|, BΣn] = ∗. In particular, the restriction of any f : |LSol| → BΣn to BS
via Θ is induced by the trivial representation ρ : S → Σn.

Let F be a fusion system on S. A representation ρ : S → Σn is called F-invariant
if for every P ≤ S and every ϕ ∈ F(P, S) the representations ρ|P and ρ ◦ ϕ of P
are equivalent. Let Repn(F) denote the set of all the equivalence classes of the
F-invariant representations of S of rank n. The inclusions Σm × Σn ≤ Σm+n and
Σm×Σn ≤ Σmn render the sets

∐
n≥0 Repn(F) with commutative, associative and

unital binary operations + and × such that + is distributive over ×.
More generally, the set of representations at p of rank n of a space X is Repn(X) =

[X, (BΣn)
∧
p ]. Since (BΣm)∧p × (BΣn)

∧
p ' (B(Σm × Σn))

∧
p (see [3, Theorem I.7.2]),

the maps (B(Σm × Σn))
∧
p → (BΣm+n)

∧
p and (B(Σm × Σn))

∧
p → (BΣmn)

∧
p induced

by the inclusions equip
∐
n≥0 Repn(X) with commutative and associative binary

operations + and × such that + is distributive over ×.
Given (S,F ,L) we let Repn(L) denote Repn(|L|).

1.6. Definition. The ring Rep(L) of the virtual permutation representations of a
p-local finite group (S,F ,L) is the Grothendieck group completion of the commu-
tative monoid (

∐
n≥0 Repn(L),+).
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The ring Rep(F) of the virtual F-invariant representations of S of a saturated
fusion system F on S is the Grothendieck group completion of the commutative
monoid (

∐
n≥0 Repn(F),+).

Clearly Rep(F) is a subring of Rep(S). In §8 we will construct a ring homo-
morphism Φ: Rep(L) → Rep(F) which sends a map f : |L| → (BΣn)

∧
p to the

representation ρ : S → Σn such that f ◦ Θ ' η ◦ Bρ as in Definition 1.4. We
shall also see that regS : S → Σ|S| generates an ideal Repreg(F) in Rep(F) whose
underlying group is isomorphic to Z.

The idea behind the next definition is that if H is a subgroup of index n in a
finite group G then regG |H ' n · regH . Therefore the image of the restriction map
Rep(G) → Rep(H) intersects Repreg(H) := {k · regH}k∈Z in a subgroup of index
divisible by n.

1.7. Definition. The lower index of S in L denoted Lind(L : S) is the index of
Im(Φ) ∩ Repreg(F) in Repreg(F).

We will prove in Lemma 8.5 that Lind(L : S) is a p-power. We conjecture that
it is always equal to 1. A partial result is the theorem below.

1.8. Theorem. Let (S,F ,L) be a p-local finite group. Then Lind(L : S) = 1 if
either

(1) (S,F ,L) is associated with a finite group.
(2) (S,F ,L) is one of the exotic examples in [20] or in [7] or in [8].

2. Preliminaries on p-local finite groups

We start with the notion of a saturated fusion system which is due to Puig [17]
(see also [7]).

2.1. Definition. A fusion system F on a finite p-group S is a category whose
objects are the subgroups of S and the set of morphisms F(P,Q) between two
subgroups P , Q, satisfies the following conditions:

(a) F(P,Q) consists of group monomorphisms and contains the set HomS(P,Q)
of all the homomorphisms cs : P → Q which are induced by conjugation by
elements s ∈ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclu-
sion.

In a fusion system F over a p-group S, we say that two subgroups P,Q ≤ S are
F-conjugate if there is an isomorphism between them in F . Let Sylp(G) the set of
the Sylow p-subgroups of a group G. Given P ≤ G and g ∈ G, cg ∈ Hom(P,G) is
the monomorphism cg(x) = gxg−1. We write OutF (P ) = AutF (P )/ Inn(P ).

2.2. Definition. Let F be a fusion system on a p-group S. A subgroup P ≤ S is
fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′ ≤ S which is F-conjugate to
P . A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for all P ′ ≤ S
which is F-conjugate to P .

A fusion system F on S is saturated if:
(I) Each fully normalized subgroup P ≤ S is fully centralized and AutS(P ) ∈

Sylp(AutF (P )).
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(II) For P ≤ S and ϕ ∈ F(P, S) set

Nϕ = {g ∈ NS(P )|ϕcgϕ−1 ∈ AutS(ϕ(P ))}.
If ϕ(P ) is fully centralized then there is ϕ̄ ∈ F(Nϕ, S) such that ϕ̄|P = ϕ.

2.3. Definition. Let F be a fusion system on a p-group S. A subgroup P ≤ S
is F-centric if P and all its F-conjugates contain their S-centralizers. A subgroup
P ≤ S is F-radical if OutF (P ) has no non-trivial normal p-subgroup.

2.4. Definition. [7] Let F be a fusion system on a p-group S. A centric linking
system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor π : L −→ Fc and monomorphisms P δP−→ AutL(P ) for
each F-centric subgroup P ≤ S, which satisfy the following conditions:

(A) π is the identity on objects. For each pair of objects P,Q ∈ L, the action
of Z(P ) on L(P,Q) via precomposition and δP : P → AutL(P ) is free and
π induces a bijection L(P,Q)/Z(P )

∼=−→ F(P,Q).
(B) If P ≤ S is F-centric then π(δP (g)) = cg ∈ AutF (P ) for all g ∈ P .
(C) For each f ∈ L(P,Q) and each g ∈ P , the following square commutes in L:

P
f //

δP (g)

��

Q

δQ(π(f)(g))

��
P

f
// Q

.

A p-local finite group (S,F ,L) consists of a saturated fusion systems F on S
together with an associated linking system.

2.5. Remark. For P,Q ≤ S, let NS(P,Q) denote the set of the elements s ∈ S
such that sPs−1 ≤ Q. In [7, Proposition 1.11] it is shown that (S,F ,L) can be
equipped with injections δP,Q : NS(P,Q)→ L(P,Q) where P,Q ≤ S are F-centric
such that δP,P extends the monomorphisms δP : P → AutL(P ). We denote δP,Q(s)
by ŝ ∈ L(P,Q). The construction of the δP,Q’s has the property that ŝ1 ◦ ŝ2 = ŝ1s2.
Also, if P ≤ Q we write ιQP for δP,Q(1). This gives a choice of lifts in L for the
inclusion of F-centric subgroups in F . This choice is “compatible” in the sense
that ιRQ ◦ ι

Q
P = ιRP .

2.6. Remark. Every morphism in L is both a monomorphism and an epimorphism
(but not necessarily an isomorphism). This is shown in [7, remarks after Lemma
1.10] and [4, Corollary 3.10]. We shall use this fact repeatedly throughout.

The orbit category of a p-local finite group (S,F ,L) is denoted by O(F). This
is the category whose objects are the subgroups of S and whose morphisms are

O(F)(P,Q) = RepF (P,Q)
def
= Inn(Q) \ F(P,Q).

Also, O(Fc) is the full subcategory of O(F) whose objects are the F-centric sub-
groups of S.

2.7. Proposition. [7, Proposition 2.2] Let (S,F ,L) be a p-local finite group. There
exists a functor B̃ : O(Fc) → Top which is isomorphic in the homotopy category
of spaces to the functor P 7→ BP , and such that there is a homotopy equivalence

hocolim
O(Fc)

B̃
'−→ |L|.
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2.8. Notation. For a finite group G, let BG denote the category with one object
•G and G as its set of automorphisms. For an F-centric P ≤ S the monomorphism
δP gives rise to a functor BP → L which, by abuse of notation, we denote by δP .
For P = S, upon taking nerves of categories, we obtain a map

Θ: BS → |L|
and we write Θ|BQ for Θ ◦BinclSQ.

If Q is F-centric, then the natural isomorphism of functors in Proposition 2.7
shows that Θ|BQ is homotopic to BQ ' B̃(Q)→ hocolimO(Fc)B̃ = |L|. Therefore,
for any F-centric Q ≤ S and any morphism ρ : Q→ S in F we have Θ◦Bρ ' Θ|BQ.
In particular, Θ|BQ′ ◦Bψ ' Θ|BQ for any ψ ∈ IsoF (Q,Q′). It follows from Alperin’s
fusion theorem for saturated fusion systems [7, Theorem A.10] that:

2.9. Proposition. For any Q,Q′ ≤ S and any ρ ∈ F(Q,Q′) there is a homotopy
equivalence Θ|BQ′ ◦Bρ ' Θ|BQ.

2.10. Notation. Given a map f : X → Y of spaces, let mapf (X,Y ) denote the
path component of f in map(X,Y ). By convention f is the basepoint of this space.

The following proposition on mapping spaces will be needed in §7.

2.11. Proposition. Fix a p-local finite group (S,F ,L) and let P be a finite p-group.
Given a homomorphism ρ : P → S, set Q = ρ(P ) ≤ S. Then:

(a) There is a homotopy equivalence

mapη◦Θ◦Bρ(BP, |L|∧p ) ' mapη◦Θ|BQ(BQ, |L|∧p ),

and this space is the p-completed classifying space of a p-local finite group.
(b) After p-completion, the map

mapΘ|BQ(BQ, |L|) η∗−→ mapη◦Θ|BQ(BQ, |L|∧p ).

induces a split surjection on homotopy groups.

Proof. (a) First of all, we can choose a fully centralized subgroup Q′ ≤ S in F
and an isomorphism ψ : Q → Q′ in F . Let ρ′ : P → S denote the composition
P

ρ−→ Q
ψ−→ Q′ ≤ S. By Proposition 2.9 observe that

(1) Θ|BQ ' Θ|BQ′ ◦Bψ.
Hence, Θ ◦Bρ ' Θ ◦Bρ′. It follows from [7, Theorem 6.3] that there are homotopy
equivalences

mapη◦Θ◦Bρ(BP, |L|∧p ) ' mapη◦Θ◦Bρ
′
(BP, |L|∧p ) '

mapη◦Θ|BQ′ (BQ′, |L|∧p ) ' mapη◦Θ|BQ(BQ, |L|∧p )

where the first equivalence is implied by equation (1) and the third one follows since
Bψ : BQ → BQ′ is a homotopy equivalence. Also by [7, Theorem 6.3], this space
is homotopy equivalent to the classifying space of a p-local finite group |CL(Q′)|∧p .

(b) We can assume from (1), by replacing Q with Q′ if necessary, that Q is fully
centralised in F . In [7, pp. 822] a functor

Γ: CL(Q)× BQ→ L
is constructed where CL(Q) is the centraliser linking system [7, Definition 2.4] of Q
in F . By p-completing the geometric realisation of Γ and taking adjoints we obtain
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a commutative square in which the bottom row is a homotopy equivalence by [7,
Theorem 6.3]

(2)

|CL(Q)| |Γ|#−−−−→ mapΘ|BQ(BQ, |L|)

η

y yη∗
|CL(Q)|∧p

(|Γ|∧p )#

−−−−−→
'

mapη◦Θ|BQ(BQ, |L|∧p ).

Since |CL(Q)| is p-good by [7, Proposition 1.12], upon p-completion of the diagram
(2), we see that the vertical arrow on the left becomes an equivalence and therefore
the composition (η∗)

∧
p ◦ (|Γ|#)∧p is a homotopy equivalence. In particular (η∗)

∧
p is

split surjective on homotopy groups. �

We end this section with a description of the product of p-local finite groups.

2.12. Let Fi be a saturated fusion system on a finite p-group Si for i = 1, . . . , n.
Define S =

∏n
i=1 Si and consider the product category

∏n
i=1 Fi. Its objects are the

subgroups of S of the form
∏
i Pi where Pi ≤ Si, and morphisms have the form∏

i Pi

Q
i ϕi−−−−→

∏
iQi where ϕi ∈ Fi(Pi, Qi).

2.13. Notation. For P ≤ S =
∏n
i=1 Si, we denote by P (i) the image of P under

the projection p(i) : S → Si. Clearly P ≤
∏n
i=1 P

(i).

Let F be the fusion system on S generated by
∏
i Fi. Thus, every morphism

ϕ ∈ F(P,Q) is given by the restriction of a morphism
∏
i P

(i)
Q

i ϕi−−−−→
∏
iQ

(i) in∏
i Fi. The ϕi’s are unique in the sense that they are completely determined by ϕ

because p(i)|P : P → P (i) are by definition surjective and p(i)|Q ◦ ϕ = ϕi ◦ p(i)|P .
We see that ϕ 7→ (ϕi)ni=1 induces an inclusion F(P,Q) ⊆

∏
i Fi(P (i), Q(i)). In

particular,
∏
i Fi is a full subcategory of F .

We shall write ×ni=1Fi for the fusion system F just defined and we call it the
product fusion system of the Fi’s.

2.14. Lemma. With the notation above, (S,F) is a saturated fusion system. If
P ≤ S is F-centric then all the groups P (i) are Fi-centric for i = 1, . . . , n.

The assignment P 7→
∏
i P

(i) and the inclusions F(P,Q) ⊆
∏
i Fi(P (i), Q(i)) give

rise to a functor r : Fc →
∏
i Fci which is a retract of the inclusion

∏
i Fci ⊆ Fc.

Proof. In [7, Lemma 1.5] it is proven that F = ×iFi is a saturated fusion system
on S.

The assignments P 7→
∏
i P

(i) and ϕ 7→
∏
ϕi give rise to a functor r : F →

∏
i Fi

which by inspection is a retraction to the inclusion j :
∏
i Fi → F . It remains to

show that j and r restrict to
∏
i Fci and Fc.

Observe that CS(P ) =
∏
i CSi(P

(i)) for any P ≤ S. If P is F-centric then

(1)
n∏
i=1

CSi
(P (i)) = CS(P ) ≤ P ≤

n∏
i=1

P (i).

Therefore CSi
(P (i)) ≤ P (i) for all i. Now, if Qi are Fi-conjugate to P (i) via

isomorphisms ϕi ∈ Fi(P (i), Qi) then (ϕ1 × . . . × ϕn)|P is an F-isomorphism onto
some Q ≤ S such that Q(i) = Qi. By definition Q is also F-centric and applying
(1) to Q we obtain that CSi

(Qi) ≤ Qi for all i. We deduce that P (i) are Fi-centric.
7



Assume now that Pi ≤ Si are Fi-centric for all i = 1, . . . , n. Then P =
∏
i Pi is

F-centric because if Q is F-conjugate to P then it has the form
∏
iQi where Qi

are Fi-conjugate to Pi and therefore CS(Q) =
∏
i CSi(Qi) ≤ Q. �

While the construction of the product of saturated fusion systems appears in [7],
we were not able to find a construction of the product of p-local finite groups in
the literature.

2.15. Definition. Let (Si,Fi,Li) be p-local finite groups for i = 1, . . . , n. Their
product ×ni=1(Si,Fi,Li) is the p-local finite group (S,F ,L) where S =

∏n
i=1 Si and

F = ×ni=1Fi. The centric linking system L = ×ni=1Li is defined as the following
pullback of small categories where r is defined in Lemma 2.14

×ni=1Li
rL−−−−→

∏n
i=1 Li

π

y yQn
i=1 πi

(×ni=1Fi)c −−−−→r
∏n
i=1 Fci .

The functor π : L → F is defined by the pullback and the monomorphisms δP : P →
AutL(P ) are defined by the compositions

P ≤
∏
i

P (i)

Q
i δP (i)−−−−−→

∏
i

AutLi
(P (i)).

We need to prove that axioms (A)-(C) of Definition 2.4 hold.

Proof. We first note that for any F-centric subgroups P,Q ≤ S the set L(P,Q) is
the pullback in

(1) L(P,Q) � � //

π

��

∏n
i=1 Li(P (i), Q(i))

Q
i π

��
×ni=1Fi(P,Q) � � r // ∏n

i=1 Fi(P (i), Q(i)).

We start by proving that the monomorphisms δP are well-defined. That is, given
g = (gi) ∈ P ≤ S where P is F-centric,

∏
i δP (i)(gi) ∈ AutL(P ). The pullback

diagram (1) shows that it is enough to check that
∏
πi(δP (i)(gi)) ∈ r((×ni=1Fi)c).

It follows from the fact that πi(δP (i)(gi)) = cgi
∈ AutFi

(P (i)) and r(cg) =
∏
cgi

.
This also shows that axiom (B) holds since π(δP (g)) =

∏
πi(δP (i)(gi))|P = cg|P .

We continue to prove that (S,F ,L) satisfies axioms (A) and (C). It follows from
the definition that π is the identity on objects. Observe that

∏
i CSi

(P (i)) acts
transitively and freely on the fibre of the right-hand arrow in (1) because axiom
(A) holds in (Si,Fi,Li). Now, axiom (A) for (S,F ,L) follows from the fact that
CS(P ) =

∏
i CSi

(P (i)) and that diagram (1) is a pullback square so the fibres of
the vertical arrows are isomorphic.

Finally, axiom (C) for (S,F ,L) follows by applying axiom (C) to each component
of a morphism f ∈ L(P,Q) and each g ∈ P ≤

∏
i P

(i). �

2.16. Remark. A choice of compatible lifts for inclusion {ιQi

Pi
} in every Li (see 2.5)

gives rise to a choice {ιQP } of compatible lifts for the inclusions in (S,F ,L) where

ιQP = (ιQ
(i)

P (i))ni=1.
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2.17. Proposition. Given p-local finite groups (Si,Fi,Li) for i = 1, . . . , n, the
category

∏
i Li is a full subcategory of ×iLi and the inclusion j :

∏
i Li → ×iLi

induces a homotopy equivalence on nerves. In particular,
∏n
i=1 |Li| ' | ×ni=1 Li|.

Proof. Set L = ×ni=1Li. The category
∏
i Li is a full subcategory of L by Defini-

tion 2.15 and the fact that
∏
i Fi is a full subcategory of ×iFi. The assignment

P 7→
∏
i P

(i) and the inclusion L(P,Q) ⊆
∏n
i=1 Li(P (i), Q(i)) give rise to a functor

rL : L →
∏n
i=1 Li (see the pullback diagram in Definition 2.15) which is a retract

to the inclusion j by Lemma 2.14. Also there is a natural transformation Id→ j ◦r
which is defined on an object P ∈ L by ιr(P )

P : P → r(P ) =
∏n
i=1 P

(i) (see Remark
2.16). This shows that |r| is a homotopy inverse to |j| :

∏
i |Li| → |L|. �

2.18. Remark. Given a p-local finite group (S,F ,L), Definition 2.15 allows us to
consider its n-fold product with itself denoted (S×n,F×n,L×n). By construction,
the action of the symmetric group Σn on S×n extends to an action on the fusion sys-
tem F×n and the linking system L×n by permuting the factors. Moreover, the func-
tor π : L×n → F×n and the distinguished monomorphisms δP : P → AutL×n(P )
for every F×n-centric P ≤ S×n are Σn-equivariant from the construction in Def-

inition 2.15. Therefore, also the inclusion BS×n
δS×n→ BAutL×n(S×n) → L×n is

Σn-equivariant and so is the induced map Θ: BS×n → |L×n| ' |L|×n.
The choice of ιQP in L×n made in Remark 2.16 is easily seen to be invariant under

the action of Σn as well.
Finally, the functor j and the homotopy equivalence in Proposition 2.17 are also

equivariant with respect to the action of Σn by permuting coordinates.

3. The wreath product of spaces

Let G be a finite group and X a G-space. The Borel construction XhG is the
orbit space of EG×X where EG is a contractible space on which G acts freely on
the right. Recall from 2.8 that BG is the small category with one object and G as
a morphism set. Then X can be viewed as a functor X : BG→ Top and the Borel
construction is a model for hocolimBGX. There is a natural map XhG → X/G to
the orbit space of X induced by the map EG→ ∗.

A standard model for EG is given by the nerve of the category EG whose ob-
ject set is G and there exists a unique morphism between any two objects. This
construction is natural so that if H ≤ G then EH is an H-subspace of EG. More-
over, the identity element of G renders EG with a natural choice of a basepoint
(which is not invariant under G.) This basepoint provides an augmentation map
κ(X) : X → XhG which fits into a fibration sequence

(3.1) X
κ(X)−−−→ XhG → BG.

A fixed point x ∈ X corresponds to a G-map ∗ → X and gives rise to a section
s : BG→ XhG for this fibration.

If N C G then EG ×N X is a model for XhN on which G/N acts freely in a
natural way. As a consequence we obtain a composite homotopy equivalence

(3.2) (XhN )hG/N
'−→ (EG×N X)hG/N

'−→ (EG×N X)/G
N

= EG×G X = XhG.

Moreover, note that (EG×N X)/G
N

= EG×G X = XhG and that the composition
in the bottom row of the following commutative diagram is by inspection equal to

9



the map κ : X → XhG

X
κ // XhN = EN ×N X

κ //

'

��

(EN ×N X)hG/N

'i

��

'

))TTTTTTTTTTTTTTT

X κ
// EG×N X κ

// (EG×N X)hG/N '
π // (EG×N X)/G

N
= XhG.

This shows that

(3.3) X
κ−→ XhN

κ−→ (XhN )hG/N
π◦i−−→
'

XhG is equal to X
κ−→ XhG.

3.4. Definition. The wreath product of a space X with a subgroup G of Σk is the
space

X oG := (X×k)hG
where G acts by permuting the factors of X×k. The diagonal map ∆X : X → X×k

and κ : X×k → X oG give rise to a natural map

∆(X) : X → X oG.

We shall use a left normed notation for iteration of the wreath product construc-
tion. That is, by convention, X oG1 oG2 o · · · oGn denotes (· · · ((X oG1) oG2) o · · · ) oGn.

3.5. Proposition. Given permutation groups Gi ≤ Σki
where i = 1, . . . , n, there is

a homotopy equivalence

αn : X oG1 oG2 o · · · oGn
'−→ X o (G1 oG2 o · · · oGn)

which is natural in X. Moreover, the composition

X
∆−→ X oG1

∆−→ (X oG1) oG2
∆−→ · · · ∆−→ X oG1 oG2 o · · · oGn

αn−−→
'

X o(G1 oG2 o · · · oGn)

is homotopic to ∆: X → X o (G1 oG2 o · · · oGn).

Proof. We start with n = 2. Define G = G1 o G2 and set N = G×k21 . Since
EN = (EG1)×k2 , we obtain a homeomorphism

((X×k1)hG1)
×k2 ∼= (X×k1k2)hN

which is Σk2-equivariant and where N acts on
∏
k2
X×k1 via k2 copies of the action

of G1 on X×k1 . Clearly G/N ∼= G2 ≤ Σk2 acts on this space by permuting the
factors and the homotopy equivalence α2 : X o G1 o G2 ' X o (G1 o G2) is defined
with the aid of (3.2) by

(((X×k1)hG1)
×k2)hG2 = ((X×k1k2)hN )hG/N

'−−→ (X×k1k2)hG.

Furthermore the triangle below commutes by (3.3)

(1) X
∆(x)//

∆(X) **UUUUUUUUUUUUUUUUUUU X oG1
∆(XoG1)// X oG1 oG2

α2

��
X o (G1 oG2).

We define αn for n ≥ 2 inductively by the composition

X oG1 o · · · oGn
αn−1oGn−−−−−−→ X o (G1 o · · · oGn−1) oGn

α2−→ X o (G1 o · · · oGn).
10



Consider the following commutative diagram where the triangle on the left com-
mutes by induction hypothesis

X oG1 o · · · oGn−1
∆ //

αn−1

��

X oG1 o · · · oGn

αn−1oGn

��

αn

**UUUUUUUUUUUUUUUU

X

∆◦···◦∆
77ooooooooooooo

∆
// X o (G1 o · · · oGn−1)

∆
// X o (G1 o · · · oGn−1) oGn

'
α2

// X o (G1 o · · · oGn).

The property of αn stated in the proposition follows from (1) applied to the com-
position at the bottom row of this diagram. �

3.6. Remark. Clearly Σk fixes all the points in the image of the diagonal map
X → Xk. If X 6= ∅, then the fibre sequence (3.1) Xk → X oG→ BG splits for any
G ≤ Σk and the long exact sequence in homotopy groups gives rise to isomorphisms

π1(X oG) ∼= (π1X) oG and

πi(X oG) ∼= (πiX)k for all i ≥ 2.

Moreover, κ : Xk → X o G induces inclusions
∏
k π∗X ≤ π∗(X o G) on which G ≤

π1(X oG) acts on higher homotopy groups by permuting the factors.
In particular, if X = BH for a discrete group H, there is a homotopy equivalence

(BH) oG ' B(H oG) and ∆: BH → (BH) oG ' B(H oG) is homotopic to the map
induced by the diagonal inclusion H ≤ H oG.

Let Y be a G-space. For any space X, map(X,Y ) becomes a G-space, and the
evaluation map X ×map(X,Y ) ev−→ Y is clearly G-equivariant. Therefore it gives
rise to a map evhG : X ×map(X,Y )hG → YhG whose adjoint is denoted

(evhG)# : map(X,Y )hG → map(X,YhG).

If the component mapf (X,Y ) of some f : X → Y is invariant under the G-action
then inspection of the adjunction shows that (evhG)# restricts to

(evhG)# : mapf (X,Y )hG → mapκ(Y )◦f (X,YhG).

Moreover, the composite

(3.7) mapf (X,Y ) κ−→ mapf (X,Y )hG
(evhG)#−−−−−→ mapκ◦f (X,YhG)

coincides with the natural map induced by Y
κ(Y )−−−→ YhG when applying map(X,−).

3.8. Proposition. Fix a map f : A→ X and G ≤ Σk. Denote the adjoint of

A× (mapf (A,X) oG) = A×map∆X◦f (A,Xk)hG
evhG−−−→ (Xk)hG = X oG

by γ : mapf (A,X) oG→ map∆(X)◦f (A,X oG). Then:
(a) The triangle

mapf (A,X)

∆

��

map(A,∆(X))

))SSSSSSSSSSSSSS

mapf (A,X) oG γ
// map∆(X)◦f (A,X oG).

is commutative.
(b) If the natural map BG → mapc(A,BG) into the the space of the constant

maps induces a homotopy equivalence then γ is a homotopy equivalence.
11



Proof. (a) Note that
∏
k mapf (A,X) = map∆X◦f (A,Xk) and that this component

is invariant under the action of G ≤ Σk. The commutativity of the triangle follows
from (3.7) and Definition 3.4.

(b) Consider the following ladder in which the rows are fibre sequences and π∗
is induced by X → ∗.

(1)

mapf (A,X)k −−−−→ mapf (A,X) oG −−−−→ BG

incl

y γ

y '
yconst

F −−−−→ map∆(X)◦f (A,X oG) −−−−→
π∗

mapc(A,BG).

It commutes because the right hand square commutes as a consequence of the
commutativity of the following square and adjunction

A×map∆X◦f (A,Xk)hG −−−−→ A×map(A, ∗)hG
evhG

y yproj=evhG

(X×k)hG −−−−→
π

∗hG = BG.

Now, F is a union of path components of map(A,Xk) because it is the fibre of the
fibration map(A,X o G) → map(A,BG) over the component of the constant map.
Moreover, F clearly contains the component map∆X◦f (A,Xk) and inspection of
γ shows that the map between the fibres is simply the inclusion. Comparison of
the long exact sequences in homotopy of the fibre sequences in (1) shows that F is
connected, whence F = mapf (A,X)×k. Application of the five lemma to the exact
sequences in homotopy now yields the result. �

3.9. Remark. The hypothesis on A in part (b) of Proposition 3.8 is satisfied by all
classifying spaces BK of finite groups since mapc(BK,BG) ' BG.

4. Killing homotopy groups

The aim of this section is to study the effect on homotopy groups of the map

X
∆(X)−−−→ X o Σk

η−→ (X o Σk)∧p where ∆(X) was defined in the last section and η is
the p-completion map.

4.1. Proposition. Let X be a pointed space. Then the kernel of π∗X → π∗(X∧
p )

contains all the elements whose order is prime to p.

Proof. Let [Θ] ∈ π∗(X) be an element of order k prime to p. Then the map
Θ: Sn → X factors through the Moore space M(Z/k, n), which is a nilpotent space
with the same mod p homology of a point. It follows that η ◦Θ: Sn → X∧

p factors
through M(Z/k, n)∧p ' ∗ (see [3, Ch. VI.5]), and therefore is nullhomotopic. �

An element of exponent n in a group G is an element whose order divides n. For
the proof of the next result, recall that for any space, π1(X) acts on the groups
π∗X, see e.g. [21, Corollary 7.3.4] or [23, Ch. III]. We write αω for the action of
ω ∈ π1X on α ∈ πnX.

4.2. Lemma. Fix an integer n ≥ 3 and a pointed space X. Then the kernel of

π∗X
∆(X)∗−−−−→ π∗(X o Σn)

η∗−→ π∗((X o Σn)∧p )

contain all the elements of exponent n in π∗X.
12



Proof. We recall from Remark 3.6 that

π1(X o Σn) = (π1X) o Σn
πi(X o Σn) = ⊕nπiX for i ≥ 2.

Furthermore, κ :
∏
nX → X o Σn induces the inclusion

∏
n π∗X ≤ π∗(X o Σn).

The section s : BΣn → X o Σn defined by the fixed point (∗, . . . , ∗) ∈ Xn induces
the inclusion Σn ≤ π1(X o Σn) which acts by permuting the factors of π∗(Xn) ≤
π∗(X o Σn).

Since n ≥ 3 we can choose elements ωk ∈ Σn whose order is prime to p and
ωk(1) = k for all k = 1, . . . , n. Indeed, if p > 2 we can choose the involutions
ωk = (1, k). If p = 2 we chan choose ωk to be 3-cycles (note that n ≥ 3.) In both
cases we choose ω1 = id.

For every k = 1, . . . , n let jk : X →
∏
nX denote the inclusion into the kth

factor. Note that diag : X → Xn induces diag∗(θ) = (θ, . . . , θ) ∈
∏
n π∗X. By

inspection of the action of ωk ∈ π1(X o Σn), it follows that for any θ ∈ πiX,
(κ ◦ jk)∗(θ) = ((κ ◦ j1)∗(θ))ωk ∈ πi(X o Σn). Now fix some θ ∈ πiX of exponent n.

Since ∆(X) is defined as the composition X
diag−−−→

∏
nX

κ−→ X o Σn, we have

∆(X)∗(θ) =
n∏
k=1

(κ ◦ jk)∗(θ) =
n∏
k=1

((κ ◦ j1)∗(θ))ωk .

Now consider the p-completion map X oΣn
η−→ (X o Σn)∧p and note that it maps ωk

to the trivial element by Proposition 4.1. By applying η∗ and using the naturality
of the action of the fundamental group we see that

(η ◦∆(X))∗(θ) =
n∏
k=1

η∗
(
((κ ◦ j1)∗(θ))ωk

)
=

n∏
k=1

η∗
(
(κ ◦ j1)∗(θ)

)η∗(ωk)

= (η∗((κ ◦ j1)∗(θ)))n = η∗((κ ◦ j1)∗(θn)) = 0.

�

4.3. Lemma. Fix a map f : X → Y and assume that every element of πimapf (X,Y )
has exponent k for some k ≥ 3. Assume further that mapη◦∆(Y )◦f (X, (Y o Σk)∧p ) is
p-complete. Then the induced homomorphism

πimapf (X,Y )
map(X,η◦∆(Y ))−−−−−−−−−−→ πimapη◦∆(Y )◦f (X, (Y o Σk)∧p )

is trivial.

Proof. According to Proposition 3.8(a) the triangle in the diagram below commutes
up to homotopy.

mapf (X,Y )
∆(Y )∗//

∆
((QQQQQQQQQQQQQQ

map∆◦f (X,Y o Σk)
η∗ // mapη◦∆◦f (X, (Y o Σk)∧p )

mapf (X,Y ) o Σk

γ

OO

η
// (mapf (X,Y ) o Σk)

∧
p

OO

Since mapη◦∆(Y )◦f (X, (Y o Σk)∧p ) is p-complete, the map (η∗ ◦ γ)∧p gives rise to a
choice of a map for the dotted arrow so that the square is homotopy commutative.
We can now apply Lemma 4.2 to the diagonal arrow ∆ and the bottom arrow η. �
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5. The wreath product of p-local finite groups

Given a finite group G, the space (BG) oΣk is the classifying space of the group
GoΣk (see 3.6). In this section we prove an analogous result for p-local finite groups.

Recall from Remark 2.5 that any p-local finite group (S,F ,L) is equipped with
functions δP,Q : NS(P,Q) → L(P,Q), where P,Q are F-centric. We shall denote
δP,Q(s) by ŝ. Thus, an element s ∈ S permutes the set of all morphisms L, by
either pre-composition with ŝ−1 (i.e. ϕ 7→ ϕ ◦ ŝ−1) or by post-composition with ŝ
(i.e ϕ 7→ ŝ ◦ ϕ). We obtain an action of S on L by conjugation of the subgroup
P ≤ S and by conjugation of morphisms ϕ 7→ ŝ ◦ ϕ ◦ ŝ−1.

5.1. Definition. The action of a group G on S is called fusion preserving if the
image of G τ−→ Aut(S) consists of fusion preserving automorphisms, that is, for
every ϕ ∈ F(P,Q) and every g ∈ G the composition τg ◦ ϕ ◦ τ−1

g belongs to
F(τg(P ), τg(Q)).

In this section we prove Theorem 5.2 which is a variant of [4, Theorem 4.6]. While
condition (2) of Theorem 5.2 offers some simplifications, we relax the assumption
imposed in [4] that G is a finite p-group. The main idea of the proof remains the
same but some new arguments were also needed and therefore we decided to present
a complete proof of Theorem 5.2.

5.2. Theorem. Let G be a finite group which acts on the centric linking system L0

of a p-local finite group (S0,F0,L0). The action of g ∈ G on ϕ ∈ L0 is denoted by
ϕ 7→ g ·ϕ · g−1. Assume that S0 CG and let S be a Sylow p-subgroup of G. Assume
further that:

(1) AutG(S0) acts via fusion preserving automorphisms.
(2) For any g ∈ G, if cg ∈ F0(P0, Q0) for F0-centric subgroups P0, Q0 ≤ S0,

then g ∈ S0.
(3) The action of G on L0 extends the action of S0 on L0 by conjugation.
(4) The monomorphism δS0 : S0 → AutL0(S0) is G-equivariant.
(5) The projection π0 : L0 → F0 is G-equivariant, that is π0(g · ϕ · g−1) =

cg ◦ π0(ϕ) ◦ cg−1 .
(6) There is a compatible choice of lifts of inclusions in L0 such that for any

g ∈ G and every inclusion of F0-centric subgroups P0 ≤ Q0, we have
g · ιQ0

P0
· g−1 = ι

gQ0
gP0

.

Then, there exists a p-local finite group (S,F ,L) with the following properties:

(a) There are inclusions F0 ⊆ F , Fc0 ⊆ Fc and L0 ⊆ L in such a way that
the distinguished monomorphisms δP in L extend the ones in L0. The map
i : |L0| → |L| induced by the inclusion fits in a homotopy fibre sequence

|L0|
i−→ |L| → B(G/S0).

Moreover, if S0 has a complement K in G, that is G = S0 oK, then:

(b) There is a homotopy equivalence |L0|hK
'−→ |L| such that the composition

|L0| → |L0|hK ' |L| is homotopic to |L0|
i−→ |L| and such that Θ: BS → |L|

is homotopic to the composition

BS
Bincl−−−→ BG ' (BS0)hK

(Θ0)hK−−−−−→ |L0|hK ' |L|.
14



(c) Up to isomorphism (S,F ,L) is the unique p-local finite group with the prop-
erties in (b).

As a corollary we obtain the proof of Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. By Remark 2.18 there is an action of Σn on the n-fold prod-
uct (S0,F0,L0) = (S×n,F×n,L×n) by permuting the factors.

The action of S0 on L0 by conjugation clearly extends to an action of S0 o Σn
because S0 = S×n acts on every coordinate of L0 = L×n and Σn acts by permuting
the factors of L0 and the factors of S0 = S×n. Set G = S oK = S0 oK. We shall
now show that the action of G on L0 satisfies hypotheses (1)-(6) of Theorem 5.2.

Hypothesis (1) is clearly satisfied because K acts on S0 by permuting the factors
which is an automorphism of F0 = F×n. Hypothesis (3) holds by the definition
of the action of G = S0 oK on L0. Hypothesis (4) holds for similar reasons since
K ≤ Σn acts on P0 ≤ S0 and on AutF0(P0) ≤

∏
i AutF (P (i)

0 ) by permuting the
factors (see Definition 2.15) where P (i)

0 is the image of P0 under the projection
pi : S×n → S to the ith factor. For hypothesis (5) note that π : L0 → F0 is Σn-
equivariant and it is also S0-equivariant since π(ŝ) = cs for any s ∈ S. Hypothesis
(6) holds as we indicated above for the choice of the morphisms {ιQ0

P0
} which we

described in Remarks 2.16 and 2.18.
It remains to check hypothesis (2). Fix an F0-centric subgroup P0 ≤ S0 and

let P (i)
0 be defined as above (see 2.13). Since P (i)

0 are F-centric for i = 1, . . . , n
by Lemma 2.14 and S 6= 1, it follows that P (i)

0 6= 1 whence Z(P (i)
0 ) 6= 1 for all

i = 1, . . . , n. Also note that
∏
i Z(P (i)

0 ) =
∏
i CS(P (i)

0 ) = CS0(P0) ≤ P0 because P0

is F0-centric. Fix some g = (s1, . . . , sn;σ) ∈ G = S oK and assume that g /∈ S0,
namely σ 6= 1. Without loss of generality we can assume that σ(1) = 2. Choose
1 6= z1 ∈ CS(P (1)

0 ) and consider (z1, 1, . . . , 1; id) ∈
∏n
i=1 Z(P i0) ≤ P0. Then

cg((z1, 1, . . . , 1; id)) = (s1, . . . , sn;σ)(z1, 1, . . . , 1; id)(s−1

σ−1(1), . . . , s
−1

σ−1(n);σ
−1)

= (1, s2z1s−1
2 , 1, . . . , 1; id).

Therefore cg /∈ F0(P0, S0) because it cannot be a restriction of a morphism in
∏
n F .

Now we apply Theorem 5.2(b) to conclude that there exists a p-local finite group
(S′,F ′,L′) with (|L0|)hK ' |L′| such that

(1) BS′
Bincl−−−→ BG ' (BS0)hK

(Θ0)hK−−−−−→ |L0|hK ' |L′|

is homotopic to Θ′ : BS′ → |L′|. Also observe that the horizontal arrows in

(BS)×n BS0

Θ×n

y yΘ0

|L|×n −−−−→
'

|L0|

form a Σn-equivariant map of the vertical arrows. It follows that the composite in
(1) is homotopic to the map

BS′
Bincl−−−→ BG ' (BS) oK ΘoK−−−→ |L| oK ' |L′|.

which is therefore homotopic to Θ′ : BS′ → |L′|. Finally, the uniqueness of (S′,F ′,L′)
with this property is guaranteed by part (c) of Theorem 5.2. �
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5.3. Remark. If the p-local finite group in Theorem 1.1 is associated with a finite
group G then (S′,F ′,L′) satisfies |L′|∧p ' (|L|∧p oK)

∧
p
' (BG∧p oK)∧

p
' B(G oK)∧p .

Those equivalences follow from the Serre spectral sequence associated to |L|n×KEK
and [3, Lemma I.5.5] since the spaces involved are p-good ([7, Proposition 1.12]).

In the remainder of this section we will prove Theorem 5.2. From now on, the
hypotheses and notation of Theorem 5.2 are in force. The construction of
(S,F ,L) will be obtained in a sequence of steps which we describe now in 5.4–5.17.
These statements will be proved after the proof of Theorem 5.2 which succeeds
them.

5.4. Definition. Let H0 denote the set of all the F0-centric subgroups of S0. Fix
once and for all a Sylow p-subgroup S of G and for every P ≤ S let P0 denote
P ∩ S0.

5.5. Lemma. The action of G on the set of all subgroups of S0 by conjugation
restricts to an action on the set H0.

5.6. Definition. Let F1 be the fusion system on S0 generated by F0 and AutG(S0).
Define a category L1 whose object set is H0 and

Mor(L1) =
( ∐
P0,Q0∈H0

G× L0(P0, Q0)
)
/
{

(gs, ϕ) ∼ (g, ŝ ◦ ϕ) ; s ∈ S0

}
.

The morphisms set L1(P0, Q0) where P0, Q0 ∈ H0 consists of the equivalence classes
[g : ϕ] such that g ∈ G and ϕ ∈ L0(P0, Q

g
0). Composition is given by the formula

[g : ϕ] ◦ [h : ψ] = [gh : (h−1ϕh) ◦ ψ],

and identities are the elements of the form [1 : idP0 ].
Define a functor π1 : L1 → F1 which is the identity on the set of objects and

π1([g : ϕ]) = cg ◦ π0(ϕ).

We also define functions δ̂P0,Q0 : NG(P0, Q0) → L1(P0, Q0) by g 7→ [g : ιQ
g
0

P0
] and

denote the image of g by ĝ.

After showing that L1 is well defined we will prove the following properties.

5.7. Lemma. The category L1 satisfies the following properties:
(a) There is an inclusion functor j : L0 → L1 which is the identity on objects

and ϕ 7→ [1 : ϕ] on morphisms.
(b) Every morphism in L1 has the form ĝ◦ϕ where ϕ is a morphism in L0 ⊆ L1.

If ϕ ∈ L0(P0, Q0) and x ∈ NG(P0), then ϕ ◦ x̂ = x̂ ◦ (x−1ϕx).
(c) There is a homotopy fibre sequence

|L0|
|j|−→ |L1| → B(G/S0).

If S0 admits a complement K in G then there is a homotopy equivalence
|L0|hK ' |L1| such that the composition |L0| → |L0|hK ' |L1| is homotopic
to the map induced by the inclusion j. Moreover, the composite

BG ' (BS0)hK
(Θ0)hK−−−−−→ |L0|hK ' |L1|

is homotopic to the map BG → |L1| induced by the functor k : BG → L1

with k(•G) = S0 and k(g) = [g : 1S0 ].
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The next step in our construction is to define the following category.

5.8. Definition. Define a category L2 whose object set is

H = {P ≤ S : P0 ∈ H0}
and whose morphism sets are defined by

L2(P,Q) = {ψ ∈ L1(P0, Q0) : ∀x ∈ P∃y ∈ Q(ψ ◦ x̂ = ŷ ◦ ψ)}.
By construction L2(P,Q) ⊆ L1(P0, Q0) and composition of morphisms is obtained
by composing them in L1. Identities idP have the form [1 : idP0 ]. Also define maps
δ̂P,Q : NG(P,Q)→ L2(P,Q) by g 7→ [g : ιQ

g
0

P0
] and denote the image of g by ĝ.

The main properties of the category L2 and its relation to the previously defined
L1 are contained in next two lemmas.

5.9. Lemma. The category L1 is the full subcategory of L2 on the objects H0 and
the inclusion j : L1 → L2 induces a homotopy equivalence on nerves.

5.10. Lemma. The category L2 satisfies the following properties:
(a) For every morphism ψ ∈ L2(P,Q) there exists a unique group monomor-

phism π2(ψ) : P → Q which satisfies ψ ◦ x̂ = ̂π2(ψ)(x) ◦ ψ in L2 for all
x ∈ P . Moreover, π2(ψ)|P0 = π1(ψ).

(b) π2 carries identities to identities and π2(λ) ◦ π2(ψ) = π2(λ ◦ ψ) for every

P
ψ−→ Q

λ−→ R in L2.
(c) For every ĝ ∈ L2(P,Q) with g ∈ NG(P,Q), we have π2(ĝ) = cg.
(d) Given ψ ∈ L2(P,Q), if π2(ψ) is an isomorphism of groups then ψ is an

isomorphism in L2.

Lemma 5.10 justifies the following definition.

5.11. Definition. Let F2 be the category whose object set is H (see Definition
5.8) and whose morphism sets F2(P,Q) are the set of group monomorphisms
π2(L2(P,Q)) defined by Lemma 5.10. By the properties shown in this lemma,
there results a projection functor π2 : L2 → F2 which is the identity on objects.

5.12. Lemma. The category F2 satisfies the following properties:
(a) For every P,Q ∈ H, HomG(P,Q) ⊆ F2(P,Q). In particular, F2 contains

all the inclusions P ≤ Q of groups in H.
(b) Every morphism in F2 factors as an isomorphism in F2 followed by an

inclusion. In particular, every isomorphism of groups f : P → Q in F2 is
an isomorphism in F2.

Thus, F2 falls short of being a fusion system on S only because its set of objects
H need not contain all the subgroups of S.

5.13. Definition. Let F denote the fusion system on S generated by F2.

5.14. Lemma. The fusion system F over S satisfies the following properties:
(a) F2 is the full subcategory of F generated by the objects in H.
(b) Every P ∈ H is F-centric. In particular, H0 ⊆ Fc.
(c) Every morphism f ∈ F(P,Q) restricts to a morphism f |P0 ∈ F(P0, Q0).

5.15. Lemma. The functor π2 : L2 → F satisfies all the axioms of a centric linking
system on the object set H.
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Finally, the last step in the proof is to show that the fusion system (S,F) defined
in 5.13 is saturated and that L2 can be extended to a unique centric linking system
L associated to F .

5.16. Lemma. F is a saturated fusion system on S.

5.17. Lemma. There exists a p-local finite group (S,F ,L) such that π2 : L2 → F is
the restriction of π : L → F and moreover δ̂P : P → AutL2(P ) are the distinguished
monomorphisms of (S,F ,L) for all P ∈ H. Moreover, L2 is a full subcategory of
L and the inclusion L2 ⊆ L induces a homotopy equivalence on nerves.

Assuming definitions and lemmas 5.4–5.17, we can now prove Theorem 5.2.

Proof of Theorem 5.2. The p-local finite group (S,F ,L) is constructed in Lemma
5.17. Together with Lemma 5.9 we obtain inclusions of full subcategories L1 ⊆
L2 ⊆ L which induce homotopy equivalences on nerves. By Lemma 5.7(c), there
results the homotopy fibre sequence of part (a).

Now assume that S0 has a complement K in G and we prove points (b) and (c).
Lemma 5.7(c) shows that there are homotopy equivalences |L0|hK ' |L1| ' |L|
such that |L0| → |L0|hK ' |L| is homotopic to the map induced by the inclusion
L0 ⊆j L1 ⊆ L. Moreover the map

BS
Bincl−−−→ BG ' (BS0)hK

(Θ0)hK−−−−−→ |L0|hK ' |L|
is induced by the functor Λ0 : BS → L which sends •S to S0 and defined on mor-
phisms by s 7→ [s : 1S0 ] = ŝ ∈ AutL(S0) (see Lemmas 5.17, 5.7 and Definition 5.8).
The map Θ: BS → |L| is the realisation of the functor Λ1 : BS → BAutL(S)→ L
where s 7→ ŝ ∈ AutL(S), then the lift of the inclusion ιSS0

∈ L(S0, S) provides
a natural transformation Λ0 → Λ1 (note that ŝ ◦ ιSS0

= ιSS0
◦ ŝ by Remark 2.5).

Therefore |Λ0| and |Λ1| are homotopic and the proof of point (b) is complete.
Now assume that (S,F ′,L′) is another p-local finite group which satisfies the

properties in point (b). Let λ denote the composition BS → BG = (BS0)hK →
|L0|hK . By assumption there is a homotopy commutative diagram

BS

Θ

{{ww
ww

ww
ww

w
λ

��

Θ′

$$HH
HH

HH
HH

H

|L| |L0|hK'
oo

'
// |L′|.

The isomorphism of (S,F ,L) and (S,F ′,L′) follows from [7, Theorem 7.7] �

The rest of the section is devoted to the proof of statements in 5.5–5.17.

Proof of Lemma 5.5. First of all, observe that S0CG so for any P0 ∈ H0 and g ∈ G
we have CS0(gP0g

−1) = gCS0(P0)g−1 = Z(gP0g
−1) because P0 is F0-centric.

Now fix some P0 ∈ H0 and g ∈ G. It follows from hypothesis (1) that every
R0 ≤ S0 which is F0-conjugate to gP0g

−1 has the form gQ0g
−1 for some Q0 ≤ S0

which is F0-conjugate to P0. In particular Q0 ∈ H0. It follows from the calculation
above that CS0(gP0g

−1) = Z(gP0g
−1) and that CS0(R0) = Z(gQ0g

−1) = Z(R0).
This shows that gP0g

−1 is F0-centric, namely gP0g
−1 ∈ H0. �

5.18. Lemma. For every F0-centric P0, Q0 ≤ S0, every s ∈ NS0(P0, Q0) and every
g ∈ G we have gŝg−1 = ĝsg−1 as morphisms in L0(gP0,

gQ0).
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Proof. Set R0 = gQ0g
−1. It suffices to show that the equality holds after post-

composition with ιS0
R0

because the latter is a monomorphism in L0 (see Remark
2.6). Note that ιS0

R0
= g(ιS0

Q0
)g−1 by hypothesis (6), therefore using Remark 2.5,

we conclude that ιS0
R0
◦ gŝg−1 = gŝg−1 and ιS0

R0
◦ ĝsg−1 = ĝsg−1 as morphisms in

L0(P0, S0). We may therefore prove the equality needed in this lemma under the
assumption that Q0 = S0.

Remark 2.5 shows that ŝ : P0 → S0 is equal to δS0(s) ◦ ι
S0
P0

, which together with
hypothesis (6) and the fact that ιS0

gP0g−1 is an epimorphism in L0 imply that it
suffices to prove (5.18) when P0 = S0. But this is hypothesis (4) of Theorem
5.2. �

Proof of Definition 5.6. By Lemma 5.5 if Q0 ∈ H0 then Qg0 ∈ H0 for any g ∈ G.
This shows that pairs [g : ϕ] where ϕ ∈ L0(P0, Q

g
0) are well defined and that,

moreover, every element [g : ϕ] in Mor(L1) has this form. The verification that the
formula for composition of morphisms is well defined is identical to the one in [4,
Theorem 4.6]. Specifically, for any g0, h0 ∈ S0

[gg0 : ϕ] ◦ [hh0 : ψ] = [gg0hh0 : (h−1
0 h−1ϕhh0) ◦ ψ] = by hypothesis (3)

[gg0h : (h−1ϕh) ◦ ĥ0 ◦ ψ] = [gh : ĥ−1g0h ◦ (h−1ϕh) ◦ ĥ0 ◦ ψ] = by Lemma 5.18

[gh : h−1(ĝ0 ◦ ϕ)h ◦ ĥ0 ◦ ψ] = [g : ĝ0 ◦ ϕ] ◦ [h : ĥ0 ◦ ψ].

Associativity is straightforward as well as checking that [1 : 1P0 ] are identity mor-
phisms P0 → P0.

It is evident from the definition that π1 maps identity morphisms in L1 to iden-
tities in F1. It also respects compositions by the following calculation which uses
hypothesis (5) in the third equality

π1([g : ϕ]) ◦ π1([h : ψ]) = cg ◦ π0(ϕ) ◦ ch ◦ π0(ψ)

= cgh ◦ (ch−1 ◦ π0(ϕ) ◦ ch) ◦ π0(ψ) = cgh ◦ π0(h−1ϕh) ◦ π0(ψ)

= cgh ◦ π0(h−1ϕh ◦ ψ) = π1([gh : h−1ϕh ◦ ψ]) = π1([g : ϕ] ◦ [h : ψ]).

�

Proof of Lemma 5.7. (a) By Definition 5.6 we have [1 : ϕ]◦ [1 : ϕ′] = [1 : ϕ◦ϕ′] so j
is clearly associative and unital. It is an inclusion functor because [1 : ϕ] = [1 : ϕ′]
if and only if ϕ = ϕ′ by the definition of morphisms in L1.

(b) Clearly, every morphism ψ in L1 has the form [g : ϕ] = [g : 1]◦ [1 : ϕ] = ĝ ◦ϕ.
Given ϕ and x as in the statement, by Definition 5.6

ϕ ◦ x̂ = [1 : ϕ] ◦ [x : 1] = [x : x−1ϕx] = [x : 1Qx
0
] ◦ [1 : x−1ϕx] = x̂ ◦ x−1ϕx.

(c) Set Ḡ = G/S0 and denote its elements by ḡ = gS0. There is a functor
Π: L1 → B(Ḡ) which sends every object of L1 to •Ḡ and maps [g : ϕ] 7→ ḡ. This
assignment is evidently well defined and functorial by the constructions of L1 in
Definition 5.6.

Now, consider the comma category (•Ḡ ↓ Π). Its objects are pairs (ḡ, P0) and
morphisms (ḡ, P0) → (h̄, Q0) are morphisms [x : λ] ∈ L1(P0, Q0) such that x̄ =
h̄ḡ−1. We can easily check that ĝ : P g0 → P0 provides an isomorphism (ē, P g0 ) →
(ḡ, P0) in (•Ḡ ↓ Π). Therefore, the set of objects of the form (ē, P0) form a skeletal
full subcategory of (•Ḡ ↓ Π), that is, it contains an element from every isomorphism
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class of objects. This subcategory is clearly isomorphic to L0 and moreover the
composition L0 ⊆ (•Ḡ ↓ Π)→ L1 is the inclusion j in part (a).

Moreover, any morphism ḡ ∈ BḠ clearly induces an automorphism of the cat-
egory (•Ḡ ↓ Π). Therefore, Quillen’s theorem B [18] applies in this situation to
show that |(•Ḡ ↓ Π)| → |L1| → |B(G/S0)| is a homotopy fibre sequence. Fi-
nally, using the homotopy equivalence |j| we obtain the homotopy fibre sequence

|L0|
|j|−→ |L1|

|Π|−−→ BG/S0.
Now suppose that S0 has a complement K in G. Recall that G acts on the

category L0 and we view the restriction of this action to K as a functor BK → Cat.
Let TrK(L0) denote the transporter category (or Grothendieck construction) of
this functor; See e.g. [22]. The object set of TrK(L0) is H0, and the morphisms
P0 → Q0 are pairs (k, ϕ) where ϕ ∈ L0(kP0, Q0). Composition is given by the
following formula: (k2, ϕ2) ◦ (k1, ϕ1) = (k2k1, ϕ2 ◦ k2ϕ1k

−1
2 ). Define a functor

Φ: TrK(L0)→ L1 which is the identity on objects and

Φ: TrK(L0)(P0, Q0)→ L1(P0, Q0) is defined by (k, ϕ) 7→ [k : k−1ϕk].

It is clear that Φ(1, id) = [1 : id] and for any pair of composable morphisms (k2, ϕ2)
and (k2, ϕ2) in TrK(L0),

Φ(k2, ϕ2) ◦ Φ(k1, ϕ1) = [k2 : k−1
2 ϕ2k2] ◦ [k1 : k−1

1 ϕ1k1]

= [k2k1 : k−1
1 k−1

2 ϕ2k2k1 ◦ k−1
1 ϕ1k1] = Φ(k2k1, ϕ2 ◦ k2ϕ1k

−1
2 ).

By definition Φ is bijective on the object set. We will show now that it is bijective
on morphism sets. For any morphism ψ = [g : ϕ] ∈ L1(P0, Q0) there is a unique
k ∈ K∩gS0, hence ψ = [k : ϕ′] for a unique k ∈ K and a unique ϕ′ ∈ L0(P0,

k−1
Q0).

Then (k, kϕ′k−1) ∈ TrK(L0)(P0, Q0) is a preimage of [k : ϕ′] under Φ. In fact, it is
unique because K ∩ S0 = 1.

Thomason [22] constructed a homotopy equivalence |L0|hK
β−→ |TrK(L0)| such

that |L0| → |L0|hK ' |TrK(L0)| is homotopic to the map induced by the inclusion
L0 ⊆ TrK(L0) via ϕ 7→ [ē : ϕ]. Furthermore, by inspection Φ carries the subcate-
gory of L0 in TrK(L0) onto L0 ⊆ L1 via the identity map. We deduce that |Φ| ◦ β
is a homotopy equivalence |L0|hK → |L1| whose composition with |L0| → |L0|hK
is homotopic to the map induced by the inclusion j : L0 → L1.

To complete the proof we now consider the subcategory BS0 of BAutL0(S0) ⊆ L0

via the monomorphism δS0 : S0 → AutL0(S0) and observe that it is invariant under
the action of K by Lemma 5.18. Thus, there is an inclusion of subcategories
TrK BS0 ⊆ TrK L0 induced by TrK(δS0). By inspection there is an isomorphism of
categories TrK BS0

∼= BG via the functor (k, s) 7→ sk such that he composition

BG ∼= TrK(BS0) ⊆ TrK(L0)
Φ−→ L1

is the functor which sends •G to S0 and g 7→ [g : 1] ∈ AutL1(S0). �

Here are more properties of L1 that we will need later.

5.19. Lemma. The category L1 satisfies the following properties:
(a) For every P0, Q0, R0 ∈ H0 and every g ∈ NG(P0, Q0) and h ∈ NG(Q0, R0)

the equality ĥ ◦ ĝ = ĥg holds in L1.
(b) Fix P0, Q0 ∈ H0 and ψ ∈ L1(P0, Q0). Then, for every x ∈ NG(P0) there

exists at most one y ∈ NG(Q0) such that ψ ◦ x̂ = ŷ ◦ ψ. In this case
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y = gxg−1s0 for a unique s0 ∈ S0. Moreover, if x ∈ P0 then y = π1(ϕ)(x)
satisfies ψ ◦ x̂ = ŷ ◦ ψ.

(c) Every morphism ĝ ∈ L1(P0, Q0) is both a monomorphism and an epimor-
phism.

(d) Fix ψ ∈ L1(P0, Q0) such that π1(ψ)(P0) ≤ R0 for some R0 ≤ Q0. Then
there exists λ ∈ L1(P0, R0) such that ψ = ι ◦ λ where ι = ê ∈ L1(R0, Q0).

(e) If π1(ψ) = π1(ψ′) where ψ,ψ′ ∈ L1(P0, Q0) then ψ′ = ψ ◦ ẑ for a unique
z ∈ Z(P0).

(f) Fix P0 ∈ H0 and set H := {g ∈ G | gP0g
−1 is F0-conjugate to P0}. Then

H is a subgroup of G which contains S0 and |AutL1(P0) : AutL0(P0)| =
|H : S0|.

Proof. (a) From Definition 5.6, there are equalities ĥ ◦ ĝ = [h : ιR
h
0

Q0
] ◦ [g : ιQ

g
0

P0
] =

[hg : ιR
hg
0

Qg
0
◦ ιQ

g
0

P0
] = [hg : ιR

hg
0

P0
] = ĥg.

(b) By Definition 5.6, ψ has the form [g : ϕ] for some g ∈ G and ϕ ∈ L0(P0, Q
g
0).

If y exists then, again by Definition 5.6,

ŷ ◦ ψ = [y : 1] ◦ [g : ϕ] = [yg : ϕ],
ψ ◦ x̂ = [g : ϕ] ◦ [x : 1] = [gx : x−1ϕx].

Since ψ ◦ x̂ = ŷ ◦ ψ in L1, there exists some s ∈ S0 such that

(i) yg = gxs and (ii) ϕ = ŝ−1 ◦ (x−1ϕx).

Note that x−1ϕx is an epimorphism in L0 (Remark 2.6) so the morphism ŝ−1 ∈
IsoL0(Q

gx
0 , Qg0) which solves equation (ii) must be unique, hence s is unique. Set

s0 = gsg−1. Then s0 ∈ S0 because S0 CG and y = gxsg−1 = gxg−1 · s0.
If x ∈ P0 then axiom (C) satisfied by the linking system L0 (see Definition 2.4)

implies that

ψ ◦ x̂ = [g : ϕ] ◦ [x : 1] = [gx : x̂−1 ◦ ϕ ◦ x̂] = [g : ϕ ◦ x̂] =

= [g : ̂π0(ϕ)(x) ◦ ϕ] = [cg(π0(ϕ)(x)) · g : ϕ] = ̂cg(π0(ϕ)(x)) · g ◦ ψ.

(c) By inspection, every ĝ ∈ L1(P0, Q0) has the form ι ◦ ĝ where ĝ ∈ L1(P0,
gP0)

and ι = ê ∈ L1(gP0, Q0). Since ĝ in this factorisation is clearly an isomorphism, it
suffices to prove the result for ι of the form ê = [e : ιQ0

P0
].

Assume that [h : ϕ], [h′ : ϕ′] ∈ L1(R0, P0) satisfy ι ◦ [h : ϕ] = ι ◦ [h′ : ϕ′]. Since

ι ◦ [h : ϕ] = [1 : ιQ0
P0

] ◦ [h : ϕ] = [h : ιQ
h
0

Ph
0
◦ ϕ]

and similarly ι ◦ [h′ : ϕ′] = [h′ : ιQ
h′
0

Ph′
0
◦ ϕ′], we see from the definition that there

exists some s ∈ S0 such that h′ = hs and

ι
Qh′

0

Ph′
0
◦ ϕ′ = ŝ−1 ◦ ιQ0

P0
= ι

Qhs
0

Phs
0
◦ ŝ−1 ◦ ϕ in L0.

Since ιQ
h′
0

Ph′
0

is a monomorphism in L0 it follows that ϕ′ = ŝ−1 ◦ ϕ and therefore

[h′ : ϕ′] = [hs : ŝ−1 ◦ ϕ] = [h : ϕ]. This shows that ι is a monomorphism.
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Now assume that the morphisms [h : ϕ], [h′ : ϕ′] ∈ L1(Q0, R0) are such that
[h : ϕ] ◦ ι = [h′ : ϕ′] ◦ ι. Then

[h : ϕ ◦ ιQ0
P0

] = [h′ : ϕ′ ◦ ιQ0
P0

]

and it follows from the definition that there exists some s ∈ S0 such that h′ = hs
and ϕ′ ◦ ιQ0

P0
= ŝ−1 ◦ ϕ ◦ ιQ0

P0
. Since ιQ0

P0
is an epimorphism in L0 we obtain that

[h′ : ϕ′] = [hs : ŝ−1 ◦ ϕ] = [h : ϕ]. Therefore ι is an epimorphism.
(d) Write ψ = [g : ϕ] for some ϕ ∈ L0(P0, Q

g
0). Note that π1(ψ) = cg ◦ π0(ϕ) so

π0(ϕ)(P0) = Rg0. Since L0 is a linking system, [7, Lemma 1.10] implies that we can

factor ϕ as P0
ϕ̄−→ Rg0

ι
Q

g
0

R
g
0−−→ Qg0. We shall now consider λ ∈ L1(P0, R0) defined by

λ = [g : ϕ̄]. By hypothesis (6)

ι ◦ λ = [e : ιQ0
R0

] ◦ [g : ϕ̄] = [g : ιQ
g
0

Rg
0
◦ ϕ̄] = [g : ϕ] = ψ.

(e) Write ψ = [g : ϕ] and ψ′ = [g′ : ϕ′] in L1(P0, Q0). By assumption and Definition
5.6 we see that cg ◦ π0(ϕ) = cg′ ◦ π0(ϕ′), whence π0(ϕ) = cg−1g′ ◦ π0(ϕ′). Since
π0(ϕ), π0(ϕ′) ∈ F0, we obtain that cg−1g′ ∈ F0(Q

g′

0 , Q
g
0). Then hypothesis (2)

implies that g−1g′ ∈ S0.
Denote ϕ′′ = ĝg−1 ◦ ϕ′ and s = g−1g′ ∈ S0. Then ψ′ = [gs : ϕ′] = [g : ϕ′′] and

π1(ψ) = π1(ψ′) reads cg ◦π0(ϕ) = cg ◦π0(ϕ′′). In particular π0(ϕ) = π0(ϕ′′) and the
axioms of L0 guarantee the existence of a unique z ∈ Z(P0) such that ϕ′′ = ϕ◦ ẑ. It
now follows that ψ′ = [g : ϕ′′] = [g : ϕ ◦ ẑ] = ψ ◦ ẑ. Finally, the element z ∈ Z(P0)
is unique because

ψ ◦ ẑ = [g : ϕ] ◦ [z : 1] = [g : ϕ] ◦ [1 : ẑ] = [g : ϕ ◦ ẑ],

That is, if ψ ◦ ẑ = ψ ◦ ẑ′ then by Definition 5.6 we see that ϕ ◦ ẑ = ϕ ◦ ẑ′ and
therefore z = z′ because ϕ is a monomorphism in L0 and δP0 : P0 → AutL0(P0) is
a monomorphism of groups.
(f) By hypothesis (1) if Q0 is F0-conjugate to Q′0 then gQ0g

−1 is F0-conjugate to
gQ′0g

−1 for any g ∈ G. This implies that H is a subgroup of G and it contains S0

because FS0(S0) ⊆ F0.
Let g1, · · · , gn be representatives for the cosets of S0 in H. By Definition 5.6

every element ψ ∈ AutL1(P0) can be described as ψ = [gi : ϕ] by a unique pair
(gi, ϕ) for some i = 1, . . . , n where ϕ ∈ L0(P0,

giP0). Also note that |L0(P0,
giP0)| =

|AutL0(P0)| because giP0 is F0-conjugate to P0. This shows that |AutL1(P0)| =
n · |AutL0(P0)| = |H : S0| · |AutL0(P0)|. �

We now turn to the study of the properties of the category L2.

Proof of Definition 5.8. If ψ ∈ L2(P,Q) and ρ ∈ L2(Q,R), we leave it as an easy
exercise for the reader to check that ρ ◦ψ ∈ L1(P0, R0) belongs to L2(P,R). Thus,
composition of morphisms in L2 is well defined. It is easily seen to be unital and
associative because this is the case in L1.

Since S0 C G it follows that NG(P,Q) ⊆ NG(P0, Q0), NG(P ) ≤ NG(P0) and
NG(Q) ≤ NG(Q0). Now fix some g ∈ NG(P,Q) and x ∈ P and set y = gxg−1 ∈ Q.
It follows from Lemma 5.19(a) that ĝ ◦ x̂ = ĝx = ŷg = ŷ ◦ ĝ. Therefore ĝ ∈
L2(P,Q). �
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Proof of Lemma 5.9. By construction L2(P0, Q0) ⊆ L1(P0, Q0) for any P0, Q0 ∈
H0. For every x ∈ P0 and every ψ = [g : ϕ] ∈ L1(P0, Q0) it follows from Lemma
5.19(b) that ψ◦x̂ = ŷ◦ψ in L1 where y = π1(ψ)(x) ∈ Q0. Therefore ψ ∈ L2(P0, Q0)
and we conclude that L1(P0, Q0) = L2(P0, Q0).

The inclusion functor j : L1 → L2 has a left inverse r : L2 → L1 which maps
an object P to P0 and maps morphisms via the inclusions L2(P,Q) ⊆ L1(P0, Q0).
Observe that r ◦ j = IdL1 because L2(P0, Q0) = L1(P0, Q0).

By Lemma 5.19(b) we see that L2(P0, P ) contains [e : 1P0 ] = ê. These morphisms
define a natural transformation j◦r → Id. This is because we recall that [e : 1P0 ] and
[e : 1Q0 ] are the identities of P0 andQ0 in L1 and for any ψ ∈ L2(P,Q) ⊆ L1(P0, Q0)

ψ ◦ [e : 1P0 ] = [e : 1Q0 ] ◦ ψ.
Then it follows that j and r yield homotopy equivalences on nerves. �

Proof of Lemma 5.10. (a) By Definition 5.8, for every x ∈ P there exists some
y ∈ Q such that ψ◦ x̂ = ŷ◦ψ. Since P ≤ NG(P0) and Q ≤ NG(Q0), Lemma 5.19(b)
implies that y is unique. There results a well defined function π2(ψ) : P → Q. In
addition, since x̂ and ŷ = ̂π2(ψ)(x) are morphisms in L2 (see Definition 5.8) and
L2(P,Q) ⊆ L1(P0, Q0) we deduce that the equation ψ ◦ x̂ = ̂π2(ψ)(x) ◦ ψ holds in
L2 and moreover π2(ψ) : P → Q is the unique function that satisfies this equality
for all x ∈ P . The fact that π2(ψ)|P0 = π1(ψ) follows from the last assertion in
Lemma 5.19(b).

We claim that π2(ψ) : P → Q is a group monomorphism. For x, x′ ∈ P , let
y = π2(ψ)(x) and y′ = π2(ψ)(x′). Then, in L1,

ψ ◦ x̂x′ = ψ ◦ x̂ ◦ x̂′ = ŷ ◦ ψ ◦ x̂′ = ŷ ◦ ŷ′ ◦ ψ = ŷy′ ◦ ψ.
This shows that π2(ψ) is a homomorphism. If x ∈ kerπ2(ψ) then ψ ◦ x̂ = 1̂ ◦ ψ
so Lemma 5.19(b) with y = 1 shows that x ∈ P ∩ S0 = P0. But 1 = π2(ψ)(x) =
π2(ψ)|P0(x) = cg ◦π0(ϕ)(x) so x ∈ kerπ0(ϕ) = 1. It follows then that ker

(
π2(ψ)

)
=

1.

(b) Clearly π2([e : 1P0 ]) = IdP0 . Now given P
ψ−→ Q

λ−→ R in L2, set y = π2(ψ)(x)
and z = π2(λ)(y). Then ψ◦ x̂ = ŷ◦ψ and λ◦ ŷ = ẑ ◦λ so λ◦ψ◦ x̂ = ẑ ◦λ◦ψ whence,
by the uniqueness statement in Lemma 5.19(b), we conclude that z = π2(λ ◦ψ)(x).

(c) This follows from Lemma 5.19(a) because for any x ∈ P we have ĝ ◦ x̂ = ĝx =
ĉg(x)g = ĉg(x) ◦ ĝ in L1 so π2(ĝ) = cg.

(d) Observe that π2(ψ)(P0) = π1(ψ)(P0) ≤ Q0 by part (a). Since π2(ψ) : P → Q
is an isomorphism, for every y0 ∈ Q0 ≤ Q there exists some x ∈ P such that
π2(ψ)(x) = y0, namely ψ ◦ x̂ = ŷ0 ◦ψ. By Lemma 5.19(b) we know that y0 = gxg−1

mod S0 and since S0 C G we deduce that x ∈ S0 ∩ P = P0. This shows that
π2(ψ)(P0) = Q0 and therefore π1(ψ) is an isomorphism of groups.

Write ψ = [g : ϕ]. Since π1(ψ) is an isomorphism, ϕ ∈ L0(P0, Q
g
0) is an isomor-

phism and therefore ψ is an isomorphism in L1 whose inverse ψ−1 ∈ L1(Q0, P0) is
[g−1 : gϕ−1g−1]. To check that ψ−1 is a morphism in L2(Q,P ) consider some y ∈ Q.
Since π2(ψ) is an isomorphism there exists x ∈ P such that ψ ◦ x̂ = ŷ−1 ◦ ψ in L1.
Since these morphisms are invertible in L1 we see that x̂−1 ◦ ψ−1 = ψ ◦ ŷ. This
shows that ψ−1 is an inverse to ψ in L2. �

For later use we also need the following technical lemma.
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5.20. Lemma. Fix some P ∈ H and consider NS(P0) as a subgroup of AutL1(P0)
via δ̂P0,P0 : x 7→ x̂. Let Q be a subgroup of NS(P0) and assume that Q = ψPψ−1 for
some ψ ∈ AutL1(P0). Then P0 = Q0 and ψ is an isomorphism in L2 from P to Q.

Proof. Recall from Lemma 5.9 that AutL1(P0) = AutL2(P0). For x ∈ P0 set
y = ψxψ−1 ∈ Q. Thus ψ ◦ x̂ = ŷ ◦ ψ and by Definition 5.11, y = π2(ψ)(x) ∈ P0.
This shows that P0 = ψP0ψ

−1 and, in particular, P0 ≤ Q0. Moreover P0 C Q
because P0 C P .

Since P0 ≤ Q0 we may consider ι := ê ∈ L1(P0, Q0) where e ∈ G is the identity
element, and define λ = ι ◦ ψ ∈ L1(P0, Q0). For every x ∈ P set y = ψxψ−1. By
definition y ∈ Q which normalises Q0 and P0 so Lemma 5.19(a) implies

λ ◦ x̂ = ι ◦ ψ ◦ x̂ = ιŷ ◦ ψ = ŷ ◦ ê ◦ ψ = ŷ ◦ ψ.

We conclude from Definition 5.8 that λ ∈ L2(P,Q). Furthermore, π2(λ) is an
isomorphism because it is a monomorphism by Lemma 5.10(a) and |P | = |Q|.
Lemma 5.10(d) now shows that λ is an isomorphism in L2 and, in particular, it
is an isomorphism of the objects P0 and Q0 in L1. In particular |P0| = |Q0| and
therefore λ = ψ. �

Proof of Lemma 5.12. (a) This is immediate from Lemma 5.10(c). By taking e ∈
NG(P,Q) for any inclusion P ≤ Q in H we obtain inclQP ∈ F2(P,Q).

(b) Fix a homomorphism f : P → Q in F2 and set R = f(P ). Note that by Lemma
5.10(a)

f(P0) = π2(ψ)|P0(P0) = π1(ψ)(P0) ≤ Q0.

Therefore f(P0) ≤ Q0 ∩R ≤ S0 ∩R = R0. Also R0 = S0 ∩R ≤ S0 ∩Q = Q0. Now,
by definition ψ ∈ L1(P0, Q0) and Lemma 5.19(d) asserts that in L1 we can write
ψ = ι ◦ λ where λ ∈ L1(P0, R0) and ι = ê ∈ L1(R0, Q0).

We now claim that λ ∈ L2(P,R). To check this, we fix some x ∈ P . By definition
y = f(x) ∈ R satisfies ψ ◦ x̂ = ŷ ◦ ψ in L1. Equivalently ι ◦ λ ◦ x̂ = ŷ ◦ ι ◦ λ. Now,
y ∈ R ≤ NG(R0) and also y ∈ Q ≤ NG(Q0), so Lemma 5.19(a) implies that

ι ◦ λ ◦ x̂ = ι ◦ ŷ ◦ λ.

Lemma 5.19(c) implies that ι is a monomorphism in L1 so λ ◦ x̂ = ŷ ◦λ in L1. This
shows that λ ∈ L2(P,R) as needed, and that moreover ψ = ι ◦ λ in L2 because ι is
in L2 as well. In particular, by parts (b) and (c) of Lemma 5.10, we obtain that

f = π2(ψ) = inclQR ◦ π2(λ).

From this equality it follows that π2(λ) is an isomorphism of groups because |P | =
|R|. Moreover, Lemma 5.10(d) implies that λ is an isomorphism in L2 and therefore
π2(λ) is an isomorphism in F2. This completes the proof. �

5.21. Lemma. Consider P ≤ S such that P0 ∈ H0. Then CG(P ) = CS0(P ) =
Z(P0)P where P acts on Z(P0) by conjugation.

Proof. If g ∈ CG(P ) then cg|P0 = idP0 ∈ AutF0(P0). By hypothesis (2), g ∈ S0,
and it follows that CG(P ) = CS0(P ). Now, CS0(P ) ≤ CS0(P0) = Z(P0) because
P0 is F0-centric. Therefore, CG(P ) = CZ(P0)(P ) = Z(P0)P . �
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Proof of Lemma 5.14. (a) Clearly H is closed to taking supergroups because H0

is closed to taking supergroups in S0. Since F is generated by inclusions and
restriction of homomorphisms in F2, Lemma 5.12 shows that for any P,Q ∈ H the
inclusion F2(P,Q) ⊆ F(P,Q) is an equality.

(b) By definition P0 ∈ H0. By Lemma 5.21, CS(P ) = Z(P0)P ≤ P . Assume that
Q is F-conjugated to P . By part (a) there exists some ψ ∈ L2(P,Q) such that
π2(ψ)(P ) = Q. Parts (a) and (d) of Lemma 5.10 imply that ψ is an isomorphism
in L2. From Definition 5.8 it is clear that ψ is an isomorphism in L1(P0, Q0) and
in particular Q0 ∈ H0, namely Q0 is F0-centric. It follows from Lemma 5.21 that
CS(Q) = Z(Q0)Q ∼= Z(P0)P , whence P is F-centric.

(c) For any f ∈ F(P,Q) where P,Q ∈ H, part (a) implies that f = π2(ψ) for some
ψ ∈ L2(P,Q) ⊆ L2(P0, Q0). The result follows from Lemma 5.10(a) which shows
that f |P0 = π1(ψ) whose image is contained in Q0 by Definition 5.6. �

Proof of Lemma 5.15. The monomorphisms δP : P → AutL2(P ) are the restrictions
of the maps δ̂P,Q : NG(P,Q)→ L2(P,Q), i.e. δP (g) = [g : 1P0 ].

To verify axiom (A) in [7, Definition 1.7], see also 2.4, we need to show that
for any P,Q ∈ H the set π−1

2 (f) where f ∈ F(P,Q) admit a transitive free ac-
tion of CS(P ) via δP : NS(P ) → AutL2(P ). Note that F(P,Q) = F2(P,Q) by
Lemma 5.14. Consider ψ,ψ′ ∈ L2(P,Q) such that π2(ψ) = π2(ψ′) and recall that
ψ,ψ′ ∈ L1(P0, Q0). By restriction to P0, Lemma 5.10(a) shows that π1(ψ) = π1(ψ′).
Lemma 5.19(f) shows that there exists z ∈ Z(P0) such that ψ′ = ψ ◦ ẑ in L1. Note
that ẑ ∈ AutL2(P0) by Definition 5.6 so the equality ψ′ = ψ ◦ ẑ also holds in L2.
Furthermore, Lemma 5.19(c) implies that

π2(ψ) = π2(ψ′) = π2(ψ ◦ ẑ) = π2(ψ) ◦ cz.

As a consequence z ∈ CS(P ) and we conclude that CS(P ) acts transitively on
the fibres of π2 : L2(P,Q) → F(P,Q). The action is free by Lemma 5.21 and the
uniqueness assertion in Lemma 5.19(f).

Axiom (B) holds by Lemma 5.10(c). To verify axiom (C) we fix a morphism
ψ ∈ L2(P,Q) and an element g ∈ P . Set f = π2(ψ) ∈ F(P,Q). By the definition
of the morphisms in L2, see Lemma 5.10(a) we have ψ ◦ ĝ = f̂(g)◦ψ, which is what
we need. �

Notation. We shall write P 'F Q for the statement that P,Q ≤ S are F-
conjugate.

Clearly S0 acts on H0 by conjugation and [P0]S0 denotes the orbit of P0, i.e.
the conjugacy class. By Lemma 5.5, G acts on H0 as well. Since G acts via fusion
preserving automorphisms, it also acts on the setH0/F0 of the F0-conjugacy classes
of the subgroups P0 ∈ H0 which we denote [P0]F0 . The stabiliser of [P0]F0 under
this action of G is denoted, as usual, by G[P0]F0

. Now, G[P0]F0
acts on the set

[P0]F0 . Clearly, S0 ≤ G[P0]F0
because FS0(S0) ⊆ F0. Moreover, since S0 CG, this

action induces an action of G[P0]F0
on the set P of all the S0-conjugacy classes of

the subgroups of S0 that are F0-conjugate to P0.

5.22. Lemma. For every P ∈ H there exist P̄ , P ′ ∈ H such that
(a) P̄ = aP for some a ∈ G and P̄ 'F P ′, whence P 'F P ′, and
(b) P ′0 is fully F0-normalised and P ′0 'F0 P̄0.
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In addition, S̄ := NS(P ′0)S0 is a Sylow p-subgroup of G[P̄0]F0
and S̄/S0 fixes the

S0-conjugacy class [P ′0]S0 .

Proof. The argument follows the one in the proof of step 3 in [4, Theorem 4.6].
Clearly S0 · P ≤ G[P0]F0

because P ≤ NG(P0) and FS0(S0) ⊆ F0. Choose
S′ ∈ Sylp(G[P0]F0

) which contains S0 · P . By Sylow’s theorems, there exists some
a ∈ G such that S′ = G[P0]F0

∩ Sa. Set P̄ = aP and observe that

P̄ = aP ≤ a(G[P0]F0
∩ Sa) ≤ S.

Also P̄0 = aP0 ∈ H0 by Lemma 5.5, so P̄ ∈ H. In addition, G[P̄0]F0
= a(G[P0]F0

).
It follows that

S̄ := S ∩G[P̄0]F0
= a(S′) ∈ Sylp(G[P̄0]F0

).

Consider now the set Pfn of all the S0-conjugacy classes of the fully F0-normalised
subgroups R ≤ S0 which are F0-conjugate to P̄0. Since G normalises S0 and it
is fusion preserving, it carries fully F0-normalised subgroups of S0 to ones, and
therefore G[P̄0]F0

acts on Pfn.
We now restrict the action of G[P̄0]F0

on Pfn to S̄. By [4, Proposition 1.16] we
know that |Pfn| 6= 0 mod p. Therefore S̄/S0 must have some fixed point [R0]S0 .
Thus, R0 is fully F0-normalised and is F0-conjugate to P̄0. Recall that S̄ ≤ S.
For every g ∈ S̄ we have gR0g

−1 'S0 R0 so S̄ ≤ NS(R0)S0. On the other hand
S0NS(R0) ≤ G[R0]F0

= G[P̄0]F0
and S̄ is a Sylow p-subgroup of the latter group,

hence
S̄ = S0 ·NS(R0).

It remains to find some P ′ ∈ H such that P ′ 'F P̄ and such that P ′0 = R0.
Now, since P̄ ≤ S̄, it must stabilise [R0]S0 . We conclude that P̄ /P̄0 acts on

X := {[f ] ∈ RepF0
(P̄0, S0) : Im f is S0-conjugate to R0}

via [f0] 7→ [cg◦f0◦cg−1 ]. ClearlyX is not empty because by construction P̄0 'F0 R0.
Choose some f ∈ F0(P̄0, R0). Then every element of X has the form [α ◦ f ] for
some α ∈ AutF0(R0). Moreover [α ◦ f ] = [β ◦ f ] if and only if α−1β ∈ AutS0(R0).
Therefore

|X| = |AutF0(R0)|
|AutS0(R0)|

6= 0 mod p

because R0 is fully F0-normalised. Since P̄ is a finite p-group, there is some [f0] ∈
X P̄ where f0 ∈ F0(P̄0, S0) and Im f0 = R0. Let ψ0 ∈ L0(P̄0, S0) be a lift of f0.

Recall from Lemma 5.7(a) that we may consider ψ0 as a morphism in L1(P̄0, S0)
via an inclusion L0 ⊆ L1. Fix some x ∈ P̄ . Since P̄ fixes [f0], there exists some
s ∈ S0 such that

c−1
x ◦ f0 ◦ cx = cs ◦ f0.

Lifting to L0 and using hypothesis (5), we see that there exists a unique z ∈
CS0(P̄0) = Z(P̄0) such that

(1) x−1ψ0x = ŝ ◦ ψ0 ◦ ẑ = ŝf0(z) ◦ ψ0 in L0.

Set y := xsf0(z) and note that y ∈ P̄ ·S0 ·Z(R0) ≤ S. Lemma 5.7(c), equation (1)
and Remark 2.5 imply that

ψ0 ◦ x̂ = x̂ ◦ (x−1ψ0x) = x̂ ◦ ŝf0(z)ψ0 = ŷ ◦ ψ0.
26



Therefore, by definition, ψ0 ∈ L2(P̄ , S). Consider f = π2(ψ0) ∈ F(P̄ , S) and
set P ′ = f(P̄ ). By Lemmas 5.14(a) and 5.12(b), f restricts to an isomorphism
f : P̄ → P ′ in F . By Lemma 5.10(a) and Lemma 5.7(a) we see that f |P̄0

=
π0(ψ0) = f0 ∈ F0(P̄0, R0). Since f ∈ F(P̄ , P ′) is an isomorphism we deduce from
Lemma 5.14(c) that P ′0 = f(P̄0) = R0. This completes the proof since f is an F-
isomorphism between P̄ and P ′ which restricts to an F0-isomorphism f0 between
P̄0 and R0 = P ′0. �

5.23. Lemma. [4, Step 4] If P ≤ S is F-centric but P /∈ H, then there exists
P ′ ≤ S which is F-conjugate to P such that

OutS(P ′) ∩Op(OutF (P ′)) 6= 1.

Proof. The argument is almost repeated from step 4 in the proof of [4, Theorem
4.6], but we include it for completeness. Consider P̄ and P ′ as in Lemma 5.22.
Note that P̄ /∈ H because P /∈ H, namely P0 /∈ H0, so P̄0 /∈ H0 by Lemma 5.5.

the action of G is F0-preserving. As a consequence P ′0 /∈ H0 because P̄0 'F0 P
′
0.

Since P ′0 is fully F0-normalised, it is fully F0-centralised and since it is not F0-
centric, we deduce that CS0(P

′
0) � P ′0.

Since P ′ normalises S0 and P ′0 it acts on CS0(P
′
0)P

′
0/P

′
0 by conjugation leaving

a non-identity subgroup QP ′0/P
′
0 fixed where Q ≤ CS0(P

′
0) and Q � P ′0. Thus,

[P ′, Q] ≤ P ′0 and in particular Q ≤ NS(P ′). If x ∈ Q \ P ′0 then 1 6= [cx] ∈ Out(P ′)
because P ′ is F-centric so CS(P ′) ≤ P ′ and Q\P ′ = Q\P ′0. Lemma 5.14(c) shows
that restriction ϕ 7→ ϕ|P ′0 induces a homomorphism

AutF (P ′) rest−−→ AutF (P ′0).

Let AutF (P ′;P ′0) denote its kernel and observe that it contains cx because Q cen-
tralises P ′0. Also observe that cx induces a trivial homomorphism on P ′/P ′0 because
[P ′, Q] ≤ P ′0. Thus, cx is a non-trivial element in the kernel of

AutF (P ′;P ′0)
proj−−→ Aut(P ′/P ′0)

which is a p-group by [4, Proposition 1.15]. This shows that cx is an element of
Op(AutF (P ′;P ′0)) which is a characteristic subgroup of AutF (P ′;P ′0) C AutF (P ′).
Hence, cx ∈ Op(AutF (P ′)). Since AutF (P ′) → OutF (P ′) is an epimorphism and
[cx] 6= 1, we see that Op(OutF (P ′)) ∩OutS(P ′) 6= 1. �

Proof of 5.16. We will apply [5, Theorem 2.2] to the collection H of objects in F .
The condition (*) in that theorem has been verified in Lemma 5.23 so, for the proof
of the saturation of F it remains to check conditions (I) and (II) of saturation in [7,
Definition 1.2], see also 2.2 for the elements of H. The argument is again present
in [4] with some changes.

Condition I. Fix P ∈ H which is fully F-normalised. We have to show that it
is fully F-centralised and that AutS(P ) is a Sylow p-subgroup of AutF (P ). By
Lemma 5.14(b) we know that P is F-centric and in particular fully F-centralised.

Consider P̄ and P ′ as in Lemma 5.22. Recall that S̄ = NS(P ′0)S0 is a Sylow
p-subgroup of G[P̄0]F0

. Lemma 5.7(a) shows that AutL0(P̄0) ≤ AutL1(P̄0) and by
Lemma 5.19(g)

(1) |AutL1(P
′
0) : AutL0(P

′
0)| = |G[P̄0]F0

: S0|.
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By definition NS0(P
′
0) = S0 ∩NS(P ′0) so

(2) |NS(P ′0)/NS0(P
′
0)| = |NS(P ′0)S0/S0| = |S̄/S0|.

Now, P ′0 is fully F0-normalised and is F0-centric so

(3) |AutL0(P
′
0) : NS0(P

′
0)| 6= 0 mod p.

Since |G[P ′0]F0
: S̄| 6= 0 mod p, we deduce from (1), (2) and (3) that

|AutL1(P
′
0) : NS(P ′0)| =

|AutL1(P
′
0)|

|AutL0(P ′0)|
· |AutL0(P

′
0)|

|NS0(P ′0)|
· |NS0(P

′
0)|

|NS(P ′0)|
6= 0 mod p,

namely NS(P ′0) ∈ Sylp(AutL1(P
′
0)).

Fix ψ ∈ AutL1(P
′
0) such that

(4) ψ−1NS(P ′0)ψ ⊇ R ∈ Sylp(NAutL1 (P ′0)
(P ′))

and set
P ′′ = ψP ′ψ−1 ≤ NS(P ′0).

Lemma 5.20 shows that P ′0 = P ′′0 and that ψ ∈ L2(P ′, P ′′) is an isomorphism. In
particular, P ′′ is F-conjugate to P ′, hence also to P because P ′ = aP for some
a ∈ G and â ∈ L2(P, P ′) is an isomorphism. We now claim that

(i) AutL2(P
′′) = NAutL1 (P ′0)

(P ′′) and (ii) NS(P ′′) = NNS(P0)(P
′′).

Clearly (i) follows from the definition of the morphisms in L2 because

λ ∈ AutL2(P
′′) ⇐⇒ ∀x ∈ P ′′ ∃y ∈ P ′′(λ ◦ x̂ ◦ λ−1 = ŷ)
⇐⇒ λ ∈ NAutL1 (P ′0)

(P ′′).

For (ii), note that P ′′ ⊆ NS(P ′0) ⊆ AutL1(P
′
0) so by the choice of ψ in equation (4),

NNS(P ′0)
(P ′′) = NS(P ′0) ∩NAutL1 (P ′0)

(P ′′) ∈ Sylp(NAutL1 (P ′0)
(P ′′)).

On the other hand

NNS(P ′0)
(P ′′) ≤ NS(P ′′) ≤ NAutL1 (P ′0)

(P ′′),

hence NS(P ′′) = NNS(P ′0)
(P ′′)). We deduce that NS(P ′′) ∈ Sylp(AutL2(P

′′).
Finally, AutL2(P ) ∼= AutL2(P

′′) because P ′′ and P are isomorphic in L2 (via
ψ ◦ â). Also, |NS(P )| ≥ |NS(P ′′)| because P is fully F-normalised. Therefore
NS(P ) ∈ Sylp(AutL2(P )) and Lemma 5.15 implies that AutS(P ) is a Sylow p-
subgroup of AutF (P ).

Condition II. Fix P ∈ H and ϕ ∈ F(P, S). Definition 5.11 and part (a) of Lemma
5.14 show that ϕ(P ) ∈ H and part (b) of this lemma shows that ϕ(P ) is F-centric
and in particular it is fully F-centralised. We have to prove that ϕ extends to some
ψ ∈ F(Nϕ, S) where

Nϕ = {g ∈ NS(P ) : ϕ ◦ cg = cs ◦ ϕ for some s ∈ S}.

Note that s ∈ NS(Imϕ) in this definition. Set, for convenience Q = Nϕ. We
observe that

(5) Q ≤ NS(Q0) and Q ≤ NS(P ) ≤ NS(P0).

Let ϕ̃ ∈ L2(P, S) be a lift for ϕ, that is ϕ = π2(ϕ̃). By definition, for every q ∈ Q
there exists some sq ∈ S such that ϕ ◦ cq = csq

◦ ϕ. Lifting to L2, we see from
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Lemma 5.15 that there exists some z ∈ CS(P ) = Z(P ) such that ϕ̃◦ q̂ = ŝq ◦ ϕ̃◦ ẑ =
ŝq ◦ ϕ̂(z) ◦ ϕ̃. Set yq = sqϕ(z), then yq ∈ S and

(6) ϕ̃ ◦ q̂ = ŷq ◦ ϕ̃ in L2.

By Definition 5.8 the morphism ϕ̃ is an element in L1(P0, S0). By Lemma 5.7(c)
we see that ϕ̃ = ĝ ◦ λ̃ where g ∈ G and λ̃ ∈ L0(P0, S0). Set λ = π0(λ̃) ∈ F0(P0, S0).
From parts (a) and (c) of Lemma 5.10 we see that ϕ|P0 = π1(ϕ̃) = π1(ĝ◦ λ̃) = cg ◦λ.

By definition, for every x ∈ Q0 there exists some s ∈ S such that

ϕ ◦ cx = cs ◦ ϕ in F .
By restriction to P0 we obtain an equality of homomorphisms P0 → S

(7) cg ◦ λ ◦ cx = cs ◦ cg ◦ λ.
By restriction of λ to an isomorphism onto its image we see that

cg−1sg = λ ◦ cx ◦ λ−1 ∈ F0 because x ∈ Q0 ≤ S0.

Hypothesis (2) implies that g−1sg ∈ S0 and therefore s ∈ S0. We can therefore
rewrite equation (7) as λ ◦ cx = cg−1sg ◦ λ where g−1sg ∈ S0. Together with
equation (5), this shows that x ∈ Nλ where

Nλ = {x ∈ NS0(P0) : λ ◦ cx = cy ◦ λ for some y ∈ S0}.
We deduce that Q0 ≤ Nλ.

Since P0 is F0-centric, so is λ(P0) and in particular it is fully F0-centralised.
Axiom (II) in F0 enables us to extend λ ∈ F0(P0, S0) to some ρ ∈ F0(Q0, S0). Let
ρ̃ be a lift for ρ in L0. Now, λ = ρ ◦ inclQ0

P0
= π0(ρ̃ ◦ ιQ0

P0
), so there exists some

z ∈ Z(P0) ≤ P0 ≤ Q0 such that

λ̃ = ρ̃ ◦ ιQ0
P0
◦ ẑ = ρ̃ ◦ ẑ ◦ ιQ0

P0
.

Set θ̃ = ρ̃ ◦ ẑ and θ = π0(θ̃). Thus, θ̃ ∈ L0(Q0, S0) and θ ∈ F0(Q0, S0) satisfy

λ̃ = θ̃ ◦ ιQ0
P0

and θ|P0 = λ

because π0(θ̃)|P0 = π0(ρ̃ ◦ ẑ)|P0 = ρ ◦ cz|P0 = ρ|P0 = λ.
Recall that we started with a lift ϕ̃ = ĝ ◦ λ̃ for ϕ. By Lemma 5.7(a) we view θ̃

as a morphism in L1 and define

ψ̃ := ĝ ◦ θ̃ ∈ L1(Q0, S0).

We now prove that for every q ∈ Q, the element yq ∈ S defined in equation (6)
satisfies

(8) ψ̃ ◦ q̂ = ŷq ◦ ψ̃ in L1.

Observe that Q = Nϕ so P ≤ Q and in particular P0 ≤ Q0. We shall now consider
ι := ê ∈ L1(P0, Q0) where e ∈ NG(P0, Q0) is the identity of G. Note that under
the inclusion L0 ⊆ L1 in Lemma 5.7(a) we have ι = ιQ0

P0
. Therefore

ψ̃ ◦ ι = ĝ ◦ θ̃ ◦ ιQ0
P0

= ĝ ◦ λ̃ = ϕ̃ in L1.

Equation (5), Lemma 5.19(a) and equation (6) imply that in L1

ψ̃ ◦ q̂ ◦ ι = ψ̃ ◦ q̂ ◦ ê = ψ̃ ◦ ê ◦ q̂ = ψ̃ ◦ ι ◦ q̂ = ϕ̃ ◦ q̂ = ŷq ◦ ϕ̃ = ŷq ◦ ψ̃ ◦ ι
We deduce that equation (8) holds because ι is an epimorphism in L1 by Lemma
5.19(d). By Definition 5.8 we see that ψ ∈ L2(Q,S). Set ψ := π2(ψ̃). Then
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ψ ∈ F2(Q,S) = F(Q,S) and by Lemma 5.10(c) we see that ψ|P = π2(ψ̃ ◦ ι) =
π2(ϕ̃) = ϕ. This completes the proof. �

Proof of Lemma 5.17. Our notation was chosen in such a way that the argument
in [4, Theorem 4.6, Step 7] can be read verbatim and we shall therefore avoid
reproducing it. �

6. Maps from a homotopy colimit

Let C be a small category, and X : C → Top be a diagram of spaces over C.
The values taken by the functor will be denoted by X(c) and X(ϕ) where c ∈ C,
ϕ ∈ MorC(c, c′). The homotopy colimit of the diagram X is the space

hocolimCX =
( ∐
n≥0

∐
c0→···→cn

X(c0)×∆n
)
/ ∼

where we divide by the usual face and degeneracy identifications [3, Ch. XII].
We filter the homotopy colimit by using the skeleta of the nerve of C, and we

define FnX to be the image of the union of X(c)×∆m in hocolimCX for all m ≤ n.
Notice that F0X is just

∐
c∈C X(c) and F1X is the union of the mapping cylinders

of all ϕ ∈ Mor(C). Observe that a map f1 : F1X → Y is the same as a set of
maps f1(c) : X(c) → Y together with homotopies f1(c′) ◦ X(ϕ) ' f1(c) for every

ϕ ∈ C(c, c′). A set of maps X(−)
f(−)−−−→ Y which admits such homotopies is called

a system of homotopy compatible maps and it gives rise to an element in the set
lim←−C [X(c), Y ].

Fix a system of homotopy compatible maps X(−)
f(−)−−−→ Y . By the remark

above it gives rise to a map f1 : F1X → Y where f1|X(c) = f(c). Wojtkowiak [24]
addressed the question whether f1 can be extended, up to homotopy, to a map
f̃ : hocolimCX → Y . The method is to extend f1 by induction on the spaces FnX.

Given a map f̃n : FnX → Y whose restriction to X(c) is homotopic to f(c),
Wojtkowiak developed an obstruction theory for extending it to Fn+1X without
changing it on Fn−1X. The existence of such an extension depends on the vanish-
ing of a certain obstruction class in lim←−

n+1 πn(mapf(c)(X(c), Y )). The extension
from F1X to F2X involves in general a functor of non-abelian groups, into the cat-
egory of groups and representations, whose lim←−

2 term is described in Wojtkowiak’s
work. Fortunately, if these groups are abelian then the Wojtkowiak’s definition of
lim←−

2 coincides with the usual one from homological algebra. Once the map has
been extended to F2X, a choice of homotopies allow to define well-defined functors
πn(mapf(c)(X(c), Y )) into abelian groups for n > 1.

Given two maps f̃1, f̃2 : hocolimCX → Y whose restrictions to X(c) are homo-
topic to f(c), Wojtkowiak also studies an obstruction theory for the construction of

a homotopy f̃1 ' f̃2. Clearly, f̃1 and f̃2 give rise to a homotopy f̃1|F0X
H0' f̃2|F0X .

The idea is to extend the homotopy H0 inductively to I×FnX. Given a homotopy

f̃1|Fn−1X

Hn−1' f̃2|Fn−1X , the possibility of extending it to a homotopy between the
restrictions of f̃1 and f̃2 to FnX without changing its values on Fn−2X depends on
the vanishing of an obstruction class in lim←−

n πn(mapf(c)(X(c), Y )).
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6.1. Definition ([7, Definition 3.3]). Fix a prime p. We say that a small category
C has bounded limits at p if there exists d ≥ 0 such that every functor F : C →
Z(p) -mod has the property that lim←−

i>d

C F = 0. We call d the height of C.

6.2. Theorem. Let C be a finite category with bounded limits at p of height d and
consider a sequence of maps Y0

g0−→ Y1
g1−→ · · · gd−→ Yd+1 with partial composites

yi = gi ◦ · · · ◦ g0 : Y0 → Yi+1. Given a functor X : C → Top and a system of
homotopy compatible maps f(−) : X(−) → Y0, define new systems of homotopy
compatible maps fi(−) = yi ◦ f(−) : X(−)→ Yi+1 for all i = 0, . . . , d. Assume that

(i) For every c ∈ C and every i = 1, . . . , d the induced map

πimapfi−1(c)(X(c), Yi)
(gi)∗−−−→ πimapfi(c)(X(c), Yi+1)

is the trivial homomorphism between abelian groups.
(ii) The groups π∗>0mapfi(c)(X(c), Yi) are Z(p)-modules for all c ∈ C and all i.

Then
(a) There exists map f̃ : hocolim

C
X → Yd which renders the following square

homotopy commutative for all c ∈ C,

X(c)
f(c)−−−−→ Y0

ι(c)

y yyd−1

hocolim
C

X −−−−→
f̃

Yd.

(b) If f̃1, f̃2 : hocolimCX → Y0 satisfy f̃1|X(c) ' f̃2|X(c) ' f(c) for all c ∈ C

then the compositions hocolimCX
f̃1,f̃2−−−→ Y0

yd−→ Yd+1 are homotopic.

Proof. (a) We shall define by induction maps f̃i : FiX → Yi for all i = 1, . . . , d such
that f̃i|X(c) ' fi−1(c) for all c ∈ C.

Note that, by definition of a system of homotopy compatible maps, we can
construct a map f̃1 : F1X → Y1. Assume by induction that f̃i : FiX → Yi with
f̃i|X(c) ' fi−1 has been constructed for some 1 ≤ i < d. The obstruction class Θ′

i+1

for the extension of f̃i to Fi+1X is mapped by the homomorphism

lim←−
Cop

i+1πimapfi−1(c)(X(c), Yi)
(gi)∗−−−→ lim←−

Cop

i+1πimapfi(c)(X(c), Yi+1)

to the obstruction class Θi+1 for the extension of gi ◦ f̃i to Fi+1X. When i ≥ 1,
by hypothesis (i) the groups are abelian and this homomorphism is trivial, whence
Θi+1 = 0. Wojtkowiak’s obstruction theory guarantees the existence of a map
f̃i+1 : Fi+1X → Yi+1 which agrees with gi ◦ f̃i on Fi−1X and such that f̃i+1|X(c) '
gi ◦ fi−1(c) = fi(c). This completes the induction step.

Hypothesis (ii) and the assumption on C imply that the groups

lim←−
Cop

iπi−1mapfd−1(X(c), Yd)

are trivial for all i ≥ d + 1. Thus, the obstructions to the extension of f̃d to FiX
where i > d must all vanish. We can therefore construct by induction on i ≥ d+ 1
maps f̃i : FiX → Yd such that f̃i|X(c) ' fd−1(c) for all c ∈ C and such that f̃i+1
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agrees with f̃i on Fi−1X. We can finally define f̃ : hocolim
C

X =
⋃
i FiX → Yd with

the required properties. In fact, f̃ |FnX = f̃n+1|FnX for all n > d.

(b) First, we construct by induction homotopies yi ◦ f̃1|FiX
Hi' yi ◦ f̃2|FiX for all

i = 0, . . . , d. Recall that F0X =
∐
c∈C X(c) and we define H0 as the sum of the

homotopies y0 ◦ f̃1|X(c) ' y0 ◦ f̃2|X(c).
Assume by induction that Hi : yi◦ f̃1|FiX'yi◦ f̃2|FiX has been constructed where

0 ≤ i < d. The obstruction Υ′
i for the extension of Hi to a homotopy yi◦ f̃1|Fi+1X '

yi ◦ f̃2|Fi+1X is mapped by the homomorphism

lim←−
Cop

i+1πi+1mapfi(c)(X(c), Yi+1)
(gi+1)∗−−−−−→ lim←−

Cop

i+1πi+1mapfi+1(c)(X(c), Yi+2)

to the obstruction class Υi for the extension of gi+1 ◦ Hi : I × FiX → Yi+2 to
I×Fi+1X. This homomorphism is trivial by hypothesis (i). Therefore Υi = 0, and

by Wojtkowiak’s theory there is a homotopy yi+1 ◦ f̃1|Fi+1X

Hi+1' yi+1 ◦ f̃2|Fi+1X .
This completes the induction step.

Now, the hypothesis on C together with (ii) imply that the groups

lim←−
Cop

iπimapfd(c)(X(c), Yd+1)

are trivial for all i ≥ d + 1. We can therefore construct by induction on i ≥ d + 1

homotopies yd ◦ f̃1|FiX
Hi' yd ◦ f̃2|FiX such that Hi+1 and Hi agree on I × Fi−1X.

There results a homotopy yd ◦ f̃1 ' yd ◦ f̃2. �

7. Maps between p-local finite groups

7.1. Definition. Let (S,F) be a fusion system. A map f : BS → X is called F-

invariant, if for every ϕ ∈ F(P, S) the composition BP
Bϕ−−→ BS

f−→ X is homotopic
to f |BP = f ◦BinclSP .

7.2. Example. Let (S,F ,L) be a p-local finite group. The map Θ: BS → |L| of
2.8 is F-invariant by Proposition 2.9.

Given a p-local finite group (S,F ,L), the question we address in this section is
when an F-invariant map f : BS → X can be extended to a map |L| → X. Here
is the main result of this section which uses the constructions in §3.

7.3. Theorem. Let (S,F ,L) and (S′,F ′,L′) be p-local finite groups and consider
an F-invariant map f : BS → |L′|∧p . Then:

(a) There exists m > 0 and a map f̃ : |L| → (|L′| o Σpm)∧p which renders the
following square homotopy commutative

BS
f−−−−→ |L′|∧p

Θ

y y∆∧
p

|L| −−−−→
f̃

(|L′| o Σpm)∧p
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(b) There exists e > 0 such that for any two maps f̃1, f̃2 : |L| → |L′|∧p with

Θ ◦ f̃1 ' Θ ◦ f̃2 ' f , the compositions |L| f̃1,f̃2−−−→ |L′|∧p
∆∧

p−−→ (|L′| o Σpe)∧p are
homotopic.

7.4. Example. If f = Θ: BS → |L| then f̃ can be chosen as the identity on |L|∧p .

For a finite abelian group A, set A(p) = A⊗Z(p); this is the set of p-power order
elements in A. The abelianisation of a group G is denoted Gab. The subgroup
Op(G) of a finite group G is the subgroup generated by all the elements of order
prime to p: it is the smallest normal subgroup of G whose quotient is a p-group.

7.5. Proposition. Let H = G o Σk where G is a finite group. If p > 2 and k ≥ 2
then H/Op(H) is a factor group of (Gab)(p). If p = 2 and k ≥ 3 then H/Op(H) is
a factor group of (Gab)(2) × C2.

Proof. Write H̄ = H/Op(H) and consider the quotient homomorphism π : H → H̄.
Denote by Gi the ith copy of G in G×k. For any x ∈ G we shall denote by xi the
image of x ∈ Gi in H via the inclusion G×k ≤ H. Note that xi and yj , where
x, y ∈ G, commute in H if i 6= j.

Assume that p > 2 and that k = 2. Since Σk is generated by involutions
then Σk ≤ Op(H). Also note that H is generated by Σk and any one of Gi,
hence H̄ is generated by any one of the images of Gi under π. Let τ denote
(1, 2) ∈ Σk (note that k ≥ 2). Since τ ∈ Op(H) we see that for any x ∈ G we have
π(x1) = π(x1τ) = π(τx2) = π(x2). Thus, given elements x̄, ȳ ∈ H̄ we can choose
preimages x1 and y2 and observe that x̄ȳ = π(x1)π(y2) = π(x1y2) = π(y2x1) = ȳx̄.
This shows that H̄ is a commutative factor group of G and since it is a p-group it
must be a factor of (Gab)(p).

Now assume that p = 2 and that k ≥ 3. Clearly Ak ≤ O2(H) because Ak is
generated by elements of odd order. Since H is generated by Σk and any one of
the Gi’s, it follows that H̄ is generated by the image of τ = (1, 2) ∈ Σk and by
the images of any one of the Gi’s. Let σ denote the cycle (1, 2, 3) ∈ Ak (note that
k ≥ 3). Note that σ ∈ O2(H) and that σ−1x1σ = x2 for any x ∈ G. Therefore

(1) π(x1) = π(x2).

Let τ̄ denote π(τ). Then τ̄ and the element x̄ = π(x1) commute in H̄ because

x̄τ̄ = π(x1)π(τ) = π(x1τ) = π(τx2) = τ̄π(x2) = τ̄π(x1) = τ̄ x̄.

This shows that τ̄ ∈ Z(H̄) and that H̄ is a factor group of G × C2 because H̄ is
generated by τ̄ and x̄ for all x ∈ G. Now consider x̄, ȳ ∈ H̄ where x̄ = π(x1) and
ȳ = π(y1) for some x, y ∈ G. Since π(y1) = π(y2) by (1), we conclude that

x̄ȳ = π(x1)π(y2) = π(x1y2) = π(y2x1) = π(y2)π(x1) = ȳx̄.

It follows that H̄ is an abelian 2-group hence it is a factor group of (Gab)(2)×C2. �

7.6. Lemma. For any p-local finite group (S,F ,L), πi(|L|∧p ) are finite p-groups for
all i ≥ 1.

Proof. The fundamental group π1(|L|∧p ) is a finite p-group by [4, Theorem B]. Using
a Serre class argument (see [21, Ch 9.6, Theorem 15]), we only need to show that the
integral homology is finite at each degree. In [19], it is proven that the suspension
spectrum Σ∞|L|∧p is a retract of Σ∞BS all of whose integral homology groups are
finite abelian p-groups. �
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7.7. Proposition. Fix an integer k ≥ 3 and let (S,F ,L) be a p-local finite group.
Given a map f : BP → |L|∧p , let g denote the composition

BP
f−→ |L|∧p

∆−→ |L|∧p o Σk
η−→ (|L|∧p o Σk)

∧
p
.

Then all the homotopy groups of mapg(BP, (|L|∧p o Σk)
∧
p
) are finite abelian p-groups.

Proof. If S = 1 then |L| = ∗ hence (|L|∧p o Σk)
∧
p
' (BΣk)

∧
p and g is null-homotopic.

Dwyer-Zabrodsky’s result [12] shows that the space under study is homotopy equiv-
alent to (BΣk)

∧
p and the result follows from Proposition 7.5 together with [6, Propo-

sition A.2] and Lemma 7.6.
We shall therefore assume that S 6= 1. By [7, Theorem 4.4(a)] f is homotopic to

BP
ρ−→ BS

Θ−→ |L| η−→ |L|∧p
for some ρ : P → S. There results a diagram in which the bottom row is g, the first
square commutes up to homotopy and the other squares commute on the nose

(1) BP
Θ◦Bρ // |L|

η

��

∆ // |L| o Σk

ηoΣk

��

η // (|L| o Σk)∧p

(ηoΣk)∧p'
��

BP
f

// |L|∧p ∆
// |L|∧p o Σk η

// (|L|∧p o Σk)
∧
p
.

Since |L| is p-good by [7, Proposition 1.12], a Serre spectral sequence argument
and [3, Lemma I.5.5] show that the vertical arrow on the right of the diagram is a
homotopy equivalence. It follows that

(2) mapg(BP, (|L|∧p o Σk)
∧
p
) ' mapη◦∆◦Θ◦Bρ(BP, (|L| o Σk)∧p ).

By Theorem 1.1 there exists a p-local finite group (S′,F ′,L′) where S′ is a Sylow
p-subgroup of S o Σk such that there is a homotopy equivalence ω : |L| o Σk

'−→ |L′|
and the composition

BS′
Bincl−−−→ B(S o Σk) ' (BS) o Σk

ΘoΣk−−−→ |L| o Σk
ω−→
'
|L′|

is homotopic to Θ′ : BS′ → |L′|. Moreover, ∆: BS → (BS) o Σk is induced by the
diagonal inclusion S ≤ S oΣk which factors through the Sylow subgroup S′, and it
is therefore homotopic to BS Bincl−−−→ BS′

Bincl−−−→ B(S oΣk) ' (BS) oΣk. We therefore
have the following homotopy commutative diagram

BS

Bincl

��

BS

∆

��

B∆

xxppppppppppp
Θ // |L|

∆

��

|L|

ω◦∆
��

BS′
Bincl

// B(S o Σk) ' (BS) o Σk
ΘoΣk

// |L| o Σk
ω

'
// |L′|,

from which it follows that
(3)

BS
Θ−→ |L| ∆−→ |L| o Σk

w−→
'
|L′| is homotopic to BS

Bincl−−−→ BS′
Θ′

−→ |L′|.
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Since w∧p is a homotopy equivalence and w∧p ◦ η = η ◦ w, Proposition 2.11(a) and
(3) imply that the mapping space in (2) is homotopy equivalent to

(4) mapη◦Θ
′|BS◦Bρ(BP, |L′|∧p ) ' mapη◦Θ

′|BQ(BQ, |L′|∧p )

where Q = ρ(P ) ≤ S′. Part (b) of Proposition 2.11 shows that the map obtained
by applying the p-completion functor to

(5) mapΘ′|BQ(BQ, |L′|) η∗−→ mapη◦Θ
′|BQ(BQ, |L′|∧p )

induces split surjections on homotopy groups. Since Q ≤ S ≤ S′ then (3) implies
that Θ′|BQ ' w ◦∆ ◦Θ|BQ and therefore, after p-completion

(6) map∆◦Θ|BQ(BQ, |L| o Σk)
η∗−→ mapη◦∆◦Θ|BQ(BQ, (|L| o Σk)∧p )

induces split surjections on homotopy groups where by (4) the space on the right
is homotopy equivalent to (2). Diagram (1) shows that (6) factors up to homotopy
through

(7) map∆◦η◦Θ|BQ(BQ, |L|∧p o Σk)
η∗−→ mapη◦∆◦Θ|BQ(BQ, (|L| o Σk)∧p )

which in addition must also be surjective on homotopy groups. It remains to show
that the homotopy groups of the space on the left are finite abelian p-groups.

Proposition 3.8(b) implies that

(8) map∆◦η◦Θ|BQ(BQ, |L|∧p o Σk) ' mapη◦Θ|BQ(BQ, |L|∧p ) o Σk.

By Proposition 2.11(a) the space mapη◦Θ|BQ(BQ, |L|∧p ) is homotopy equivalent
to the p-completed classifying space of a p-local finite group. It is therefore p-
complete by [7, Proposition 1.12] and its homotopy groups are finite p-groups by
Proposition 7.6, albeit the fundamental group is not necessarily abelian. By Remark
3.6, the homotopy groups of the mapping space in (8) are

π1(mapη◦Θ|BQ(BQ, |L|∧p )) o Σk, and

⊕k πi(mapη◦Θ|BQ(BQ, |L|∧p )) for i > 1.

Now [3, Proposition VII.4.3] shows that the homotopy groups of the p-completion
of (8) are finite p-groups. The fundamental group is abelian by Proposition 7.5
together with [6, Proposition A.2]. �

Proof of Theorem 7.3. First, we assume that S 6= 1, or else the result is a triviality.
Set C = O(Fc) and recall from [7, Corollary 3.4] that C is a finite category which
has bounded limits at p of height d ≥ 1.

We shall now construct inductively a sequence of spaces and maps

|L′|∧p = Y0
g0−→ Y1

g1−→ · · · gd−→ Yd+1

together with integers m0,m1, . . . ,md+1, where mi ≥ 2, with the following prop-
erties. First, Y0 = |L′|∧p . Set fi = gi ◦ · · · ◦ g0 ◦ f : BS → Yi+1 and set Gi =
Σpm0 o Σpm1 o · · · o Σpmi−1 . Then the following holds for all i = 0, . . . , d.

(i) There are homotopy equivalences ωi+1 : Yi+1 ' (|L′|∧p oGi+1)
∧
p

such that

|L′|∧p = Y0
gi◦···◦g0−−−−−→ Yi+1

'−−−→
ωi+1

(|L′|∧p oGi+1)
∧
p

is homotopic to |L|∧p
∆−→ |L|∧p oGi+1

η−→ (|L|∧p oGi+1)
∧
p
.
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(ii) π∗(mapfi|BP (BP, Yi+1)) are finite abelian p-groups for all P ≤ S.
(iii) If i ≥ 1 then for all P ≤ S the homomorphism induced by gi

πimapfi−1|BP (BP, Yi)
(gi)∗−−−→ πimapfi|BP (BP, Yi+1)

is trivial.
Let L0 = L′ and Y0 = |L0|∧p . We now define by induction on i ≥ 1 the integers

mi−1 and maps Yi−1
gi−1−−−→ Yi with the properties (i)-(iii) above. To begin the

induction set m0 = 2 and Y1 = (Y0 o Σp2)∧p and set g0 = η ◦∆(Y0). Condition (i)
holds directly from this definition, condition (ii) follows from Proposition 7.7 since
p2 ≥ 4 and condition (iii) holds vacuously since g0 is not required to satisfy it.

Assume by induction that mi−1 and gi−1 : Yi−1 → Yi have been defined for some
1 ≤ i < d+1 such that (i)-(iii) hold. We construct the next pair (gi : Yi → Yi+1,mi)
as follows. Let pmi be the maximum of p2 and the exponent of the finite abelian
p-group ⊕

P∈O(Fc)

πi
(
mapfi−1|BP (BP, Yi)

)
.

Define Yi+1 = (Yi o Σpmi )∧p and let gi : Yi → Yi+1 be the composition

Yi
∆(Yi)−−−−→ Yi o Σpmi

η−→ (Yi o Σpmi )∧p .

Since |L′| is p-good by [7, Proposition 1.12], the induction hypothesis (i) on Yi, a
Serre spectral sequence argument together with [3, I.5.5] and Theorem 1.1 show
that

Yi ' (|L′|∧p oGi)
∧
p
' (|L′| oGi)

∧
p ' |Li|

∧
p

for some p-local finite group (Si,Fi,Li). Condition (ii) for gi holds by Proposition
7.7 because Yi+1 ' (|Li|∧p o Σpmi )

∧
p
.

Furthermore, all the homotopy groups of |Li|∧p o Σpmi are finite by Proposition
7.6 and Remark 3.6, whence this space is p-good by [3, Ch. VII.4.3]. It follows that
Yi+1 is p-complete. Condition (iii) holds for gi : Yi → Yi+1 by Proposition 4.3 and
the way that mi was chosen.

By induction hypothesis there is a homotopy equivalence wi : Yi → (|L′|∧p oGi)
∧
p

which renders the top-left square in the following diagram homotopy commutative.

|L′|∧p
gi−1◦···◦g0 //

∆

��

Yi
∆ //

' wi

��

Yi o Σpmi

η //

'wioΣpmi

��

Yi+1

(wioΣpmi )∧
p '

��

|L′|∧p oGi η
//

∆
&&MMMMMMMMMMMM

(|L′|∧p oGi)
∧
p ∆

// (|L′|∧p oGi)
∧
p
o Σpmi η

// ((|L′|∧p oGi)
∧
p
o Σpmi )

∧

p

|L′|∧p oGi o Σpmi

ηoΣpmi

66nnnnnnnnnnnnnn

η
// (|L′|∧p oGi o Σpmi )

∧
p

(ηoΣpmi )∧
p '

OO

The remainder of the diagram commutes and the composition η ◦ ∆(Yi) in the
first row is by definition gi. By Theorem 1.1, [7, Proposition 1.12] and [3, Lemma
I.5.5], the arrows on the right are homotopy equivalences. Define the equivalence
wi+1 : Yi+1 → (|L′|∧p oGi+1)

∧
p

as the composition of the equivalences in the right
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column. Now property (i) follows from this diagram and Proposition 3.5. Also, the
diagram above shows that

mapfi|BP (BP, Yi+1) ' map∆◦f |BP (BP, (|L′|∧p oGi+1)
∧
p
)

and property (ii) for fi holds by Proposition 7.7.
We now consider the functor B̃ : C → Top recalled in 2.7. Clearly f : BS → |L′|∧p

gives rise to a system of homotopy compatible maps f0 : B̃(−)→ |L′|∧p in the sense
described in Section §6. By applying part (a) of Theorem 6.2 to the compositions

BS
f0−→ Y0

g0−→ · · · gd−→ Yd+1 we conclude that there exists a map f̃0 : |L| → Yd '
(|L′| oGd)∧p whose restriction to BS is homotopic to

(1) BS
f−→ |L′|∧p

η◦∆−−−→ (|L′|∧p oGd)
∧
p
.

Since |L′| is p-good by [7, Proposition 1.12], we have the following commutative
diagram in which the vertical right arrow is a homotopy equivalence

|L′| ∆−−−−→ |L′| oGd
η−−−−→ (|L′| oGd)∧p

η

y ηoGd

y '
yηoGd

∧
p

|L′|∧p
∆−−−−→ |L′|∧p oGd

η−−−−→ (|L′|∧p oGd)
∧
p
.

Therefore Yd ' (|L′| oGd)∧p . From Theorem 1.1 we also see that the spaces on the
right of this diagram are p-complete. Applying [3, Proposition II.2.8] we deduce that

η ◦∆ in (1) is homotopic to |L′|∧p
∆∧

p−−→ (|L′| oGd)∧p composed with the equivalence
in the right of the diagram. Part (a) of this theorem follows by composition with
the map induced by the inclusion Gd ≤ Σpm0+···+md−1 .

To prove part (b), we analogously apply part (b) of Theorem 6.2 to deduce that

|L|
f̃1 //

f̃2

// |L′|
∧
p

g0 //Y1
g1 // · · ·

gd //Yd+1 ' (|L′| oGd+1)
∧
p

are homotopic. The result now follows by composition with the map induced by
the inclusion Gd+1 ≤ Σpm0+···+md . �

Proof of Theorem 1.3. The induced map BS
Bρ−−→ BS′

η◦Θ′

−−−→ |L′|∧p is clearly F-
invariant because BS′ → |L′|∧p is F ′-invariant by 7.2 and ρ is fusion preserving.
The result is now a direct consequence of Theorem 7.3 and Theorem 1.1. �

We say that ρ : S → Σn is F-invariant if ρ|P and ρ ◦ ϕ are equivalent represen-
tations for every P ≤ S and ϕ ∈ F(P, S).

7.8. Proposition. Let (S,F ,L) be a p-local finite group and let ρ : S → Σn be a
homomorphism. Then the following statements are equivalent:

(1) ρ is F-invariant.
(2) Bρ : BS → BΣn is an F-invariant map.
(3) η ◦Bρ : BS → (BΣn)

∧
p is an F-invariant map.

Proof. It follows immediately from Dwyer-Zabrodsky’s result [12] which gives rise
to bijections Rep(P,Σn) ≈ [BP,BΣn]

η∗−→
≈

[BP, (BΣn)
∧
p ] for all P ≤ S. �
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7.9. Proposition. The regular permutation representation of a finite p-group S
induces an F-invariant map B regS : BS → BΣ|S| for any fusion system F on S.

Proof. By Proposition 7.8, it is enough to check that regS : S → Σ|S| is F-invariant.
Note that S acts freely on S via regS : S → Σ|S|, that is all the isotropy subgroups
are trivial. In particular, any group monomorphism ϕ : P → S where P ≤ S renders
S a free P -set via regS ◦ϕ. Since any two free P -sets of the same cardinality are
equivalent, it follows that regS |P and regS ◦ϕ are conjugate in Σn. �

By Example 7.2 and Proposition 7.8, every map f : |L| → (BΣn)
∧
p gives rise to an

F-invariant representation ρ of S of rank n whereBρ ' f |BS . Not every F-invariant
representation of S arises necessarily in this way. However, next proposition gives
a partial answer to that question.

7.10. Proposition. Let (S,F ,L) be a p-local finite group.

(a) Given ρ ∈ Repn(F), there exists some k ≥ 0 and an element f̃ ∈ Reppkn(L)

such that f̃ |BS is homotopic to BS
B(pk·ρ)−−−−−→ BΣpkn

η−→ (BΣpkn)
∧
p

.
(b) Consider f1, f2 ∈ Repn(L) such that f1|BS ' f2|BS. Then there exists

some e ≥ 0 such that pe · f1 = pe · f2 in Reppen(L).

Proof. Let (S,F ,L) be the p-local finite group associated with Σn. Then [7, Propo-
sition 1.12] with a standard Serre spectral sequence argument show that

(BΣn)
∧
p ' |L|

∧
p

∆∧
p−−→ (|L|∧p o Σk)

∧
p
' ((BΣn)

∧
p o Σk)

∧
p

Bincl∧p−−−−→ (BΣnk)
∧
p and(1)

(BΣn)
∧
p

(B∆)∧p−−−−→ (BΣnk)
∧
p

where ∆: Σn ≤ Σnk is the diagonal inclusion, are homotopic. Both (a) and (b)
follow directly from Proposition 7.8, Theorem 7.3 and (1) taking into account the
definition of the operation + in

∐
n≥0 Repn(F) and

∐
n≥0 Repn(L). �

Proof of Theorem 1.5. Apply Propositions 7.9 and 7.10(a) to obtain some f ∈
Reppk·|S|(L) such that f |BS is homotopic to η◦B(pk ·regS), that is, Φ(f) = pk ·regS .

By [6, Lemma 2.3], H∗(S; Fp) is a finitely generated module over the Noetherian
Fp-algebra H∗(BΣpk·|S|; Fp) via the algebra map (pk ·regS)∗. Finally, H∗(|L|; Fp) is
a submodule of H∗(S; Fp) by [7, Theorem B] and it is therefore finitely generated.
Now apply [6, Lemma 2.3] again to deduce that f is a homotopy monomorphism.

�

8. The index of the Sylow subgroup

Let (S,F ,L) be a p-local finite group and let f : |L| → (BΣn)
∧
p be a map. The

restriction f |BS = f ◦Θ is F-invariant by Example 7.2 and is homotopic to (Bρ)∧p
for a unique ρ ∈ Rep(S,Σn) which is F-invariant by Proposition 7.8 and [12]. There
results maps Repn(L)→ Repn(F) which are compatible with the operations + and
× defined in the introduction. They give rise to a ring homomorphism

Φ: Rep(L)→ Rep(F).

8.1. Proposition. The abelian groups underlying ker(Φ) and coker(Φ) are p-torsion.
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Proof. An element in ker(Φ) has the form f1− f2 where f1, f2 ∈ Repn(L) for some
n and f1|BS ' f2|BS . Proposition 7.10 implies that pe · (f1 − f2) = 0 in Rep(L)
and it follows that ker(Φ) is p-torsion.

An element of Rep(F) has the form ρ1 − ρ2 for some ρ1 ∈ Repn1
(F) and

ρ2 ∈ Repn2
(F). By Proposition 7.10, the definition of Φ and the definition of the

operations + in Rep(F) and Rep(L), we see that there exist integers k1, k2 ≥ 0 and
representations f1 ∈ Reppk1n1

(L) and f2 ∈ Reppk2n2
(L) such that Φ(f1) = pk1 · ρ1

and Φ(f2) = pk2 · ρ2. Then ω = pk2 · f1− pk1 · f2 is an element of Rep(L) such that
Φ(ω) = pk1+k2(ρ1 − ρ2). It follows that coker(Φ) is p-torsion. �

By Propositions 7.9 the ring Rep(F) contains regS : S → Σ|S| which generates
an (additive) infinite cyclic group Repreg(F) := {n · regS}n∈Z in Rep(F). Similarly
let Repreg(L) denote the additive subgroup of the ring Rep(L) generated by all the
S-regular representations of (S,F ,L); See Definition 1.4.

It follows directly from the definitions that Φ restricts to a group homomorphism

Φreg : Repreg(L)→ Repreg(F).

8.2. Corollary. The cokernel of Φreg is a cyclic p-group. The kernel of Φreg is an
abelian torsion p-group and Repreg(L) ∼= Z⊕ abelian p-torsion group.

Proof. This follows from Proposition 8.1 which in particular implies that the image
of Φreg is isomorphic to Z, whence it splits off from Repreg(L). �

Given a finite group G there is a natural one-to-one correspondence between
equivalence classes of permutation representations G→ Σn and equivalence classes
of G-sets of cardinality n. Sum and products of representations (as described in the
introduction) correspond to disjoint unions and products of the associated G-sets.
Note that regG corresponds to a free G-set with one orbit.

Let us return to discuss Rep(F). Since the product of a free S-set with any other
S-set is again a free set, it follows that Repreg(F) and Repreg(L) are in fact ideals
in Rep(F) and Rep(L) and that Φreg is a ring homomorphism.

8.3. Example. Let (S,F ,L) be the p-local finite group of a finite group G. The
restriction of (B regG)∧p : |L|∧p → (BΣ|G|)

∧
p

to BS is homotopic to n · (B regS)∧p
where n = |G : S| because regG : G → Σ|G| renders G a free G-set, whence a free
S-set. In particular (B regG)∧p ◦Θ is an element in Repreg(L) which is mapped by Φ
to n · regS . It follows that |G : S| ∈ Im(Φreg), whence | coker(Φreg)| divides |G : S|.

8.4. Definition. Let (S,F ,L) be a p-local finite group. Define the upper and lower
index of S in L by

Uind(L : S) = | coker(Φreg)|
Lind(L : S) = |Repreg(F) : Repreg(F) ∩ Im(Φ)|.

Clearly Lind(L : S) divides Uind(L : S) because Im(Φreg) ≤ Im(Φ) ∩ Repreg(F).

8.5. Lemma. Let (S,F ,L) be a p-local finite group. Then Uind(L : S) is a p-
power. If there exists a permutation representation ρ : |L| → (BΣn)

∧
p such that

ρ|BS ' B(n · regS) with n ≥ 1 prime to p, then Uind(L : S) = 1, and in particular
also Lind(L : S) = 1.

Proof. The first statement follows from Corollary 8.2. The existence of ρ shows
that n ∈ Im(Φreg) hence, Uind(L : S) = 1. �
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We shall now prove Theorem 1.8. In fact we prove the following stronger result.

8.6. Theorem. Under the hypotheses of Theorem 1.8 we have Uind(L : S) = 1.

Proof. (1) This follows from Lemma 8.5 and Example 8.3.

(2) Let Cn be the poset {c0, ci1, ci2| i = 1, . . . , n} whose only relations are defined
by ci1 ≺ c0 and ci1 ≺ ci2 for all i = 1, . . . , n. View Cn as a small category where
x ≺ y corresponds to an arrow x→ y.

In [16, Section 7], the authors prove that if the longest chain of proper inclusions
of F-centric F-radical subgroups of S has length ≤ 2, then |L| ' hocolimCn

F where
the functor F : Cn → Top has the following properties. The values of F are the
classifying spaces of finite groups G0, G

i
1 and Gi2 for i = 1, . . . , n and the maps

F (ci1) → F (c0) and F (ci1) → F (ci2) are induced by inclusion of groups Gi1 ≤ G0

and Gi1 ≤ Gi2. In addition ki = |Gi2 : Gi1| are prime to p, and S is a subgroup of G0

of index prime to p. Also, the map Θ: BS → |L| factors up to homotopy through
BG0 ' F (c0)→ hocolimCn

F ' |L|.
Set k =

∏n
1 ki and k0 = |G0| ·k. Note that k0 is divisible by |Gi1| and |Gi2| for all

i because k0 = k · |G0| = k · |Gi1| · |G0 : Gi1| and ki divides k. Set `i = k0/|Gi1| and
mi = k0/|Gi2|. Consider the following permutation representations for i = 1, . . . , n

k · regG0
: G0 → Σk0 , `i · regGi

1
: Gi1 → Σk0 , mi · regGi

2
: Gi2 → Σk0 .

Note that (k · regG0
)|Gi

1
and (mi · regGi

2
)|Gi

1
are equivalent to `i · regGi

1
because all

of them render the set {1, . . . , k0} a free Gi1-set with `i orbits. By taking classifying
spaces there results a system of homotopy compatible maps F → BΣk0 . It can be
rectified to a system of compatible maps F → BΣk0 as follows. First, set the maps
F (ci1) → BΣk0 to be the composition of F (ci1) → F (c0) → BΣk0 . Next, replace
the maps F (ci1)→ F (c2i ) by cofibrations and change the maps F (ci2)→ BΣn up to
homotopy to obtain a system of compatible maps F → BΣk0 .

There results a map f : |L| ' hocolimF → BΣk0 such that f |BS = f ◦ BιG0
S '

k · |G0 : S| · B regS where k · |G0 : S| is prime to p. By applying Lemma 8.5 we
deduce that Uind(L : S) = 1.

Now, all the exotic examples in [7, Examples 9.3, 9.4], [8] and [11] satisfy the
condition of [16, Section 7] that chains of proper inclusions of F-centric F-radical
subgroups of S have length ≤ 2. �

8.7. Conjecture. For all p-local finite groups Uind(L : S) = 1.
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