WREATH PRODUCTS AND REPRESENTATIONS OF p-LOCAL
FINITE GROUPS

NATALIA CASTELLANA AND ASSAF LIBMAN

ABSTRACT. Given two finite p-local finite groups and a fusion preserving mor-
phism between their Sylow subgroups, we study the question of extending it
to a continuous map between the classifying spaces. The results depend on
the construction of the wreath product of p-local finite groups which is also
used to study p-local permutation representations.

1. INTRODUCTION

The concept of a p-local finite group (.5, F, £) was introduced in [7] by Broto, Levi
and Oliver and a short exposition is given in §2. It consists of a finite p-group S and
two categories F and £ whose objects are subgroups of S. This structure is suitable
for studying p-completed classifying spaces of finite groups whose Sylow p-subgroup
is S. Every finite group has an associated p-local finite group [7, Proposition 1.3,
page 786] but the converse is not true.

In this paper we study maps between classifying spaces of p-local finite groups.
Suppose that (S, F, L) and (S, F', L") are p-local finite groups. Given a group
homomorphism p: S — S’ it is natural to ask if Bp: BS — BS’ can be extended, up
to homotopy, to a map f: |£|;\ — L |2 such that the following square is homotopy
commutative where © and ©’ are the natural maps described in §2

BS —2= L[}
Bp f
\

A
BS’ ? 1L'| D

Recall that given fusion systems F and F’ on S and S’ respectively, a homomor-
phism t: S — S’ is called fusion preserving if for every ¢ € F(P, Q) there exists
some ¢’ € F'(Y(P),¥(Q)) such that o p = ¢’ 01p. Ragnarsson shows in [19] that
stably, namely in the homotopy category of spectra, f in the diagram above exists
if and only if p is fusion preserving. Unstably this is unknown.

The content of Theorem 1.3 below is that f exists provided the target £’ is
replaced with its wreath product with some symmetric group ,, a construction
which we now describe.

Let X be a space, then G < ¥, acts on X" by permuting the factors. The
wreath product of X with G, denoted X G, is the homotopy orbit space (X™)na
(see Definition 3.4). This construction is equipped with a map A: X — X1 G
which factors through the diagonal map X — X". For example, we prove in 3.6
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below that if X is an Eilenberg-MacLane space K(H,1) then there is a homotopy
equivalence X 1 G ~ K(H ! G, 1) such that A is induced by the diagonal inclusion
H < HG.

1.1. Theorem. Fix a p-local finite group (S,F,L) where S # 1. Let K be a
subgroup of Xy, and let S’ be a Sylow p-subgroup of SIK. Then there exists a p-local
finite group (S', F', L") which is equipped with a homotopy equivalence |L|V K ~ |L’]
such that the composition

BS' B p(S1K) ~ (BS) K 25 |2 K ~ |£]
is homotopic to the natural map ©': BS" — |L'|. Moreover, (S’,F', L) satisfying
these properties is unique up to an isomorphism of p-local finite groups.

In Remark 5.3 we show that when Theorem 1.1 is applied to a p-local finite group
(S, F, L) of a finite group G then (S’, F', L’) is the p-local finite group of G K.

We prove Theorem 1.1 in §5 which is highly technical, however, the remainder
of the paper is completely independent of it.

1.2. Definition. We call the p-local finite group (S’, ', L) in the theorem above
the wreath product of (S, F, L) with K and denote its fusion system and linking
system by F ! K and £ K respectively. Let A: |£| — |£| VK ~ |£'| denote the
diagonal inclusion followed by the homotopy equivalence in Theorem 1.1.

If S =1 we cannot apply Theorem 1.1, but in this case |£] = * and we choose
(S', F', L) to be the p-local finite group associated to K and the map A: |£| — ||
is any map * — |[L/|.

1.3. Theorem. Let (S, F,L) and (S’,F', L") be p-local finite groups and suppose
that p: S — S’ is a fusion preserving homomorphism. Then there exists some
m >0 and a map f: \/J|2 — |L 1 Epm |; such that the diagram below commutes up
to homotopy

BS Ll

T

1 HA / m/\
BS — o 1) o 1 5

A permutation representation of a finite group G is a homomorphism p: G — X,,.
The rank of p is n. In this paper we shall call p simply a “representation”. Clearly
G acts on itself by left (or right) translations giving rise to Cayley’s embedding

regg: G — Yg

which is called the regular permutation representation of G.

Two representations p1, p2: G — X, are equivalent if they are conjugate in ¥,
that is, if they differ by an inner automorphism of ¥,,. The set of equivalence classes
of representations of G of rank n is denoted Rep,,(G). The inclusions of subgroups
Y X B < Ypgm and X, x 3, < X, obtained by taking the disjoint union and the
product of the sets [n] = {1,...,n} and [m] = {1,..., m} give rise to commutative,
associative and unital binary operations + and x on the set [[, -, Rep, (G). We
shall write k - p for the k-fold sum p+ --- + p. B
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A classical result which goes back to Hurewicz states that the classifying space
functor induces a bijection

Rep,, (G) =~ [BG, BY,], (p — Bp).

When the target is p-completed, a theorem of Dwyer and Zabrodsky [12] shows that
there is also a bijection Rep,,(P) =~ [BP, (BEn);\] when P is a p-group. Therefore,
given a map f: |£] — (BEn)$7 f admits a representation p: S — X,,, unique up
to equivalence, which renders the following square homotopy commutative

BS —2— |

B,)l lf

B%, —— (BZ,)).
n
1.4. Definition. A permutation representation of a p-local finite group (S,F, L)
is a homotopy class of maps f: |£| — (BZn);\. We say that f is S-regular if
n=m-|S| for some m > 0 and p in the diagram above is equivalent to m - regg.

We shall deduce from Theorem 1.3 the following result which is a p-local form of
Cayley’s theorem. Recall from [6, Definition 2.2] that a map f: X — Y of spaces
is a homotopy monomorphism at p if H*(X;F,) is a finitely generated module over
H*(Y;F)) via f*.

1.5. Theorem. Every p-local finite group (S, F, L) admits an S-reqular permutation
representation f: |L| — (BZPm)Q which is a homotopy monomorphism at p.

The reason we didn’t define permutation representations as maps |£| — BY,
(without p-completing the target) is that in general there is little hope to expect
to find “interesting” such maps. For example, the nerve of the linking system
of the Solomon p-local finite group, constructed by Levi and Oliver in [14], was
shown to be simply connected in [10] and therefore [21, Theorem 8.1.11] implies
that [|Lsol|, BX,] = *. In particular, the restriction of any f: [Lso| — BX,, to BS
via © is induced by the trivial representation p: S — X,,.

Let F be a fusion system on S. A representation p: S — 3, is called F-invariant
if for every P < S and every ¢ € F(P,S) the representations p|p and p o ¢ of P
are equivalent. Let Rep,, (F) denote the set of all the equivalence classes of the
F-invariant representations of S of rank n. The inclusions ¥, x ¥, < ¥4, and
Ym X By < X render the sets [],,-, Rep,, (F) with commutative, associative and
unital binary operations + and x such that + is distributive over x.

More generally, the set of representations at p of rank n of a space X is Rep,,(X) =
[X, (BSn),)]. Since (BES),) x (BS,)) ~ (B(Sm X £5)); (see [3, Theorem 1.7.2]),
the maps (B(Sm x £n))) = (BEmia), and (B(Sm x $,))) — (BSmy),, induced
by the inclusions equip [],,~,Rep, (X) with commutative and associative binary
operations + and x such that + is distributive over x.

Given (S, F, L) we let Rep,,(£) denote Rep,,(|£]).

1.6. Definition. The ring Rep(L) of the virtual permutation representations of a
p-local finite group (S, F, £) is the Grothendieck group completion of the commu-
tative monoid (][, Rep, (L), +).



The ring Rep(F) of the virtual F-invariant representations of S of a saturated
fusion system F on S is the Grothendieck group completion of the commutative
monoid ([],5, Rep, (F), +).

Clearly Rep(F) is a subring of Rep(S). In §8 we will construct a ring homo-
morphism ®: Rep(L£) — Rep(F) which sends a map f: |£] — (BZn);\ to the
representation p: S — ¥, such that f o © ~ 5o Bp as in Definition 1.4. We
shall also see that regg: S — X|g| generates an ideal Rep™®(F) in Rep(F) whose
underlying group is isomorphic to Z.

The idea behind the next definition is that if H is a subgroup of index n in a
finite group G then regq |y ~ n - regy. Therefore the image of the restriction map
Rep(G) — Rep(H) intersects Rep™®(H) := {k - regy }rez in a subgroup of index
divisible by n.

1.7. Definition. The lower index of S in £ denoted Lind(L: S) is the index of
Im(®) N Rep™®&(F) in Rep™&(F).

We will prove in Lemma 8.5 that Lind(L: S) is a p-power. We conjecture that
it is always equal to 1. A partial result is the theorem below.

1.8. Theorem. Let (S,F,L) be a p-local finite group. Then Lind(L: S) = 1 if
etther

(1) (S,F,L) is associated with a finite group.
(2) (S,F,L) is one of the exotic examples in [20] or in [7] or in [8].

2. PRELIMINARIES ON p-LOCAL FINITE GROUPS

We start with the notion of a saturated fusion system which is due to Puig [17]
(see also [7]).

2.1. Definition. A fusion system F on a finite p-group S is a category whose
objects are the subgroups of S and the set of morphisms F(P, Q) between two
subgroups P, @, satisfies the following conditions:

(a) F(P,Q) consists of group monomorphisms and contains the set Homg (P, Q)
of all the homomorphisms ¢,: P — @ which are induced by conjugation by
elements s € S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclu-
sion.

In a fusion system F over a p-group S, we say that two subgroups P,Q < S are
F-conjugate if there is an isomorphism between them in . Let Syl,(G) the set of
the Sylow p-subgroups of a group G. Given P < G and g € G, ¢4 € Hom(P, G) is
the monomorphism cy(z) = grg~!. We write Outz(P) = Autz(P)/ Inn(P).

2.2. Definition. Let F be a fusion system on a p-group S. A subgroup P < S is
fully centralized in F if |Cs(P)| > |Cs(P")| for all P’ < S which is F-conjugate to
P. A subgroup P < S'is fully normalized in F if |[Ng(P)| > |[Ng(P')| for all P’ < S
which is F-conjugate to P.

A fusion system F on S is saturated if:

(I) Each fully normalized subgroup P < S is fully centralized and Autg(P) €
Syl,(Aut#(P)).
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(IT) For P < S and ¢ € F(P,S) set

Ny = {g € Ns(P)|pcgp™" € Auts(p(P))}.
If ¢(P) is fully centralized then there is ¢ € F(N,,S) such that ¢|p = ¢.
2.3. Definition. Let F be a fusion system on a p-group S. A subgroup P < S
is F-centric if P and all its F-conjugates contain their S-centralizers. A subgroup
P < §is F-radical if Outz(P) has no non-trivial normal p-subgroup.
2.4. Definition. [7] Let F be a fusion system on a p-group S. A centric linking
system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor 7: £ — F¢ and monomorphisms P LN Aut,(P) for
each F-centric subgroup P < S, which satisfy the following conditions:
(A) = is the identity on objects. For each pair of objects P,Q € L, the action
of Z(P) on L(P,Q) via precomposition and dp: P — Aut(P) is free and
7 induces a bijection L(P,Q)/Z(P) — F(P,Q).
(B) If P < S is F-centric then 7(dp(g)) = ¢4 € Autz(P) for all g € P.
(C) For each f € L(P,Q) and each g € P, the following square commutes in £:

f

P———Q

6p(g)l l(icz(ﬂ(f)(g))

P——Q

A p-local finite group (S,F,L) consists of a saturated fusion systems F on S
together with an associated linking system.
2.5. Remark. For P,Q < S, let Ng(P, Q) denote the set of the elements s € S
such that sPs™* < Q. In [7, Proposition 1.11] it is shown that (S, F, L) can be
equipped with injections dp g : Ng(P,Q) — L(P, Q) where P,Q < S are F-centric
such that dp p extends the monomorphisms dp: P — Aut.(P). We denote dpg(s)
by § € L(P,Q). The construction of the dp g’s has the property that s 0 sy = $152.
Also, if P < @ we write Lg for dp,o(1). This gives a choice of lifts in £ for the
inclusion of F-centric subgroups in F. This choice is “compatible” in the sense
that Lg o Lg =B

2.6. Remark. Every morphism in £ is both a monomorphism and an epimorphism
(but not necessarily an isomorphism). This is shown in [7, remarks after Lemma
1.10] and [4, Corollary 3.10]. We shall use this fact repeatedly throughout.

The orbit category of a p-local finite group (S, F, L) is denoted by O(F). This
is the category whose objects are the subgroups of S and whose morphisms are

O(F)(P,Q) = Rep(P,Q) “ In(Q) \ F(P, Q).
Also, O(F¢) is the full subcategory of O(F) whose objects are the F-centric sub-
groups of S.
2.7. Proposition. [7, Proposition 2.2] Let (S,F, L) be a p-local finite group. There
exists a functor B: O(F¢) — Top which is isomorphic in the homotopy category
of spaces to the functor P — BP, and such that there is a homotopy equivalence

hocolim B = |£].
O(F¢)
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2.8. Notation. For a finite group G, let BG denote the category with one object
o; and G as its set of automorphisms. For an F-centric P < S the monomorphism
dp gives rise to a functor BP — L which, by abuse of notation, we denote by dp.
For P = S, upon taking nerves of categories, we obtain a map

O: BS — |L]

and we write ©|pg for © o Binclg.

If @ is F-centric, then the natural isomorphism of functors in Proposition 2.7
shows that ©|pg is homotopic to BQ ~ B(Q) — hocolim@(}-c)é = |L|. Therefore,
for any F-centric @ < S and any morphism p: Q — S in F we have ©oBp ~ 0O|pq.
In particular, ©|gg 0B ~ O|pg for any ¢ € Isoz(Q,Q’). It follows from Alperin’s
fusion theorem for saturated fusion systems [7, Theorem A.10] that:

2.9. Proposition. For any Q,Q" < S and any p € F(Q,Q’) there is a homotopy
equivalence O|pgr o Bp ~ O|pq.
2.10. Notation. Given a map f: X — Y of spaces, let map/(X,Y) denote the
path component of f in map(X,Y’). By convention f is the basepoint of this space.
The following proposition on mapping spaces will be needed in §7.
2.11. Proposition. Fiz a p-local finite group (S, F, L) and let P be a finite p-group.
Given a homomorphism p: P — S, set Q = p(P) < S. Then:
(a) There is a homotopy equivalence
map"onBp(BP, \£|;\) ~ map”oe‘BQ (BQ, |£|2),
and this space is the p-completed classifying space of a p-local finite group.
(b) After p-completion, the map
map®12@ (BQ,|L]) " map™®©1#e (BQ, |L],).
induces a split surjection on homotopy groups.
Proof. (a) First of all, we can choose a fully centralized subgroup @' < S in F
and an isomorphism ¢: Q@ — Q' in F. Let p': P — S denote the composition
PLQ Y, Q' < S. By Proposition 2.9 observe that
(1) @lBQ ~ ®|BQ’ o Bw
Hence, © 0 Bp ~ © o Bp'. Tt follows from [7, Theorem 6.3] that there are homotopy
equivalences
map”oeC’Bp(BP, |£|;)\) ~ map”C’@OBp/(BP, \£|2) ~
map”°®lse’ (BQ', \£|2) ~ map"°®lze (BQ, |E|$)
where the first equivalence is implied by equation (1) and the third one follows since
By: BQ — BQ' is a homotopy equivalence. Also by [7, Theorem 6.3], this space
is homotopy equivalent to the classifying space of a p-local finite group |Cr(Q’ )\;\
(b) We can assume from (1), by replacing @ with Q' if necessary, that @ is fully
centralised in F. In [7, pp. 822] a functor
I': Cr(Q) xBQ — L

is constructed where C(Q) is the centraliser linking system [7, Definition 2.4] of @
in F. By p-completing the geometric realisation of I' and taking adjoints we obtain
6



a commutative square in which the bottom row is a homotopy equivalence by [7,
Theorem 6.3]

@) T map®lse(BQ, L))

(2) nl lm

(ripH*
Ce(Q)l, ——— map™®lse(BQ,|L],).
Since |C£(Q)| is p-good by [7, Proposition 1.12], upon p-completion of the diagram
(2), we see that the vertical arrow on the left becomes an equivalence and therefore
the composition (77*);\ o (|I‘|#)2 is a homotopy equivalence. In particular (77*)2 is
split surjective on homotopy groups. O

We end this section with a description of the product of p-local finite groups.

2.12. Let F; be a saturated fusion system on a finite p-group S; for : = 1,... n.
Define S = [];", S; and consider the product category [];_, Fi. Its objects are the
subgroups of S of the form [], P; where P; < S;, and morphisms have the form
1, P 1% [T, Qs where ¢; € Fi(P., Q).

2.13. Notation. For P < S =[]\, S;, we denote by P the image of P under
the projection p(: S — S;. Clearly P <[]}, P®.

Let F be the fusion system on S generated by [[, ;. Thus, every morphism

¢ € F(P,Q) is given by the restriction of a morphism [, P(*) e, [1,Q% in
[L; Fi- The ¢;’s are unique in the sense that they are completely determined by ¢
because p|p: P — P are by definition surjective and p(i)|Q o = ;o pW|p.
We see that ¢ — (p;)?_; induces an inclusion F(P,Q) C [[, F:(P®,Q®). In
particular, [], 7 is a full subcategory of F.

We shall write x}__;F; for the fusion system F just defined and we call it the
product fusion system of the F;’s.

2.14. Lemma. With the notation above, (S,F) is a saturated fusion system. If
P < S is F-centric then all the groups P are F;-centric fori=1,... n.

The assignment P — [, P%) and the inclusions F (P, Q) C [[, Fi(P¥, QW) give
rise to a functor r: F¢ — [, F{ which is a retract of the inclusion [[, Ff € F°.

K2

Proof. In [7, Lemma 1.5] it is proven that F = Xx;F; is a saturated fusion system
on S.

The assignments P — [, P® and ¢+ [] ¢; give rise to a functor r: F — [, F;
which by inspection is a retraction to the inclusion j: [], /3 — F. It remains to
show that j and r restrict to [, ¥ and F°.

Observe that Cs(P) = [[; Cs,(PW) for any P < S. If P is F-centric then

(1) [[Cs.(PP)=cs(P) < P<]]PY.
i=1 i=1
Therefore Cg,(P®") < P® for all i. Now, if Q; are Fi-conjugate to P(®) via
isomorphisms ¢; € ]—'Z-(P(i),Qi) then (p1 X ... X @,)|p is an F-isomorphism onto
some @ < S such that Q) = Q,. By definition Q is also F-centric and applying
(1) to Q we obtain that Cs, (Q;) < Q; for all i. We deduce that P() are F;-centric.
7



Assume now that P; < S; are Fj-centric for all i = 1,...,n. Then P =[], P; is
F-centric because if Q is F-conjugate to P then it has the form [], Q; where Q;
are F;-conjugate to P; and therefore Cs(Q) = [[, Cs, (Q:) < Q. O

While the construction of the product of saturated fusion systems appears in [7],
we were not able to find a construction of the product of p-local finite groups in
the literature.

2.15. Definition. Let (S;,F;, £;) be p-local finite groups for ¢ = 1,...,n. Their
product x?_,(S;, F;, L£;) is the p-local finite group (S, F, £) where S = []""_; S; and
F = x}_1F;. The centric linking system £ = x]_,L; is defined as the following
pullback of small categories where r is defined in Lemma 2.14

n L n
XiaLi — > [limi Li

| I

(X Fa)e - I[=, 7

The functor 7: £ — F is defined by the pullback and the monomorphisms §p: P —
Autz(P) are defined by the compositions

) S .
P <[P JRLECR [T Aute, (PO).

We need to prove that axioms (A)-(C) of Definition 2.4 hold.

Proof. We first note that for any F-centric subgroups P, Q@ < S the set L(P, Q) is
the pullback in

(1) L(P, Q) I}, Li(P, Q1Y)

X Fi(P,Q)——[[iL, Fi(PD,QW).

We start by proving that the monomorphisms dp are well-defined. That is, given
g = (9;) € P < S where P is F-centric, [[, 6pw) (gi) € Autz(P). The pullback
diagram (1) shows that it is enough to check that [[m;(dpe) (9:)) € r((xP,F)).
It follows from the fact that m;(dpe) (g:)) = ¢, € Autr,(PW) and 7(c,) = [
This also shows that axiom (B) holds since 7(d0p(g)) = [[m:(dpw (9:))|p = ¢4l p-

We continue to prove that (S, F, £) satisfies axioms (A) and (C). It follows from
the definition that 7 is the identity on objects. Observe that [[; Cs,(P") acts
transitively and freely on the fibre of the right-hand arrow in (1) because axiom
(A) holds in (S;, F;, L£;). Now, axiom (A) for (S,F, L) follows from the fact that
Cs(P) = [[; Cs,(P™) and that diagram (1) is a pullback square so the fibres of
the vertical arrows are isomorphic.

Finally, axiom (C) for (S, F, L) follows by applying axiom (C) to each component
of a morphism f € £(P,Q) and each g € P <[], PO, O

2.16. Remark. A choice of compatible lifts for inclusion {LIQD} in every L£; (see 2.5)

gives rise to a choice {LIQ;.} of compatible lifts for the inclusions in (S, F, £) where

)
Lg = (Lgu))zn:r



2.17. Proposition. Given p-local finite groups (S;, Fi, L;) for i = 1,...,n, the
category 1], Li is a full subcategory of x;L; and the inclusion j: [], Li — X;L;
induces a homotopy equivalence on nerves. In particular, [[;—, |Li] = | Xy L;].

Proof. Set L = x1L,;. The category [[, £; is a full subcategory of £ by Defini-
tion 2.15 and the fact that [[, F; is a full subcategory of x;F;. The assignment
P []; P® and the inclusion £(P,Q) C [[i_, £i(P®, Q) give rise to a functor
re: £ — [I7_, L£; (see the pullback diagram in Definition 2.15) which is a retract
to the inclusion j by Lemma 2.14. Also there is a natural transformation Id — jor
which is defined on an object P € L by LTP(P): P —r(P)=T1]\, PY (see Remark
2.16). This shows that |r| is a homotopy inverse to [j[: [[, [£i| — |£]. O

2.18. Remark. Given a p-local finite group (S, F, L), Definition 2.15 allows us to
consider its n-fold product with itself denoted (S*™, F*™ L£L*™). By construction,
the action of the symmetric group ¥, on S*™ extends to an action on the fusion sys-
tem F*™ and the linking system £*" by permuting the factors. Moreover, the func-
tor m: L*® — F*™ and the distinguished monomorphisms dp: P — Aut,x»(P)
for every F*"-centric P < §*™ are ¥,-equivariant from the construction in Def-

inition 2.15. Therefore, also the inclusion BS*" S5 BAut,xn(S*™) — LX™ is
¥ p-equivariant and so is the induced map ©: BS*™ — |LX™] >~ |L]*™.

The choice of Lg in £2™ made in Remark 2.16 is easily seen to be invariant under
the action of ¥,, as well.

Finally, the functor j and the homotopy equivalence in Proposition 2.17 are also
equivariant with respect to the action of ¥,, by permuting coordinates.

3. THE WREATH PRODUCT OF SPACES

Let G be a finite group and X a G-space. The Borel construction Xjg is the
orbit space of EG x X where EG is a contractible space on which G acts freely on
the right. Recall from 2.8 that BG is the small category with one object and G as
a morphism set. Then X can be viewed as a functor X : BG — Top and the Borel
construction is a model for hocolimps X . There is a natural map Xpe — X/G to
the orbit space of X induced by the map FG — .

A standard model for EG is given by the nerve of the category £G whose ob-
ject set is G and there exists a unique morphism between any two objects. This
construction is natural so that if H < GG then EH is an H-subspace of EG. More-
over, the identity element of G renders EG with a natural choice of a basepoint
(which is not invariant under G.) This basepoint provides an augmentation map
k(X): X — Xp¢ which fits into a fibration sequence

(3.1) x ", x4 — BG.

A fixed point x € X corresponds to a G-map * — X and gives rise to a section
s: BG — Xpq for this fibration.

If N <G then EG xx X is a model for X,y on which G/N acts freely in a
natural way. As a consequence we obtain a composite homotopy equivalence

(32) (Xnw)na/n — (BG xn X)na/n — (EG xn X)/g = BEG xg X = Xng-

Moreover, note that (EG Xy X)/% = EG xg X = X} and that the composition
in the bottom row of the following commutative diagram is by inspection equal to
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the map k: X — Xpa
X —"> Xpn = EN xy X > (EN Xy X)ng/n

. T

EGxy X (BEG xn X)ng/n — (EG xn X)/

X . . ¢ = Xna-

This shows that

(33) X5 Xnn = (X}LN)hG/N %()i) Xne is equal to X5 Xne-

3.4. Definition. The wreath product of a space X with a subgroup G of ¥, is the
space
X1G = (X")q

where G acts by permuting the factors of X **. The diagonal map Ax: X — X*k
and k: X** — X @ give rise to a natural map

AX): X - X1G.

We shall use a left normed notation for iteration of the wreath product construc-
tion. That is, by convention, X 1G11G21- - -1Gy, denotes (- - - (X 1G1)1G2)- - )Gy

3.5. Proposition. Given permutation groups G; < Xy, where i =1,...,n, there is
a homotopy equivalence

A X2G1 UG- 1Gy = X UGG -1 Gy)

which is natural in X. Moreover, the composition
X A X162 (X1G)NG: & - & X166t - 16y 22 X1 (G11Gat- - 1Gy)
is homotopic to A: X — X1 (G11G21---1Gy).

Proof. We start with n = 2. Define G = G; 1 Gy and set N = Gfl”. Since
EN = (EG4)**2, we obtain a homeomorphism

(XM )ng, ) k2 22 (XFR)

which is ¥,-equivariant and where N acts on [], X *k1 via ky copies of the action

of Gy on X*k1. Clearly G/N = G5 < ¥4, acts on this space by permuting the
factors and the homotopy equivalence as: X 1 G1 1 Ga ~ X 1 (G1 1 G2) is defined
with the aid of (3.2) by

((( Xkl) LGI)Xk )/lGQ ((‘(Xklk )h“)hG N = (‘(Xklk )hG
/
Furthermore lhe (I‘iangle belOW Commules by (3.3)

Az A(XG
(1) XH()XZGl #>12X2G12G2

x \LO&Q

X (Gl i Gg)

We define «, for n > 2 inductively by the composition

an—11Gpn

X1Gr1-- Gy XG0 1G_ 1) 1G22 XU (Gr-- 1 GY).

10



Consider the following commutative diagram where the triangle on the left com-
mutes by induction hypothesis

X1Gy - 0Gp X1Gyl-- Gy

XTXz(Glz---an_l)T»Xz(Glz---an_l)an%Q»Xz(Glz-~-an).

The property of a,, stated in the proposition follows from (1) applied to the com-
position at the bottom row of this diagram. O

3.6. Remark. Clearly ¥ fixes all the points in the image of the diagonal map
X — Xk If X # (), then the fibre sequence (3.1) X* — X 1G — BG splits for any
G < ¥ and the long exact sequence in homotopy groups gives rise to isomorphisms

Wl(X?G)g(’]TlX)ZG and
(X 1G) = (m X)* for all i > 2.
Moreover, x: X* — X { G induces inclusions [, 7 X < 7 (X 1 G) on which G <
m1(X 1 G) acts on higher homotopy groups by permuting the factors.
In particular, if X = BH for a discrete group H, there is a homotopy equivalence
(BH)!G ~ B(HG) and A: BH — (BH)1G ~ B(HG) is homotopic to the map
induced by the diagonal inclusion H < H G.

Let Y be a G-space. For any space X, map(X,Y) becomes a G-space, and the
evaluation map X x map(X,Y) 2L Y is clearly G-equivariant. Therefore it gives
rise to a map evyg: X x map(X,Y)ne — Yae whose adjoint is denoted

(evag)®: map(X,Y)ne — map(X, Yag).

If the component map’(X,Y) of some f: X — Y is invariant under the G-action
then inspection of the adjunction shows that (evyg)? restricts to

(evha)™: map’ (X,Y)ng — map”(y)of(X, Yia).
Moreover, the composite

ev #
(3.7) mapf(X, Y) £ mapf(X, Y)na % map’“’f(X, Yia)

coincides with the natural map induced by Y =), Yha when applying map(X, —).

3.8. Proposition. Fiz a map f: A — X and G < Xj. Denote the adjoint of
A x (map’ (A, X)1G) = A x map®¥°/ (A, X*)pe 229 (XF)he = X1 G
by v: mapf (4, X) 1 G — map?(X)°F (A, X1 G). Then:
(a) The triangle
map’ (4, X)

i\wj
A

map’ (A4, X)1 G - map®(X)°f (A X1 Q).

18 commutative.
(b) If the natural map BG — map®(A, BG) into the the space of the constant
maps induces a homotopy equivalence then v is a homotopy equivalence.
11



Proof. (a) Note that [], map/ (4, X) = map®x°/ (A, X*) and that this component
is invariant under the action of G < ¥j. The commutativity of the triangle follows
from (3.7) and Definition 3.4.

(b) Consider the following ladder in which the rows are fibre sequences and T,
is induced by X — .

map’/ (4, X)¥ ——  map/ (4, X)1G —— BG
(]_) incll ’Yl :lconst
F —_ mapA(X)"f(A,XZG) —— map®(4, BG).

It commutes because the right hand square commutes as a consequence of the
commutativity of the following square and adjunction

A x map?x°f (A, X*)g ——— A x map(4, *)ng

evha l J/pl‘Oj:eva

(XXk)hG — L Yel ZBG.

T

Now, F is a union of path components of map(4, X*) because it is the fibre of the
fibration map(4, X ! G) — map(A4, BG) over the component of the constant map.
Moreover, F clearly contains the component map”x°/(A, X*) and inspection of
~ shows that the map between the fibres is simply the inclusion. Comparison of
the long exact sequences in homotopy of the fibre sequences in (1) shows that F' is
connected, whence F' = map/ (A4, X)**. Application of the five lemma to the exact
sequences in homotopy now yields the result. [

3.9. Remark. The hypothesis on A in part (b) of Proposition 3.8 is satisfied by all
classifying spaces BK of finite groups since map®(BK, BG) ~ BG.

4. KILLING HOMOTOPY GROUPS

The aim of this section is to study the effect on homotopy groups of the map
x 20 % 12k L (X Ek);\ where A(X) was defined in the last section and 7 is

the p-completion map.

4.1. Proposition. Let X be a pointed space. Then the kernel of m. X — m.(X]))
contains all the elements whose order is prime to p.

Proof. Let [0] € m.(X) be an element of order k prime to p. Then the map
0: S™ — X factors through the Moore space M(Z/k,n), which is a nilpotent space
with the same mod p homology of a point. It follows that no ©: S™ — X{,\ factors

through M (Z/k, n)g ~ % (see [3, Ch. VL5]), and therefore is nullhomotopic. O

An element of exponent n in a group G is an element whose order divides n. For
the proof of the next result, recall that for any space, m1(X) acts on the groups
X, see e.g. [21, Corollary 7.3.4] or [23, Ch. III]. We write o for the action of
wemXonaem,X.

4.2. Lemma. Fiz an integer n > 3 and a pointed space X. Then the kernel of

m X S5 (X 18 I m(X15)))

contain all the elements of exponent n in w, X.
12



Proof. We recall from Remark 3.6 that
ﬂl(XZZn) = (7T1X)?2n
(X138, = &,mX for ¢ > 2.

Furthermore, x: [[,, X — X ¥, induces the inclusion [[, m.X < m (X 1 %,).
The section s: BY,, — X X%, defined by the fixed point (x,...,%) € X™ induces
the inclusion ¥,, < m(X @ 3,) which acts by permuting the factors of m.(X™) <

T (X 15,).
Since n > 3 we can choose elements wy € 3, whose order is prime to p and
wi(1) = k for all £k = 1,...,n. Indeed, if p > 2 we can choose the involutions

wr = (1,k). If p = 2 we chan choose wy, to be 3-cycles (note that n > 3.) In both
cases we choose w; = id.

For every k = 1,...,n let jp: X — [], X denote the inclusion into the kth
factor. Note that diag: X — X" induces diag,(¢) = (¢,...,0) € [[,, 7 X. By
inspection of the action of wy € m (X 1 X%,), it follows that for any 6 € m;X,
(Ko ji)«(0) = ((koj1)«(0)* € m(X1X,). Now fix some 6 € m; X of exponent n.

Since A(X) is defined as the composition X —= diog —= 11, X = X 1%, we have

n
= [Tt 0

Now consider the p-completion map X%, - (X 12 ) and note that it maps wy
to the trivial element by Proposition 4.1. By applying 7, and using the naturality
of the action of the fundamental group we see that

::]z

((r0J1)«(6))*".

k

Il
-

:]:

(no A(X))«(0) = | | n+(((k0 1) H (0 41) ))m(wk)

= ((F»Oﬁ) ( )™ =n:((K0j1)«(67)) =0
O

k=1

4.3. Lemma. Fizamap f: X — Y and assume that every element of m;map’ (X,Y")
has exponent k for some k > 3. Assume further that map"°~()°f (X (Y Ek)g) is
p-complete. Then the induced homomorphism

m;map’ (X,Y) map(XnoA(¥))

mmap”® A (X (Y 1 5),)

is trivial.

Proof. According to Proposition 3.8(a) the triangle in the diagram below commutes
up to homotopy.

A(Y ) .
map! (X,Y) —inapBf (X, ¥ 1 55) — % map™3e (X, (Y 1 4)))

T A

map? (X,Y) 1 5j, ———> (map/ (X,Y) 15),

Since map”°2(M)ef (X (Y Zk)g) is p-complete, the map (7. o*y);\ gives rise to a
choice of a map for the dotted arrow so that the square is homotopy commutative.
We can now apply Lemma 4.2 to the diagonal arrow A and the bottom arrow n. [

13



5. THE WREATH PRODUCT OF p-LOCAL FINITE GROUPS

Given a finite group G, the space (BG) 1%y is the classifying space of the group
G1Ek (see 3.6). In this section we prove an analogous result for p-local finite groups.

Recall from Remark 2.5 that any p-local finite group (S, F, L) is equipped with
functions dpg: Ns(P,Q) — L(P,Q), where P,Q are F-centric. We shall denote
Opg(s) by 8. Thus, an element s € S permutes the set of all morphisms £, by
either pre-composition with s=1 (i.e. ¢ +— ¢ o s~1) or by post-composition with §
(i.e ¢ — §0¢). We obtain an action of S on £ by conjugation of the subgroup
P < § and by conjugation of morphisms ¢ +— §opo 51,

5.1. Definition. The action of a group G on S is called fusion preserving if the
image of G = Aut(S) consists of fusion preserving automorphisms, that is, for
every ¢ € F(P,Q) and every g € G the composition 75 0 ¢ o Tg_1 belongs to

]:(TQ(P)ng(Q))~

In this section we prove Theorem 5.2 which is a variant of [4, Theorem 4.6]. While
condition (2) of Theorem 5.2 offers some simplifications, we relax the assumption
imposed in [4] that G is a finite p-group. The main idea of the proof remains the
same but some new arguments were also needed and therefore we decided to present
a complete proof of Theorem 5.2.

5.2. Theorem. Let G be a finite group which acts on the centric linking system L
of a p-local finite group (So, Fo, Lo). The action of g € G on ¢ € Ly is denoted by
o g-@-g L. Assume that Sy <G and let S be a Sylow p-subgroup of G. Assume
further that:

(1) Autg(So) acts via fusion preserving automorphisms.
(2) For any g € G, if ¢ € Fo(Po, Qo) for Fo-centric subgroups Py, Qo < So,
then g € Sy.
(3) The action of G on Ly extends the action of So on Ly by conjugation.
(4) The monomorphism ds,: So — Autg,(So) is G-equivariant.
(5) The projection mo: Lo — Fo is G-equivariant, that is mo(g - @ - g7*) =
cg 0 mo(p) 0 cg-1.
(6) There is a compatible choice of lifts of inclusions in Lo such that for any
g € G and every inclusion of Fy-centric subgroups Py < Qo, we have
L, Qo . —1 _ ,7Qo
9:tpy "9  =lgp,-
Then, there exists a p-local finite group (S, F, L) with the following properties:

(a) There are inclusions Fo C F, F§ C F° and Ly C L in such a way that
the distinguished monomorphisms dp in L extend the ones in Lo. The map
i: |Lo| — |L| induced by the inclusion fits in a homotopy fibre sequence

Lol > |£] — B(G/So)-

Moreover, if Sy has a complement K in G, that is G = Sy x K, then:

(b) There is a homotopy equivalence |Lo|nx — |L| such that the composition
|Lo| — |Lolnx = |L] is homotopic to |Lo| = |£| and such that ©: BS — |L|
18 homotopic to the composition

©0)n
BG ~ (BSO)hK M) |£O|hK >~ |£|

14
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(¢) Up to isomorphism (S, F, L) is the unique p-local finite group with the prop-
erties in (b).

As a corollary we obtain the proof of Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. By Remark 2.18 there is an action of 3,, on the n-fold prod-
uct (So, Fo, Lo) = (S*™, F*™, L*™) by permuting the factors.

The action of Sy on Ly by conjugation clearly extends to an action of Sy x %,
because Sy = S*™ acts on every coordinate of Ly = L*™ and %,, acts by permuting
the factors of Lo and the factors of Sg = S*". Set G = SV K = Sy x K. We shall
now show that the action of G on Ly satisfies hypotheses (1)-(6) of Theorem 5.2.

Hypothesis (1) is clearly satisfied because K acts on Sy by permuting the factors
which is an automorphism of Fy = F*". Hypothesis (3) holds by the definition
of the action of G = Sy x K on Ly. Hypothesis (4) holds for similar reasons since
K <%, acts on Py < Sy and on Autg, (Py) < [, Aut}-(PO(l)) by permuting the
factors (see Definition 2.15) where Po(l) is the image of Py under the projection
p': §*" — S to the ith factor. For hypothesis (5) note that 7: Lo — Fo is S,-
equivariant and it is also Sp-equivariant since 7(8) = ¢4 for any s € S. Hypothesis
(6) holds as we indicated above for the choice of the morphisms {L%’} which we
described in Remarks 2.16 and 2.18.

It remains to check hypothesis (2). Fix an Fy-centric subgroup Py < Sp and
let Po(l) be defined as above (see 2.13). Since Po(l) are F-centric for i = 1,...,n
by Lemma 2.14 and S # 1, it follows that Péi) # 1 whence Z(Po(i)) # 1 for all
i=1,...,n. Also note that [, Z( ) IL C'S(P(Z ) = Cs,(Py) < Py because P,
is fo—centrlc Fix some g = (81,...,8,;0) € G = S K and assume that g ¢ Sy,
namely o # 1. Without loss of generality we can assume that o(1) = 2. Choose
14 2 € Cs(PV) and consider (z1,1,...,1;id) € [1., Z(Pj) < Py. Then

cg((21,1,...,1id)) = (81,...,8p;0) (21,1, ..., 1;id)(s] ,1(1) 7s;il(n);o’l)
=(1,s22185%,1,...,1;id).

Therefore ¢4 ¢ Fo(Po, So) because it cannot be a restriction of a morphism in [ [, F.
Now we apply Theorem 5.2(b) to conclude that there exists a p-local finite group
(S",F', L") with (|Lo|)nr = |L£'| such that

1) BS' 2% BG = (BSy)axe 2 | Lol = |£]
is homotopic to ©’: BS’ — |L’|. Also observe that the horizontal arrows in
(BS)*™ —— BS)
(__)an l(—)o
L] — Lol

form a Y,-equivariant map of the vertical arrows. It follows that the composite in
(1) is homotopic to the map

BS 22 pa ~ (BS) K 25 | K ~ ||,

which is therefore homotopic to ©’: BS’ — |£’|. Finally, the uniqueness of (S’, ', L)
with this property is guaranteed by part (¢) of Theorem 5.2. (I
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5.3. Remark. If the p-local finite group in Theorem 1.1 is associated with a finite
group G then (S', F', L) satisfies |/.Z’|;\ o~ (\£|2 ZK);\ ~ (BG) ZK)Q o~ B(GZK);\.
Those equivalences follow from the Serre spectral sequence associated to |£|" x gk EK
and [3, Lemma 1.5.5] since the spaces involved are p-good ([7, Proposition 1.12]).

In the remainder of this section we will prove Theorem 5.2. From now on, the
hypotheses and notation of Theorem 5.2 are in force. The construction of
(S, F, £) will be obtained in a sequence of steps which we describe now in 5.4-5.17.
These statements will be proved after the proof of Theorem 5.2 which succeeds
them.

5.4. Definition. Let H( denote the set of all the Fy-centric subgroups of Sy. Fix
once and for all a Sylow p-subgroup S of G and for every P < S let Py denote
PN5Sy.

5.5. Lemma. The action of G on the set of all subgroups of Sy by conjugation
restricts to an action on the set Hy.

5.6. Definition. Let F; be the fusion system on Sy generated by Fy and Auts(Sy).
Define a category £1 whose object set is Hg and

Mor() = ([T G = £o(Po,Q0))/{(95.¢) ~ (9:50¢) ; s € So }-
Py,Qo€Ho
The morphisms set L1 (FPy, Qo) where Py, Qo € Hj consists of the equivalence classes
[g : ¢] such that g € G and ¢ € Lo(Po, Q). Composition is given by the formula
l9:@loh:9]=[gh:(h™"¢h)od],
and identities are the elements of the form [1 : idp,].
Define a functor w1 : £1 — F; which is the identity on the set of objects and

m1([g : ¢]) = g 0 Mo (o).

We also define functions 3P07Q0: Ng(Py, Qo) — L1(Py, Qo) by g — [g : Lgog] and
denote the image of g by g.

After showing that £; is well defined we will prove the following properties.

5.7. Lemma. The category L1 satisfies the following properties:
(a) There is an inclusion functor j: Lo — L1 which is the identity on objects
and @ +— [1 : ] on morphisms.
(b) Every morphism in L1 has the form gop where ¢ is a morphism in Lo C L4.
If p € Lo(Py, Qo) and x € Ng(Py), then ¢ od =3 o (x  px).
(¢) There is a homotopy fibre sequence

ol 2 |£1] = B(G/S0).
If Sy admits a complement K in G then there is a homotopy equivalence

|Lolnr = |L1] such that the composition |Lo| — |Lolnx == |L1] is homotopic
to the map induced by the inclusion j. Moreover, the composite

©
BG = (BSo)nx 25, | Lol = |£4]

is homotopic to the map BG — |L1] induced by the functor k: BG — L4
with k(eg) = So and k(g) = [g: 1s,]-

16



The next step in our construction is to define the following category.

5.8. Definition. Define a category L5 whose object set is
H:{PSS : P()EH()}
and whose morphism sets are defined by

£2(P7Q) = {1/’ € ‘Cl(POvQO) : Vz e PEIy S Q(’IZJOJAJ :g‘”/})}
By construction L2(P, Q) C L1(FPo, Qo) and composition of morphisms is obtained
by composing them in £;. Identities idp have the form [1 : idp,]. Also define maps

5P7Q: Ng(P,Q) — Lo(P,Q) by g+— [g: Lgf] and denote the image of g by g.

The main properties of the category Lo and its relation to the previously defined
L1 are contained in next two lemmas.

5.9. Lemma. The category L1 is the full subcategory of Lo on the objects Hy and
the inclusion j: L1 — Lo induces a homotopy equivalence on nerves.

5.10. Lemma. The category Lo satisfies the following properties:

(a) For every morphism 1 € Lo(P, Q) there exists a unique group monomor-
phism ma(¢): P — Q which satisfies ¥ o & = ma(¢)(x) o ¢ in Lo for all
x € P. Moreover, ma(¥)|p, = m1(¢)).

(b) mo carries identities to identities and wo(X\) o wo (1)) = ma(A o tp) for every
PYLQYRInLy.

(c) For every g € Lo(P,Q) with g € Ng(P,Q), we have m2(g) = ¢,.

(d) Given o € Lo(P,Q), if m2(vp) is an isomorphism of groups then 1 is an
isomorphism in L.

Lemma 5.10 justifies the following definition.

5.11. Definition. Let F3 be the category whose object set is H (see Definition
5.8) and whose morphism sets F2(P, Q) are the set of group monomorphisms
ma(L2(P,Q)) defined by Lemma 5.10. By the properties shown in this lemma,
there results a projection functor mo: Lo — F> which is the identity on objects.

5.12. Lemma. The category Fo satisfies the following properties:
(a) For every P,Q € H, Homg(P,Q) C F2(P,Q). In particular, F5 contains
all the inclusions P < @Q of groups in H.
(b) Every morphism in Fo factors as an isomorphism in Fy followed by an
inclusion. In particular, every isomorphism of groups f: P — Q in Fs is
an isomorphism in Fs.

Thus, F» falls short of being a fusion system on .S only because its set of objects
‘H need not contain all the subgroups of S.

5.13. Definition. Let F denote the fusion system on S generated by Fa.

5.14. Lemma. The fusion system F over S satisfies the following properties:
(a) Fy is the full subcategory of F generated by the objects in H.
(b) Every P € H is F-centric. In particular, Ho C F€.
(¢) Every morphism f € F(P,Q) restricts to a morphism f|p, € F(Py, Qo).

5.15. Lemma. The functor mo: Lo — F satisfies all the azioms of a centric linking
system on the object set H.
17



Finally, the last step in the proof is to show that the fusion system (S, F) defined
in 5.13 is saturated and that £, can be extended to a unique centric linking system
L associated to F.

5.16. Lemma. F is a saturated fusion system on S.

5.17. Lemma. There ezists a p-local finite group (S, F, L) such that mo: Lo — F is
the restriction of m: L — F and moreover §p: P — Auty,(P) are the distinguished
monomorphisms of (S,F,L) for all P € H. Moreover, Lo is a full subcategory of
L and the inclusion Lo C L induces a homotopy equivalence on nerves.

Assuming definitions and lemmas 5.4-5.17, we can now prove Theorem 5.2.

Proof of Theorem 5.2. The p-local finite group (S, F, L) is constructed in Lemma
5.17. Together with Lemma 5.9 we obtain inclusions of full subcategories £ C
Lo C £ which induce homotopy equivalences on nerves. By Lemma 5.7(c), there
results the homotopy fibre sequence of part (a).

Now assume that Sy has a complement K in G and we prove points (b) and (c).
Lemma 5.7(c) shows that there are homotopy equivalences |Lo|px =~ |L£1] =~ |L]
such that |Lo| — |Lo|nrx = |£| is homotopic to the map induced by the inclusion
Lo C; L1 € L. Moreover the map

BS ﬂ BG ~ (BS())hK M |£O|hK ~ |£‘

is induced by the functor Ag: BS — L which sends eg to Sy and defined on mor-
phisms by s+ [s:1g,] = § € Autz(Sp) (see Lemmas 5.17, 5.7 and Definition 5.8).
The map ©: BS — |L]| is the realisation of the functor A;: BS — BAut,(S) — L
where s — § € Autz(9), then the lift of the inclusion Lgo € L(Sy,S) provides
a natural transformation Ag — Ay (note that § 0.5 = g o § by Remark 2.5).
Therefore |Ag| and |A;| are homotopic and the proof of point (b) is complete.

Now assume that (S, F’,L’) is another p-local finite group which satisfies the
properties in point (b). Let A denote the composition BS — BG = (BSy)nx —
|Lo|nk - By assumption there is a homotopy commutative diagram

BS

PRI

L] <— [Lolnx ——|L|.
The isomorphism of (S, F, £) and (S, F', L') follows from [7, Theorem 7.7] O
The rest of the section is devoted to the proof of statements in 5.5-5.17.

Proof of Lemma 5.5. First of all, observe that Sy <1G so for any Py € Hpand g € G
we have Cs, (gPog™!) = gCs,(Po)g™! = Z(gPyg™!) because Py is Fo-centric.

Now fix some Py € Hp and g € G. It follows from hypothesis (1) that every
Ry < Sy which is Fy-conjugate to gPyg~" has the form gQgg~" for some Qo < Sy
which is Fyp-conjugate to Py. In particular Qg € Hy. It follows from the calculation
above that Cs,(gPog™") = Z(gPyg~") and that Cs,(Ro) = Z(9Qog™") = Z(Ry).
This shows that gPyg~" is Fy-centric, namely gPyg~" € Hy. O

5.18. Lemma. For every Fo-centric Py, Qo < Sp, every s € Ng,(Py, Qo) and every
g € G we have gig=" = gsg=* as morphisms in Lo(9 Py, Qo).
18



Proof. Set Ry = gQog~". It suffices to show that the equality holds after post-
composition with Li‘; because the latter is a monomorphism in £y (see Remark
2.6). Note that L%% = g(Lg(;)g‘1 by hypothesis (6), therefore using Remark 2.5,
we conclude that Lf%% 0g8g™" = g8¢~" and LSR% o g/sg?1 = g/ng1 as morphisms in
Lo(Po, So). We may therefore prove the equality needed in this lemma under the
assumption that Q¢ = Sp.

Remark 2.5 shows that §: Py — Sy is equal to dg,(s) o L}Z{“}, which together with
hypothesis (6) and the fact that ij’,oq_l is an epimorphism in Ly imply that it
suffices to prove (5.18) when Py = Sp. But this is hypothesis (4) of Theorem
5.2. ([l

Proof of Definition 5.6. By Lemma 5.5 if Qo € Ho then Qf € Ho for any g € G.
This shows that pairs [g : ] where ¢ € Lo(Pp, Q) are well defined and that,
moreover, every element [g : ¢] in Mor(£;) has this form. The verification that the
formula for composition of morphisms is well defined is identical to the one in [4,
Theorem 4.6]. Specifically, for any go, ho € Sp

[990 = @] © [hho : ] = [ggohho : (hg"h™"phho) o Y] = by hypothesis (3)
[ggoh : (h™"ph) o hg o ¥)] = [gh hflg\oh o (h™"¢h) o hgo )] = by Lemma 5.18

lgh : h™"(do o p)h o hgotp] =[g: goop]o[h: hgot].
Associativity is straightforward as well as checking that [1 : 1p,] are identity mor-
phisms Py — Pj.
It is evident from the definition that m; maps identity morphisms in £; to iden-
tities in F7. It also respects compositions by the following calculation which uses
hypothesis (5) in the third equality

m1([g : ¢]) o mi([h : ¥]) = ¢g 0 T () © €1 0 Mo ()
= cgn 0 (cp—1 0 mo(p) 0 cn) 0 (V) = cgn 0 mo(h ™ ph) o (V)
= cgnomo(h™"ph o)) =mi([gh: h™'phot]) =mi([g:¢]o[h:P]).

Proof of Lemma 5.7. (a) By Definition 5.6 we have [1: ¢]o[l: ¢'] =[1:po¢']s
is clearly associative and unital. It is an inclusion functor because [1: ¢] = |
if and only if ¢ = ¢’ by the definition of morphisms in £;.

Given ¢ and x as in the statement, by Definition 5.6
pox=[:plofz:1]=[r:a7 pr]=[x:1g:z]o[l: a7 px] =T oz px.
(c) Set G = G/Sy and denote its elements by § = ¢gSg. There is a functor

II: £; — B(G) which sends every object of £; to 5 and maps [g : ¢] — g. This
assignment is evidently well defined and functorial by the constructions of £; in
Definition 5.6.

Now, consider the comma category (es | II). Its objects are pairs (g, Pp) and
morphisms (g, Py) — (h, Qo) are morphisms [z : A\] € £1(Py, Qo) such that 7 =
hg=*. We can easily check that §: P§ — Py provides an isomorphism (¢, Py) —
(g, Py) in (eg | II). Therefore, the set of objects of the form (e, Py) form a skeletal
full subcategory of (es | II), that is, it contains an element from every isomorphism
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class of objects. This subcategory is clearly isomorphic to £y and moreover the
composition L9 C (e | II) — L4 is the inclusion j in part (a).

Moreover, any morphism g € BG clearly induces an automorphism of the cat-
egory (es | II). Therefore, Quillen’s theorem B [18] applies in this situation to
show that [(eg | II)] — |L£1] — |B(G/Sp)| is a homotopy fibre sequence. Fi-
nally, using the homotopy equivalence |j| we obtain the homotopy fibre sequence

o] 25 21| 2L BG/ S0,

Now suppose that Sy has a complement K in G. Recall that G acts on the
category Ly and we view the restriction of this action to K as a functor BK — Cat.
Let Trx(Lo) denote the transporter category (or Grothendieck construction) of
this functor; See e.g. [22]. The object set of Trx (Ly) is Hg, and the morphisms
Py — Qo are pairs (k,¢) where ¢ € Lo(*Py, Qo). Composition is given by the
following formula: (ko,@2) o (k1,01) = (k2k1,92 o kap1ky'). Define a functor
®: Trr(Ly) — L1 which is the identity on objects and

O: Tri(Lo)(Po, Qo) — L1(FPo, Qo) is defined by (k, @) — [k : k=" pk].

It is clear that ®(1,id) = [1 : id] and for any pair of composable morphisms (k2, v2)
and (k27 @2) in TI'K(L()),

D(ka, p2) 0 ®(k1, 1) = [k2 : ky"paka] o [k1 + ki p1ki]
= [kaky t ky kg pakaky o ki ik ] = ®(kaki, p2 0 kaprky ).

By definition ® is bijective on the object set. We will show now that it is bijective
on morphism sets. For any morphism ¢ = [g : ¢| € L1(Py, Q) there is a unique
k € KNgSy, hence ¢ = [k : '] for a unique k € K and a unique ¢’ € Ly(Py, kilQO).
Then (k,k¢’k=") € Trx (Lo)(FPo, Qo) is a preimage of [k : ¢'] under ®. In fact, it is
unique because K NSy = 1.

Thomason [22] constructed a homotopy equivalence |Lo|nx LR | Tr (Lo)| such
that |Lo| — |Lolnx = | Trix (Lo)| is homotopic to the map induced by the inclusion
Lo C Trx(Ly) via ¢ +— [€ : ¢]. Furthermore, by inspection ® carries the subcate-
gory of Ly in Tri (Ly) onto Lo C Ly via the identity map. We deduce that |®| o
is a homotopy equivalence |Lo|px — |£1] whose composition with [Lo| — |Lo|nk
is homotopic to the map induced by the inclusion j: Ly — L;.

To complete the proof we now consider the subcategory BSy of BAut,,(So) C Lo
via the monomorphism Jg, : S — Autz,(Sp) and observe that it is invariant under
the action of K by Lemma 5.18. Thus, there is an inclusion of subcategories
Trg BSy C Trg Ly induced by Trx (ds,). By inspection there is an isomorphism of
categories Trx BSy = BG via the functor (k, s) — sk such that he composition

BG 2 Try(BSo) € Tri(Lo) = L4
is the functor which sends eg to Sy and g — [g : 1] € Autz, (Sp). O
Here are more properties of £; that we will need later.

5.19. Lemma. The category L1 satisfies the following properties:
(a) For every Py, Qo, Ry € Ho and every g € Ng(Py, Qo) and h € Ng(Qo, Ro)
the equality ho g = hg holds in L;.
(b) Fiz Py,Qo € Ho and b € L1(Py, Qo). Then, for every x € Ng(Py) there
exists at most one y € Ng(Qo) such that ¥ o & = g orp. In this case
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y = gxrg~'sg for a unique sg € So. Moreover, if x € Py then y = m (¢)(x)
satisfies Y o T = g op.
(¢) Every morphism g € L1(Py, Qo) is both a monomorphism and an epimor-
phism.
(d) Fiz ¢ € L1(Po, Qo) such that w1 ()(Py) < Ry for some Ry < Qo. Then
there exists A € L1(Po, Ro) such that ¥ =10 X where 1 = é € L1(Ro, Qo)-
(e) If m1(v) = m1(¥') where ¥, € L1(Py, Qo) then ' = 1 o 2 for a unique
S Z(Po)
(f) Fiz Py € Ho and set H := {g € G | gPog™" is Fo-conjugate to Py}. Then
H is a subgroup of G which contains Sy and |Aute, (Py) : Autg, (Po)| =
|H : So|
Proof. }(a) From Deﬁnitio}rll 5.6, there are equalities ho § = [h : Lg(g] olg: Lg;g)] =
g g g —
[hg : Lg% o ng’] =[hg: ng | = hg.
(b) By Definition 5.6, ¢ has the form [g : o] for some g € G and ¢ € Lo(Py, QF).
If y exists then, again by Definition 5.6,

gov=ly:1elg:¢]=lyg: ¢l
Yox=I[g:p|ofr:1]=]gr:z "zl

Since ¢y o & = g o in Ly, there exists some s € Sy such that
(i) yg = gxs and (i) o = s 1 o (z " px).

Note that z='¢z is an epimorphism in £y (Remark 2.6) so the morphism st e
Isoz, (Q5",QF) which solves equation (ii) must be unique, hence s is unique. Set
so = gsg~*. Then sg € Sy because Sy <G and y = grsg™" = gxg™" - Sp.

If x € Py then axiom (C) satisfied by the linking system Ly (see Definition 2.4)
implies that

Yoi=[g:plofw:1]=[gr:z 7 0pod]=[g:pod]=

= [g:mo(p)(@) 0 ] = [eg(mo(#) () - g = @] = co(mo() (@) - g 0 9.

(¢) By inspection, every g € L1(Py, Qo) has the form ¢ o § where § € L1(Pp,?Fy)
and ¢ = é € L1(9Py,Qp). Since g in this factorisation is clearly an isomorphism, it
suffices to prove the result for ¢ of the form é = [e : ng].

Assume that [h: @], [W : ¢'] € L1(Ro, Py) satisfy to[h: @] =10l :¢']. Since

Lo[h:go}:[I:Lg‘f]o[hmp]:[hzbg{;ﬁogp]

h/
and similarly co [h' : ¢'] = [W : L%,i, o ¢'], we see from the definition that there

0
exists some s € Sy such that ' = hs and

}/
Qo

’ —~ o th —
— o1 — 0
P(;I,ogafs oLp =1

L e oslogp in Lg.

n' —~
Since ng, is a monomorphism in Ly it follows that ¢’ = s~ o ¢ and therefore
0

(W @] =[hs:s 1oy =][h:¢]. This shows that ¢ is a monomorphism.
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Now assume that the morphisms [h : @], [ : ¢'] € L1(Qo, Ro) are such that
[h:plor=1[h:¢lor Then
(o] = [0 : ¢ 0u]
and it follows fro/n\l the definition that there exists some s € Sy such that A’ = hs
and ¢’ o ng =slopo Lg[?. Since L%’ is an epimorphism in £y we obtain that
[0 @] =[hs:stogp]=][h:]. Therefore . is an epimorphism.
(d) Write ¢ = [g : ¢] for some ¢ € Lo(Py,QY). Note that (1)) = ¢4 0 () so
mo(@)(Po) = RJ. Since Ly is a linking system, [7, Lemma 1.10] implies that we can
Qf
_ v
factor ¢ as Py 2> RY o, Qf. We shall now consider A € L(Fy, Ry) defined by
A =[g: ¢]. By hypothesis (6)

ol @l =lg:ipg ol =lg: ¥l =v.

tod=le:
(e) Write ¢ = [g : ] and ¢’ = [¢' : ¢'] in L1(Py, Qo). By assumption and Definition
5.6 we see that c, o (@) = cg 0 mo(¢’), whence mo(¢) = c4-14 0 mo("). Since
mo(@), mo(¢’) € Fo, we obtain that c,-1, € fo(Qg/,Qg). Then hypothesis (2)
implies that g='¢’ € Sy.

Denote ¢ = gg—1o ¢ and s = g7'¢’ € Sp. Then ¢’ = [gs : '] = [g : ¢”'] and
m(¥) = w1 (¢') reads cgomy(p) = cgomo(¢”). In particular my(¢) = mo(¢") and the
axioms of £ guarantee the existence of a unique z € Z(Fp) such that ¢” = poZ. It
now follows that ¢’ = [g: ¢"'] =[g: ¢ o 2] =1 o 2. Finally, the element z € Z(P)
is unique because

Ypoi=l[g:plofz:l]=[g:plo[l:2]=[g:¢po0Z]

That is, if 1) o 2 = ¢ o 2’ then by Definition 5.6 we see that pozZ=po 2/ and
therefore z = 2’ because ¢ is a monomorphism in £y and dp,: Py — Autg, (Pp) is
a monomorphism of groups.

(f) By hypothesis (1) if Qg is Fo-conjugate to @ then gQog~" is Fp-conjugate to
gQog~" for any g € G. This implies that H is a subgroup of G and it contains Sy
because Fg,(So) C Fo.

Let g1, - ,gn be representatives for the cosets of Sy in H. By Definition 5.6
every element ¢ € Autg, (Py) can be described as ¢ = [g; : ¢] by a unique pair
(gi, ) for some i = 1,...,n where p € Lo(Py, 9 Py). Also note that |Lo(Py, 9 Py)| =
|Aut,z, (Po)| because 9 Py is Fo-conjugate to Py. This shows that |Autz, (Py)| =
n - |[Autz, (Po)| = |H : Sol| - |[Autz, (Po)l. O

We now turn to the study of the properties of the category L.

Proof of Definition 5.8. If ¥ € Lo2(P,Q) and p € L2(Q, R), we leave it as an easy
exercise for the reader to check that po1 € L£1(Py, Rp) belongs to Lo( P, R). Thus,
composition of morphisms in Lo is well defined. It is easily seen to be unital and
associative because this is the case in £;.

Since Sp < G it follows that Ng(P,Q) C Ng(Py,Qo), Na(P) < Ng(Fy) and
Na(Q) < Ng(Qop). Now fix some g € Ng(P,Q) and « € P and set y = gxg™* € Q.
It follows from Lemma 5.19(a) that o & = g = yg = § o g. Therefore § €
£2 (Pa Q) u
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Proof of Lemma 5.9. By construction Lo(Py, Qo) € L1(Py, Qo) for any Py, Qo €
Ho. For every x € Py and every ¥ = [g : ¢| € L1(FPo, Qo) it follows from Lemma
5.19(b) that oZ = ot in L4 where y = m1(¢)(x) € Qo. Therefore ¢ € Lo(Py, Qo)
and we conclude that £1(Py, Qo) = L2(Po, Qo).

The inclusion functor j: £1 — Lo has a left inverse r: Lo — L7 which maps
an object P to Py and maps morphisms via the inclusions Lo(P, Q) C L1(Py, Qo).
Observe that r o j = Idz, because Lo( Py, Qo) = L1(Py, Qo).

By Lemma 5.19(b) we see that L2(Pp, P) contains [e : 1p,] = é. These morphisms
define a natural transformation jor — Id. This is because we recall that [e : 1p,] and
[e : 1g,] are the identities of Py and Qg in £; and for any ¢ € Lo(P, Q) C L1(Po, Qo)

Yo [6 : 1Po] = [6: 1Q0]Ow-
Then it follows that j and r yield homotopy equivalences on nerves. O

Proof of Lemma 5.10. (a) By Definition 5.8, for every = € P there exists some
y € @ such that o = gor)p. Since P < Ng(Pp) and Q < Ng(Qop), Lemma 5.19(b)
implies that y is unique. There results a well defined function ma(¢): P — Q. In

addition, since & and § = ﬂmx) are morphisms in Ly (see Definition 5.8) and

L2(P,Q) C L1(Py, Qo) we deduce that the equation ¢ o & = WWLL‘) o % holds in
Lo and moreover mo(¥): P — @ is the unique function that satisfies this equality
for all z € P. The fact that ma(¢)|p, = m1 () follows from the last assertion in
Lemma 5.19(b).

We claim that m2(¢)): P — @ is a group monomorphism. For z,z’ € P, let
y =m2()(x) and y' = ma(4)(2’). Then, in Ly,

Yoxr =toior =joor’ =joy o =yy o

This shows that m2(¢)) is a homomorphism. If z € kerma(¢)) then ¢ o & = 1 04
so Lemma 5.19(b) with y = 1 shows that x € PN Sy = Fy. But 1 = ma(¢)(x

T2 (¥)|p, (z) = cgomo(ip)(x) so @ € ker mo(¢) = 1. It follows then that ker (2 (¢))
1.

(b) Clearly m2([e : 1p,]) = Idp,. Now given P v, Q X Rin Lo, set y = ma () (x)
and z = m2(A)(y). Then o = goh and Aog = ZoA so Aohod = Zo Aot whence,
by the uniqueness statement in Lemma 5.19(b), we conclude that z = w2 (A o) (z).

S—
I

—

(¢) This follows from Lemma 5.19(a) because for any @ € P we have jo & = gz =
cq(2)g =cq(x) 0§ in Ly so m2(§) = cq4.

(d) Observe that m2(1)(Po) = m1(v)(Po) < Qo by part (a). Since ma(¢)): P — Q
is an isomorphism, for every yg € Qo < @ there exists some = € P such that
m2(¥)(x) = yo, namely ¥ oz = gy o). By Lemma 5.19(b) we know that yo = gzg™*
mod Sy and since Sy <« G we deduce that x € Sy N P = FPy. This shows that
m2(1)(Po) = Qo and therefore 7 (¢) is an isomorphism of groups.

Write ¢ = [g : ¢]. Since (1) is an isomorphism, ¢ € Lo(Pp, Q) is an isomor-
phism and therefore ¢ is an isomorphism in £; whose inverse ¥ € £1(Qo, Pp) is
[g7" : g~ 'g']. To check that 1~" is a morphism in £2(Q, P) consider some y € Q.
Since mo(v)) is an isomorphism there exists € P such that o & =y=' o in L;.
Since these morphisms are invertible in £; we see that x=* o¢)~' = 9 o ¢. This
shows that ¥~' is an inverse to ¥ in L. (I

For later use we also need the following technical lemma.
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5.20. Lemma. Fiz some P € H and consider Ng(Py) as a subgroup of Aut., (Po)
via 0p,,py: © — &. Let Q be a subgroup of Ng(FPy) and assume that Q = Y Py~ for
some Y € Autg, (Po). Then Py = Qo and 9 is an isomorphism in Lo from P to Q.

Proof. Recall from Lemma 5.9 that Autg, (Py) = Autg,(P). For x € Py set
y =vzp™ € Q. Thus ¥ o & = § o1y and by Definition 5.11, y = ma(¢)(z) € Fo.
This shows that Py = ¥ Pyy~! and, in particular, Py < Q. Moreover Py < Q
because Py <1 P.

Since Py < Qo we may consider ¢ := é € L1(Pp, Qo) where e € G is the identity
element, and define A = 1o € L1(Py, Qo). For every x € P set y = vxip~*. By
definition y € @ which normalises @y and Py so Lemma 5.19(a) implies

AoZ =toppoZ =1jop =goéorp=ygon.
We conclude from Definition 5.8 that A € Lo(P,Q). Furthermore, m2()) is an
isomorphism because it is a monomorphism by Lemma 5.10(a) and |P| = |Q).
Lemma 5.10(d) now shows that A is an isomorphism in Lo and, in particular, it

is an isomorphism of the objects Py and Qo in £;. In particular |Py| = |Qo| and
therefore A = 1. O

Proof of Lemma 5.12. (a) This is immediate from Lemma 5.10(c). By taking e €
N¢g(P, Q) for any inclusion P < @ in ‘H we obtain inclg € F(P,Q).

(b) Fix a homomorphism f: P — @ in 3 and set R = f(P). Note that by Lemma
5.10(a)
f(Po) = m2(¥)|p, (Po) = m () (Fo) < Qo-

Therefore f(.P()) < Q() NR < S() NR= Ro. Also RO = S(] NR < S() QQ = Qo. 1\TOVV7
by definition ¢ € £1(Py, Qo) and Lemma 5.19(d) asserts that in £, we can write
=10\ where A € L1(Py, Ro) and ¢« = é € L1(Ro,Qo)-

We now claim that A € Lo(P, R). To check this, we fix some x € P. By definition
y = f(z) € R satisfies Y o = jo 1 in L;. Equivalently to Ao & = goro A Now,
y € R < Ng(Rp) and also y € Q < Ng(Qo), so Lemma 5.19(a) implies that

LodoZ =1t10go0\.

Lemma 5.19(c) implies that ¢ is a monomorphism in £4 so Ao& = o\ in £;. This
shows that A € Lo(P, R) as needed, and that moreover ¢ = ¢ o A in L5 because ¢ is
in Lo as well. In particular, by parts (b) and (c) of Lemma 5.10, we obtain that

f=ma(t) = incl? o my(N).

From this equality it follows that m2(\) is an isomorphism of groups because |P| =
|R|. Moreover, Lemma 5.10(d) implies that A is an isomorphism in £ and therefore
m2(A) is an isomorphism in F5. This completes the proof. O

5.21. Lemma. Consider P < S such that Py € Hy. Then Cg(P) = Cg,(P) =
Z(Py) where P acts on Z(Py) by conjugation.

Proof. If g € Cq(P) then ¢4|p, = idp, € Autx, (P). By hypothesis (2), g € So,
and it follows that Cg(P) = Cs,(P). Now, Cs,(P) < Cs,(Py) = Z(Py) because
Py is Fo-centric. Therefore, Cq(P) = Cz(py)(P) = Z(Py)*. O
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Proof of Lemma 5.14. (a) Clearly H is closed to taking supergroups because H
is closed to taking supergroups in Sp. Since F is generated by inclusions and
restriction of homomorphisms in Fs, Lemma 5.12 shows that for any P, Q € H the
inclusion F2(P, Q) C F(P, Q) is an equality.

(b) By definition Py € Ho. By Lemma 5.21, Cs(P) = Z(Py)” < P. Assume that
Q is F-conjugated to P. By part (a) there exists some ¥ € Lo(P,Q) such that
m2()(P) = Q. Parts (a) and (d) of Lemma 5.10 imply that ¢ is an isomorphism
in L£o. From Definition 5.8 it is clear that ¢ is an isomorphism in £;(Py, Qo) and

in particular Q¢ € Ho, namely Qg is Fo-centric. It follows from Lemma 5.21 that
Cs(Q) = Z(Qo)? = Z(Py)¥, whence P is F-centric.

(c) For any f € F(P,Q) where P,Q € H, part (a) implies that f = m3(¢)) for some
Y € Lo(P,Q) C L2(Py, Qo). The result follows from Lemma 5.10(a) which shows
that f|p, = m1(¢)) whose image is contained in Qg by Definition 5.6. O

Proof of Lemma 5.15. The monomorphisms ép: P — Aut., (P) are the restrictions
of the maps dpg: Na(P,Q) — L2(P,Q), i.e. dp(g) =[g:1p,].

To verify axiom (A) in [7, Definition 1.7], see also 2.4, we need to show that
for any P,Q € H the set 7, '(f) where f € F(P,Q) admit a transitive free ac-
tion of Cg(P) via dp: Ng(P) — Autg,(P). Note that F(P,Q) = F2(P,Q) by
Lemma 5.14. Consider 1,v’ € Lo(P, Q) such that ma(¢)) = m2(¢)’) and recall that
U, " € L1(Py, Qo). By restriction to Py, Lemma 5.10(a) shows that m (¢) = m (¢).
Lemma 5.19(f) shows that there exists z € Z(Fp) such that ¢/ = ¢ o 2 in £;. Note
that 2 € Aut.,(FPy) by Definition 5.6 so the equality ¢’ = ¢ o £ also holds in Ls.
Furthermore, Lemma 5.19(c) implies that

mo(1)) = me(¢') = ma(Y 0 2) = ma(¢) o c..

As a consequence z € Cg(P) and we conclude that Cg(P) acts transitively on
the fibres of mo: Lo(P, Q) — F(P,Q). The action is free by Lemma 5.21 and the
uniqueness assertion in Lemma 5.19(f).

Axiom (B) holds by Lemma 5.10(c). To verify axiom (C) we fix a morphism
P € Lo(P,Q) and an element g € P. Set f = ma(¢)) € F(P,Q). By the definition

L

of the morphisms in £, see Lemma 5.10(a) we have o § = f(g) o1, which is what
we need. 0

Notation. We shall write P ~z @ for the statement that P,Q < S are F-
conjugate.

Clearly Sy acts on Hy by conjugation and [Py]s, denotes the orbit of Py, i.e.
the conjugacy class. By Lemma 5.5, G acts on Hy as well. Since G acts via fusion
preserving automorphisms, it also acts on the set Hy/Fy of the Fy-conjugacy classes
of the subgroups Py € Hy which we denote [Py]z,. The stabiliser of [Pp]z, under
this action of G is denoted, as usual, by G[po]}_o. Now, G[po]}_o acts on the set
[Po] 7, Clearly, Sp < Gipy), because Fs,(So) C Fo. Moreover, since Sp < G, this
action induces an action of G|p, 7, ON the set P of all the Sp-conjugacy classes of
the subgroups of Sy that are Fy-conjugate to Py.

5.22. Lemma. For every P € H there exist P, P’ € H such that
(a) P =P for some a € G and P~z P', whence P ~z P', and
(b) Py is fully Fo-normalised and Pj ~z, Py.
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In addition, S := Ng(P})So is a Sylow p-subgroup of Gipy), and S/Sy fizes the
So-conjugacy class [P§ls, -

Proof. The argument follows the one in the proof of step 3 in [4, Theorem 4.6].

Clearly Sy - P < G[pO]FO because P < Ng(FPy) and Fg,(Sp) € Fo. Choose
S’ e Sylp(G[po]Fo) which contains Sy - P. By Sylow’s theorems, there exists some
a € G such that S’ = G[PO]}_O N .S®. Set P =“P and observe that

p=c°p < a(G[PO]fO ﬂSa) <&.

Also Py = *Py € Hy by Lemma 5.5, so P € H. In addition, G[Po]}'o = “(G[pg]fo).
It follows that

S:=5nN G[po]]__o =%9") e Syl,(Gpy)
Consider now the set Py, of all the Sp-conjugacy classes of the fully Fy-normalised
subgroups R < Sy which are Fyp-conjugate to Py. Since G normalises Sy and it
is fusion preserving, it carries fully Fy-normalised subgroups of Sy to ones, and
therefore G[po]]__o acts on Py,

)

We now restrict the action of G(p), on Pgy to S. By [4, Proposition 1.16] we
know that |P,| # 0 mod p. Therefore S/Sy must have some fixed point [Rp]sg,.
Thus, Ry is fully Fyp-normalised and is Fp-conjugate to Py. Recall that S < S.
For every g € S we have gRog™' ~g, Ro so S < Ngs(Ry)Sp. On the other hand
SoNs(Rp) < GlRrols, = G[pO]FU and S is a Sylow p-subgroup of the latter group,
hence

S =Sy Ns(Ro).

It remains to find some P’ € H such that P’ ~» P and such that P} = Rj.

Now, since P < S, it must stabilise [Ry]s,. We conclude that P/P, acts on

X :={[f] € Repg, (P, S0) : Im f is Sp-conjugate to Ry}

via [fo] > [cgofooc,—1]. Clearly X is not empty because by construction Py ~z, Ro.
Choose some f € Fo(Py, Ro). Then every element of X has the form [a o f] for
some o € Autz, (Ro). Moreover [ao f] = [Bo f] if and only if a3 € Autg, (Ro).
Therefore
| | _ |AUt]:0 (R0)|
|[Auts, (Ro)]
because Ry is fully Fy-normalised. Since P is a finite p-group, there is some [fo] €
XP where fo S .7:0(150, So) and Imfo = Ry. Let wo S Lo(Po, SO) be a lift of fo.
Recall from Lemma 5.7(a) that we may consider 1y as a morphism in £ (P, Sp)
via an inclusion £y C £;. Fix some z € P. Since P fixes [fo], there exists some
s € Sp such that

#0 modp

CglofOOCm :Csof()'
Lifting to Lo and using hypothesis (5), we see that there exists a unique z €
Cs,(Py) = Z(Py) such that

(1) e Mo = Gogp ol =sfo(z) oty in Lo.

Set y := xsfo(2) and note that y € P- Sy - Z(Rp) < S. Lemma 5.7(c), equation (1)
and Remark 2.5 imply that

Yoo =& o (z o) = & 0 5fo(2)10 = § o .
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Therefore, by definition, 19 € Ly(P,S). Consider f = ma(1py) € F(P,S) and
set P’ = f(P). By Lemmas 5.14(a) and 5.12(b), f restricts to an isomorphism
f: P — P in F. By Lemma 5.10(a) and Lemma 5.7(a) we see that f|p =
70(t0) = fo € Fo(Py, Ro). Since f € F(P,P’) is an isomorphism we deduce from
Lemma 5.14(c) that P} = f(Py) = Ry. This completes the proof since f is an F-
isomorphism between P and P’ which restricts to an Fy-isomorphism fy between
PQ and RO = Pé U

5.23. Lemma. [4, Step 4] If P < S is F-centric but P ¢ H, then there exists
P’ < S which is F-conjugate to P such that

Outs(P') N O, (Out#(P')) # 1.

Proof. The argument is almost repeated from step 4 in the proof of [4, Theorem
4.6], but we include it for completeness. Consider P and P’ as in Lemma 5.22.
Note that P ¢ H because P ¢ H, namely Py ¢ Ho, so Py ¢ Ho by Lemma 5.5.

the action of G is Fp-preserving. As a consequence Py ¢ Ho because Py ~x, P}.
Since P is fully Fo-normalised, it is fully Fy-centralised and since it is not Fy-
centric, we deduce that Cs,(F}) £ Pj.

Since P’ normalises Sy and P} it acts on Cg,(P))F}/ P} by conjugation leaving
a non-identity subgroup QP]/P} fixed where Q < Cg,(P)) and Q % Pj. Thus,
[P’,Q] < P} and in particular Q < Ng(P'). If z € @\ P} then 1 # [¢;] € Out(P’)
because P’ is F-centric so Cg(P') < P and Q\ P’ = Q\ P§. Lemma 5.14(c) shows
that restriction ¢ — (| p; induces a homomorphism

Autz(P') 225 Autz(P)).

Let Autz(P’; Pj) denote its kernel and observe that it contains ¢, because @ cen-
tralises Pj. Also observe that ¢, induces a trivial homomorphism on P’/Pj because
[P’,Q] < Pj. Thus, ¢, is a non-trivial element in the kernel of

Autr(P'; Py 2% Aut(P'/P))

which is a p-group by [4, Proposition 1.15]. This shows that ¢, is an element of
O, (Autz(P’; Pj)) which is a characteristic subgroup of Autz(P’; Pj) < Autz(P’).
Hence, ¢, € Op(Autz(P’)). Since Autz(P’) — Outz(P’) is an epimorphism and
[ce] # 1, we see that O,(Outz(P’)) N Outg(P’) # 1. O

Proof of 5.16. We will apply [5, Theorem 2.2] to the collection H of objects in F.
The condition (*) in that theorem has been verified in Lemma 5.23 so, for the proof
of the saturation of F it remains to check conditions (I) and (II) of saturation in [7,
Definition 1.2], see also 2.2 for the elements of H. The argument is again present
in [4] with some changes.

Condition I. Fix P € H which is fully F-normalised. We have to show that it
is fully F-centralised and that Autg(P) is a Sylow p-subgroup of Autz(P). By
Lemma 5.14(b) we know that P is F-centric and in particular fully F-centralised.

Consider P and P’ as in Lemma 5.22. Recall that S = Ng(P))Sp is a Sylow
p-subgroup of G|p,), . Lemma 5.7(a) shows that Autg, (Py) < Autg, (Py) and by
Lemma 5.19(g)

1) [Aute, (B) = Aty () = Gz, < S
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By definition Ng,(P}) = So N Ng(F}) so

(2) |Ns(Pg)/Ns,(Pg)| = |[Ns(Pg)So/So| = |S/Sol-
Now, P} is fully Fo-normalised and is Fy-centric so
(3) |AUt£0(P6) : NSO(Pé)l 75 0 mod p.

Since |Gpy,, S| # 0 mod p, we deduce from (1), (2) and (3) that
_ |Auty, (B[ [Aute, (Fp)| | [Ns, (Fo)l
|Aute, ()| [Ns, (Pl [Ns(Fp)l
namely Ns(F) € Syl,(Autg, (7))
Fix ¢ € Autg, (P}) such that
(4) ' Ns(P)v 2 R € Syl (Nawe,, (pg) (P'))

and set

|Autz, (P5) : Ns(Fp) #0 mod p,

P’ =Py~ < Ng(P)).
Lemma 5.20 shows that P} = P} and that ¢ € L5(P’, P") is an isomorphism. In
particular, P” is F-conjugate to P’, hence also to P because P’ = ®P for some
a € G and a € Lo(P, P’) is an isomorphism. We now claim that

(i) Autr,(P") = Naue,, (py(P") and (ii) Ns(P") = Nyg(py)(P").

Clearly (i) follows from the definition of the morphisms in £ because

A€ Autg,(P") < Ve P'Iye P’ (Aozol' =9

< A€ Naut, () (P").
For (ii), note that P” C Ng(P}) C Autg, (P}) so by the choice of ¢ in equation (4),
Nng(py)(P") = Ns(Pg) N Nau, (pg)(P”) € Syl,(Naut, (pp) (P7))-
On the other hand
Nyg(py(P") < Ns(P") < Naui,, () (P"),

hence Ng(P") = Nyng(py(P")). We deduce that Ng(P") € Syl,(Autg,(P”).
Finally, Autz,(P) = Autg,(P”) because P” and P are isomorphic in Lo (via
Y oa). Also, [Ng(P)| > |Ns(P")| because P is fully F-normalised. Therefore
Ns(P) € Syl,(Autg,(P)) and Lemma 5.15 implies that Auts(P) is a Sylow p-
subgroup of Autz(P).

Condition II. Fix P € H and ¢ € F(P,S). Definition 5.11 and part (a) of Lemma
5.14 show that ¢(P) € H and part (b) of this lemma shows that ¢(P) is F-centric
and in particular it is fully F-centralised. We have to prove that ¢ extends to some
¥ € F(N,, S) where

N, ={g € Ng(P) : pocg=cs0¢ for some s € S}.
Note that s € Ng(Im¢) in this definition. Set, for convenience Q = N,. We
observe that

(5) Q < Ns(Qo) and Q < Ng(P) < Ns(R).

Let ¢ € Lo(P,S) be a lift for ¢, that is ¢ = m(p). By definition, for every g € Q
there exists some s, € S such that ¢ oc, = ¢,, o ¢. Lifting to L2, we see from
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Lemma 5.15 that there exists some z € Cg(P) = Z(P) such that go§ = s,0p02 =

§40 gD/(-;) o @. Set yq = sq¢(2), then y, € S and

(6) pod=1ys0¢ in Ls.

By Definition 5.8 the morphism ¢ is an element in £4(FPp, Sp). By Lemma 5.7(c)

we see that @ = go X where g € G and A € Lo(FP, So). Set A = mo(A) € Fo(Po, So).

From parts (a) and (c) of Lemma 5.10 we see that ¢|p, = m1(@) = m1(§oA) = cgoA.

By definition, for every x € Q¢ there exists some s € S such that

pocCy=Cs0Qp in F.

By restriction to Py we obtain an equality of homomorphisms Py — S

(7) CgOANOCy, =C50Cq0N.

By restriction of A to an isomorphism onto its image we see that

Cg-15g =A0Cz 0N € Fp because x € Qg < Sp.

g
Hypothesis (2) implies that g='sg € Sy and therefore s € Sy. We can therefore
rewrite equation (7) as Ao c, = cg-159 © A where g~'sg € Sp. Together with
equation (5), this shows that x € Ny where

Ny ={x € Ng,(Py) : Aocg =cyo for some y € Sp}.

We deduce that Qg < Ny.

Since Py is Fp-centric, so is A(Py) and in particular it is fully Fp-centralised.
Axiom (IT) in Fy enables us to extend A € Fy(Py, So) to some p € Fo(Qo, So). Let
p be a lift for p in £Ly. Now, A = po inclIQ);’ = mo(po Lg?), so there exists some
z € Z(Py) < Py < Qg such that

S\ZﬁOLgOOQZﬁOQOL%?.

0

Set § = pozand 0 = 71'0(67). Thus, 0 € Lo(Qo, So) and 0 € Fy(Qo, So) satisfy

A=0o0iP and  0|p, =\

because 7 (0)|p, = mo(p o 2)|p, = poc:lp, = plr, = A )
Recall that we started with a lift ¢ = go A for ¢. By Lemma 5.7(a) we view 6
as a morphism in £; and define

b= gob € L1(Qo,S)-
We now prove that for every ¢ € @, the element y, € S defined in equation (6)
satisfies

(8) dog=ysod  inLi.
Observe that Q) = N, so P < @ and in particular Py < Qp. We shall now consider
t:=¢é € L1(Py, Qo) where e € Ng(FPo, Qo) is the identity of G. Note that under

the inclusion £y C £1 in Lemma 5.7(a) we have ¢ = L%’. Therefore
or=gohoiF =gor=¢ in ;.
Equation (5), Lemma 5.19(a) and equation (6) imply that in £
Yofor=1ofoé=voéof=torof=@oG="1y,0Pp=y,000L
We deduce that equation (8) holds because ¢ is an epimorphism in £; by Lemma

5.19(d). By Definition 5.8 we see that 1 € L£5(Q,S). Set 1 := my(1)). Then
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Y € Fo(Q,S) = F(Q,S) and by Lemma 5.10(c) we see that ¢|p = m(p 0t) =
m2(@) = ¢. This completes the proof. O

Proof of Lemma 5.17. Our notation was chosen in such a way that the argument
in [4, Theorem 4.6, Step 7] can be read verbatim and we shall therefore avoid
reproducing it. O

6. MAPS FROM A HOMOTOPY COLIMIT

Let C be a small category, and X: C — Top be a diagram of spaces over C.
The values taken by the functor will be denoted by X (c) and X (¢) where ¢ € C,
¢ € More (e, ). The homotopy colimit of the diagram X is the space

hocolime X = (H H X(co) x An)/ ~

n>0 co——cCp

where we divide by the usual face and degeneracy identifications [3, Ch. XII].

We filter the homotopy colimit by using the skeleta of the nerve of C, and we
define F,, X to be the image of the union of X (c¢) x A™ in hocolim¢ X for all m < n.
Notice that Fo X is just [] .., X(c) and F1.X is the union of the mapping cylinders
of all ¢ € Mor(C). Observe that a map fi: F1X — Y is the same as a set of
maps f1(¢): X(¢) — Y together with homotopies f1(c¢’) o X(p) ~ fi(c) for every
p € C(e,d). A set of maps X (—) ), v which admits such homotopies is called
a system of homotopy compatible maps and it gives rise to an element in the set
lim , [X(e),Y].

Fix a system of homotopy compatible maps X (—) EAN Y. By the remark

above it gives rise to a map fi1: F1X — Y where fi|x() = f(c). Wojtkowiak [24]
addressed the question whether f; can be extended, up to homotopy, to a map
f: hocolime X — Y. The method is to extend f; by induction on the spaces F}, X.

Given a map f,: F,X — Y whose restriction to X(c) is homotopic to f(c),
Wojtkowiak developed an obstruction theory for extending it to F, 11X without
changing it on F,,_1X. The existence of such an extension depends on the vanish-
ing of a certain obstruction class in liinnﬂ 7, (map?(?(X(c),Y)). The extension
from F1 X to F5X involves in general a functor of non-abelian groups, into the cat-
egory of groups and representations, whose lim? term is described in Wojtkowiak’s
work. Fortunately, if these groups are abelian then the Wojtkowiak’s definition of
liinz coincides with the usual one from homological algebra. Once the map has
been extended to F> X, a choice of homotopies allow to define well-defined functors
7, (map/(® (X (c),Y)) into abelian groups for n > 1.

Given two maps fl, fg: hocolim¢ X — Y whose restrictions to X (c) are homo-
topic to f(c), Wojtkowiak also studies an obstruction theory for the construction of

a homotopy fl ~ fg. Clearly, fl and fg give rise to a homotopy f1| FoX @ f2| FoX-
The idea is to extend the homotopy Hy inductively to I x F,, X. Given a homotopy
fl\pn_lx Hgl f~2|Fn_1X, the possibility of extending it to a homotopy between the
restrictions of f; and fo to F,, X without changing its values on F,,_>X depends on
the vanishing of an obstruction class in lim" ,, (map/()(X (c),Y)).
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6.1. Definition ([7, Definition 3.3]). Fix a prime p. We say that a small category
C has bounded limits at p if there exists d > 0 such that every functor F': C —
Z(py-mod has the property that lilnzgd F = 0. We call d the height of C.

6.2. Theorem. Let C be a finite category with bounded limits at p of height d and

consider a sequence of maps Yy By &L 2 Yq+1 with partial composites

Yi = gio---0gg: Yo — Yir1. Given a functor X: C — Top and a system of

homotopy compatible maps f(—): X(—) — Yo, define new systems of homotopy

compatible maps fi(=) =yio f(—=): X(=) = Yiy1 for alli=0,...,d. Assume that
(i) For every ¢ € C and every i =1,...,d the induced map

m;mapi-1(9) (X(c),Y7) L90)-, m;map’(©) (X(c),Yis1)

is the trivial homomorphism between abelian groups.
(i) The groups m.>omap’(® (X (c),Y;) are Z(,)-modules for all c € C and all i.

Then
(a) There exists map f : hocglimX — Yy which renders the following square
homotopy commutative for all c € C,

X(c) LGN Yo

L(C)l lyd—l

hocolimX —— Yj,.

(b) If f1, f2: hocolime X — Yy satisfy f1|X(c) ~ fg\x(c) ~ f(c) for all c € C
then the compositions hocolime X Juta, Yo d, Y41 are homotopic.
Proof. (a) We shall define by induction maps fi: ;X —Y;foralli=1,...,dsuch
that fi|x ) =~ fi—1(c) for all c € C.

Note that, by definition of a system of homotopy compatible maps, we can
construct a map f1: F1X — Y;. Assume by induction that f;: F;X — Y; with
filx(e) = fi—1 has been constructed for some 1 <4 < d. The obstruction class ©;
for the extension of fl to F;+1X is mapped by the homomorphism

. ; . (gi)* . ; (e
lim ™ map! (X (), ¥7) 225 lim™ mmap! (X (¢), Vi)
Ccop cop
to the obstruction class ©;,; for the extension of g; o f; to Fj;1X. When i > 1,
by hypothesis (i) the groups are abelian and this homomorphism is trivial, whence
O;+1 = 0. Wojtkowiak’s obstruction theory guarantees the existence of a map
fi+l: Fi+1X — Y;‘+1 which agrees with g; © fi on File and such that fi+1|X(c) ~
gi o fi—1(c) = fi(c). This completes the induction step.
Hypothesis (ii) and the assumption on C imply that the groups
}iﬂlim_lmapf‘ifl(X(c),Yd)
cop
are trivial for all ¢ > d + 1. Thus, the obstructions to the extension of fd to F; X
where ¢ > d must all vanish. We can therefore construct by induction on ¢ > d + 1

maps f;: F;X — Y, such that fi|X(c) ~ fq—1(c) for all ¢ € C and such that fis
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agrees with f; on F;_1X. We can finally define f: hocglimX =J; FiX — Yy with

the required properties. In fact, f|p, x = fay1|r,x for all n > d.

H; -
X = yio fo|px for all
X (c) and we define Hy as the sum of the

(b) First, we construct by induction homotopies y; o fl
i =0,...,d. Recall that Fp X = Hcec

homotopies yo o f1]x () = Yo © f~2|X(c); .
Assume by induction that H;: y; o0 f1|r,x~y;o f2|r, x has been constructed where

0 < i < d. The obstruction Y for the extension of H; to a homotopy y; ofy Fi X

1; © f2| Fi11 x is mapped by the homomorphism
. g ) (gi+1)« 1. 4 )
lim ™ map” (9 (X (¢), Vi) = lim g map/41(9 (X (¢), Yiga)

cop cop
to the obstruction class T; for the extension of g;11 0 H;: [ X F;X — Yjia9 to

I x F;41X. This homomorphism is trivial by hypothesis (i). Therefore T; = 0, and
Hiiq ~
Fi1 X ~ Yir1 0 f2

by Wojtkowiak’s theory there is a homotopy y;41 © f1
This completes the induction step.
Now, the hypothesis on C together with (ii) imply that the groups

Fi1X-

lim'7;map’*(?) (X (¢), Yi41)
Ccop

are trivial for all ¢ > d + 1. We can therefore construct by induction on i > d + 1

~ }q7 ~
homotopies yq 0 fi|rmx = ya© f_2|F1:X suc? that H;,1 and H; agree on I x F;_1X.
There results a homotopy yq © f1 =~ yq © fo. O

7. MAPS BETWEEN p-LOCAL FINITE GROUPS

7.1. Definition. Let (S, F) be a fusion system. A map f: BS — X is called F-

invariant, if for every ¢ € F(P,S) the composition BP Be. p S Loxis homotopic
to f|gp = f o Bincl}.

7.2. Example. Let (S, F, L) be a p-local finite group. The map ©: BS — |L| of
2.8 is F-invariant by Proposition 2.9.

Given a p-local finite group (S, F, L), the question we address in this section is
when an F-invariant map f: BS — X can be extended to a map |£| — X. Here
is the main result of this section which uses the constructions in §3.

7.3. Theorem. Let (S,F,L) and (S',F', L") be p-local finite groups and consider
an F-invariant map f: BS — |£'|Z/:. Then:

(a) There exists m > 0 and a map f: |£] — (£ Epm);\ which renders the
following square homotopy commutative

BS —— o)
J 25
L] — (L[ Zpm),
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b) There exists e > 0 such that for any two maps ~1, for |L] — L] with
p
~ ~ r r3 A/\
Oo fi ~Oo fy >~ f, the compositions | L] ELZEN |[,’|2 — (|L£'|2 Epe)ﬁ are
homotopic.

7.4. Example. If f = ©: BS — |£| then f can be chosen as the identity on |£\2.

For a finite abelian group A4, set A(,) = A® Z,); this is the set of p-power order
elements in A. The abelianisation of a group G is denoted G,;. The subgroup
OP(G) of a finite group G is the subgroup generated by all the elements of order
prime to p: it is the smallest normal subgroup of G whose quotient is a p-group.

7.5. Proposition. Let H = G X where G is a finite group. If p > 2 and k > 2
then H/OP(H) is a factor group of (Gab)py- If p=2 and k > 3 then H/OP(H) is
a factor group of (Gap)2) % Co.

Proof. Write H = H/OP(H) and consider the quotient homomorphism 7: H — H.
Denote by G; the ith copy of G in G**. For any = € G we shall denote by z; the
image of € G; in H via the inclusion G** < H. Note that z; and y;, where
z,y € G, commute in H if 7 # j.

Assume that p > 2 and that & = 2. Since Xj is generated by involutions
then ¥, < OP(H). Also note that H is generated by ¥ and any one of Gj,
hence H is generated by any one of the images of G; under m. Let 7 denote
(1,2) € X (note that k > 2). Since 7 € OP(H) we see that for any = € G we have
n(z1) = m(x17) = 7(r22) = T(w2). Thus, given elements Z,7 € H we can choose
preimages 1 and yo and observe that zy = 7(z1)7(y2) = m(x1y2) = 7(y221) = §Z.
This shows that H is a commutative factor group of G and since it is a p-group it
must be a factor of (Gap)(p)-

Now assume that p = 2 and that & > 3. Clearly A, < O%(H) because Ay, is
generated by elements of odd order. Since H is generated by X and any one of
the Gy’s, it follows that H is generated by the image of 7 = (1,2) € X and by
the images of any one of the G;’s. Let o denote the cycle (1,2,3) € Ay (note that
k > 3). Note that o € O?(H) and that o~'z10 = x5 for any = € G. Therefore

(1) m(a1) = 7(w2).
Let 7 denote m(7). Then 7 and the element # = (1) commute in H because
T = w(xy)w(7) = 7w(x17) = w(T22) = Tr(w2) = Tr(21) = TZ.

This shows that 7 € Z(H) and that H is a factor group of G x U3 because His
generated by 7 and Z for all z € G. Now consider Z,§ € H where Z = w(x1) and
g = m(yy) for some x,y € G. Since 7(y;) = m(y2) by (1), we conclude that

zy = m(z1)m(y2) = m(21y2) = 7(y221) = 7(y2)m(21) = Y.
It follows that H is an abelian 2-group hence it is a factor group of (Gab)(2)xCa. O

7.6. Lemma. For any p-local finite group (S, F, L), 7Ti(|£|;\) are finite p-groups for
alli>1.

Proof. The fundamental group 711(|£\2) is a finite p-group by [4, Theorem B]. Using

a Serre class argument (see [21, Ch 9.6, Theorem 15]), we only need to show that the

integral homology is finite at each degree. In [19], it is proven that the suspension

spectrum E°°|£|2 is a retract of X>°BS all of whose integral homology groups are

finite abelian p-groups. [
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7.7. Proposition. Fiz an integer k > 3 and let (S,F, L) be a p-local finite group.
Given a map f: BP — \E\;\, let g denote the composition

A A

BP Lo & o s B (el e zk):.

Then all the homotopy groups of map? (BP, (|£|2 2 Ek);\) are finite abelian p-groups.

Proof. If S =1 then |£| = * hence (|£|2 2 Ek): ~ (BE;Q)Q and g is null-homotopic.
Dwyer-Zabrodsky’s result [12] shows that the space under study is homotopy equiv-
alent to (BE;C);\ and the result follows from Proposition 7.5 together with [6, Propo-
sition A.2] and Lemma 7.6.

We shall therefore assume that S # 1. By [7, Theorem 4.4(a)] f is homotopic to

BP 2 BS % || % 2]

for some p: P — S. There results a diagram in which the bottom row is g, the first
square commutes up to homotopy and the other squares commute on the nose

®oB
(1) BP —% || — 2> 1L S, — = (1L Z))
ni i"]lzk :l(nlﬁk)f,
N
BP —= |£], ——5 L], 1 5k —= (£ 120, -

Since |L£] is p-good by [7, Proposition 1.12], a Serre spectral sequence argument
and [3, Lemma 1.5.5] show that the vertical arrow on the right of the diagram is a
homotopy equivalence. It follows that

(2) map?(BP, ([£]) 1)) = map™2°9°P(BP, (|1 24);).

By Theorem 1.1 there exists a p-local finite group (S’, F’, L") where S’ is a Sylow
p-subgroup of S ¥, such that there is a homotopy equivalence w: [£]| 1 S; — |£’|
and the composition

BS' 2™ B(S1%;) ~ (BS) 15, 225 |15y 5 |L]
is homotopic to ©': BS" — |L'|. Moreover, A: BS — (BS) ! ¥} is induced by the

diagonal inclusion S < S XY}, which factors through the Sylow subgroup S’, and it

is therefore homotopic to BS Bind, pgr Binc, B(S1Xg) ~ (BS)13). We therefore

have the following homotopy commutative diagram

BS BS —2 || —— |£]

Biml % lA iA im

BS’ETCIB(SZEIJ ~ (BS)1% (E)V:“Ek%)‘ﬁlh

from which it follows that
®) | |
BS || & |2 sy, = [L'] is homotopic to  BS 224 BS' 2 |].
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Since wg is a homotopy equivalence and wzﬁ on = now, Proposition 2.11(a) and

(3) imply that the mapping space in (2) is homotopy equivalent to

0®’ o A 0®’ A
(4) map”°®'15s Be(BP, |£'|p) ~ map"°®'15Q(BQ, |£/\p)
where Q = p(P) < S’. Part (b) of Proposition 2.11 shows that the map obtained
by applying the p-completion functor to

! M+ 0@’ A

(5) map® 122 (BQ, |£']) * map™® 22 (BQ, [£'])))
induces split surjections on homotopy groups. Since @ < S < S’ then (3) implies
that ©'|pg ~ w o A 0 O|pg and therefore, after p-completion
(6) map®°©122 (BQ, |£]1 Ty) = map”2°€122(BQ, (|£]15),)

induces split surjections on homotopy groups where by (4) the space on the right
is homotopy equivalent to (2). Diagram (1) shows that (6) factors up to homotopy
through

(7) mapAono@lsQ (BQ, |L|;\ 1 3k) LN mapnvo@lBQ (BQ, (£ Zk);\)

which in addition must also be surjective on homotopy groups. It remains to show
that the homotopy groups of the space on the left are finite abelian p-groups.
Proposition 3.8(b) implies that

(8) map®7°01E2 (BQ, L] 1 5k) =~ map™©12e (BQ, |£])) 1 S

By Proposition 2.11(a) the space map”®®I5e (BQ, |£|2) is homotopy equivalent
to the p-completed classifying space of a p-local finite group. It is therefore p-
complete by [7, Proposition 1.12] and its homotopy groups are finite p-groups by
Proposition 7.6, albeit the fundamental group is not necessarily abelian. By Remark
3.6, the homotopy groups of the mapping space in (8) are

m1(map™©#2 (BQ, |£[))) 1Sk, and
@ mi(map”©17e (BQ, [L]))) for i > 1.
Now [3, Proposition VII.4.3] shows that the homotopy groups of the p-completion

of (8) are finite p-groups. The fundamental group is abelian by Proposition 7.5
together with [6, Proposition A.2]. |

Proof of Theorem 7.3. First, we assume that S # 1, or else the result is a triviality.
Set C = O(F°) and recall from [7, Corollary 3.4] that C is a finite category which
has bounded limits at p of height d > 1.

We shall now construct inductively a sequence of spaces and maps

A
A R R

together with integers mg,mq, ..., mgy1, where m; > 2, with the following prop-
erties. First, Yy = \£'|1/7\. Set fi = gio---ogpo f: BS — Y41 and set G; =
Ypmo ! ¥pm1 -+ -1 X,mi—1. Then the following holds for all i = 0,...,d.

(i) There are homotopy equivalences w;i1: Y1 =~ (\£/|;\ ) Gi+1);\ such that

A gi0--0g ~ A A

‘El|p =Y 0 Y’H_l o (|£/|p ZG¢+1)p

is homotopic to |£\;\ 2, |£\I/)\ 1Gip1 (|£|2 ZGZ-H);\.
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(ii) 7. (map/i!P (BP,Y;1,)) are finite abelian p-groups for all P < S.
(iii) If ¢ > 1 then for all P < S the homomorphism induced by g;

ﬂ-imapf'i—llBP (BP,Y;) M ﬂ—imapfi‘BP (BP,Y;41)

is trivial.
Let Lo = £’ and Yy = £0|2. We now define by induction on ¢ > 1 the integers
gi—1

m;—1 and maps Y;_; —— Y; with the properties (i)-(iii) above. To begin the
induction set mg = 2 and Y7 = (¥j2 Ep2);\ and set go = o A(Yp). Condition (i)
holds directly from this definition, condition (ii) follows from Proposition 7.7 since
p? > 4 and condition (iii) holds vacuously since go is not required to satisfy it.

Assume by induction that m;_; and g;_1: Y;_1 — Y; have been defined for some
1 <4 < d+1 such that (i)-(iii) hold. We construct the next pair (g;: Y; — Yit1,m;)
as follows. Let p™ be the maximum of p? and the exponent of the finite abelian
p-group

@ m(mapf“llBP(BP,Yi)).
PeO(Fc)

Define Y; 11 = (Y; 1 Zpm, )2 and let g;: Y; — Y;11 be the composition

A(Y;
Y 20 v s (Vi 0 Zpmo)D.
Since |L£'| is p-good by [7, Proposition 1.12], the induction hypothesis (i) on Y, a
Serre spectral sequence argument together with [3, 1.5.5] and Theorem 1.1 show
that N
A A A
Yo (1L, 0G) ) = (1L Ga), = [Lal,,
for some p-local finite group (S;, F;i, £;). Condition (ii) for g; holds by Proposition
A

7.7 because Y; 1 ~ (\L’i\;\ L Epmi )p-

Furthermore, all the homotopy groups of |£i|2 ! Xpm; are finite by Proposition
7.6 and Remark 3.6, whence this space is p-good by [3, Ch. VII.4.3]. It follows that
Y; 41 is p-complete. Condition (iii) holds for g;: Y; — Y; 41 by Proposition 4.3 and
the way that m; was chosen.

By induction hypothesis there is a homotopy equivalence w; : Y; — (|£’|;\ 2 Gi);\
which renders the top-left square in the following diagram homotopy commutative.

A 9i—10:9go A
|£’,|p Y Yi U Xapmi Yita

Al lei wilzpmi l’v (wilzpmi' );\ ~

A A A A A A A
L0 Gy ——= (LG ——= (L1 G) ) S —= (L) 1 G 1S

(MmN | ~
X %””%7 e

A
L1720 Gi U S (L1010 Git Spm ),

n

A

p

n

The remainder of the diagram commutes and the composition 7 o A(Y;) in the
first row is by definition g;. By Theorem 1.1, [7, Proposition 1.12] and [3, Lemma
1.5.5], the arrows on the right are homotopy equivalences. Define the equivalence

Wit1: Yipr — (|£’|2 ! Gi+1);\ as the composition of the equivalences in the right
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column. Now property (i) follows from this diagram and Proposition 3.5. Also, the
diagram above shows that

mapf'ilBP (BP,Y;41) ~ mapAOleP (BP, (|£/|;\ 2G¢+1):)

and property (ii) for f; holds by Proposition 7.7.

We now consider the functor B: C — Top recalled in 2.7. Clearly f: BS — |£’ |
gives rise to a system of homotopy compatible maps fo: B(—) — |£/|" , in the sense
described in Section §6. By applying part (a) of Theorem 6.2 to the compositions

BS 1% ¥y £ ... %4, v, we conclude that there exists a map fo: |£] — Yy =~
(1£] ZGd);\ whose restriction to B.S is homotopic to

(1) BS L[]y 5 (L)1 Ga)’).

Since |L£'| is p-good by [7, Proposition 1.12], we have the following commutative
diagram in which the vertical right arrow is a homotopy equivalence

L] —2— LG —"— (L1 Ga))

ﬁl nZGdl :lmGdQ

L]y =2 LG —"— (L)) G,
Therefore Yy ~ (|| ZGd) From Theorem 1.1 we also see that the spaces on the
right of this diagram are p- complete. Applying [3, Proposition I1.2.8] we deduce that

no A in (1) is homotopic to |£,’|2 o (1€ ZGd);\ composed with the equivalence
in the right of the diagram. Part (a) of this theorem follows by composition with
the map induced by the inclusion G4 < Epm0+.-.+md,1.
To prove part (b), we analogously apply part (b) of Theorem 6.2 to deduce that
B A g1 9ga A
Ll e Ty = (122 G

fa

are homotopic. The result now follows by composition with the map induced by
the inclusion Ggy1 < Xjmo+tmg- O

Proof of Theorem 1.3. The induced map BS B, pgr 19, |£’| is clearly F-

invariant because BS’" — |L’ |2 is F’-invariant by 7.2 and p is fusion preserving.
The result is now a direct consequence of Theorem 7.3 and Theorem 1.1. a

We say that p: S — %, is F-invariant if p|p and p o ¢ are equivalent represen-
tations for every P < S and ¢ € F(P,S).

7.8. Proposition. Let (S,F,L) be a p-local finite group and let p: S — X, be a
homomorphism. Then the following statements are equivalent:

(1) p is F-invariant.

(2) Bp: BS — BY,, is an F-invariant map.

(3) no Bp: BS — (BEn)Q is an F-invariant map.
Proof. Tt follows immediately from Dwyer-Zabrodsky’s result [12] which gives rise
to bijections Rep(P, %) ~ [BP, BE,] =~ [BP, (BL,))] for all P < S. O
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7.9. Proposition. The regular permutation representation of a finite p-group S
induces an F-invariant map Bregg: BS — BY, g for any fusion system F on S.

Proof. By Proposition 7.8, it is enough to check that regg: S — 3 g| is F-invariant.
Note that S acts freely on S viaregg: S — Y5/, that is all the isotropy subgroups
are trivial. In particular, any group monomorphism ¢: P — S where P < S renders
S a free P-set via reggop. Since any two free P-sets of the same cardinality are
equivalent, it follows that regg |p and regg op are conjugate in X,,. O

By Example 7.2 and Proposition 7.8, every map f: |£| — (BZH)Q gives rise to an
F-invariant representation p of S of rank n where Bp ~ f|gs. Not every F-invariant
representation of S arises necessarily in this way. However, next proposition gives
a partial answer to that question.

7.10. Proposition. Let (S, F, L) be a p-local finite group.
(a) Given p € Rep, (F), there exists some k > 0 and an element f € Rep,,, (L)

~ k4
such that f|ps is homotopic to BS B, BY i, RN (BZpkn);\ .
(b) Consider fi,fo € Rep, (L) such that fi|ps ~ f2|lgs. Then there exists

some e > 0 such that p°® - fi = p° - fa in Rep,e,,(L).

Proof. Let (S, F, L) be the p-local finite group associated with 3,,. Then [7, Propo-
sition 1.12] with a standard Serre spectral sequence argument show that

AI/)\ A A Binclz/;
(1) (BSn), ~ L], = (1L, 15k) ) = (BEa), 15k) ) —— (BZax),  and
(BAY

where A: ¥,, < 3, is the diagonal inclusion, are homotopic. Both (a) and (b)
follow directly from Proposition 7.8, Theorem 7.3 and (1) taking into account the
definition of the operation + in [], -, Rep, () and [],,~, Rep, (£). O

Proof of Theorem 1.5. Apply Propositions 7.9 and 7.10(a) to obtain some f €
Rep, e (L) such that f|gs is homotopic to o B(p*-regg), that is, ®(f) = p*-regg.
By [6, Lemma 2.3], H*(S;F)) is a finitely generated module over the Noetherian
Fp-algebra H*(BX,x. g);F;) via the algebra map (p*-regg)*. Finally, H*(|L|;F,) is
a submodule of H*(S;F),) by [7, Theorem B] and it is therefore finitely generated.
Now apply [6, Lemma 2.3] again to deduce that f is a homotopy monomorphism.
]

8. THE INDEX OF THE SYLOW SUBGROUP
Let (S,F, L) be a p-local finite group and let f: |£] — (BZn);\ be a map. The
restriction f|pg = f 0 © is F-invariant by Example 7.2 and is homotopic to (Bp);\
for a unique p € Rep(S, X,,) which is F-invariant by Proposition 7.8 and [12]. There
results maps Rep,,(£) — Rep,,(F) which are compatible with the operations + and
x defined in the introduction. They give rise to a ring homomorphism

®: Rep(L) — Rep(F).

8.1. Proposition. The abelian groups underlying ker(®) and coker(®) are p-torsion.
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Proof. An element in ker(®) has the form f; — fo where f1, fo € Rep,,(£) for some
n and fi1|ps ~ fa|ps. Proposition 7.10 implies that p¢ - (f1 — f2) = 0 in Rep(L)
and it follows that ker(®) is p-torsion.

An element of Rep(F) has the form p; — pp for some p; € Rep,, (F) and
p2 € Rep,,,(F). By Proposition 7.10, the definition of ® and the definition of the
operations + in Rep(F) and Rep(L), we see that there exist integers k1, ke > 0 and
representations fi € Repyri,, (£) and fo € Reppes,, (£) such that ®(f1) = p** - p1
and ®(fy) = p¥2 - py. Then w = p*2 - f; — pF* - f5 is an element of Rep(£) such that
O(w) = p*M1tr2(p; — py). Tt follows that coker(®) is p-torsion. O

By Propositions 7.9 the ring Rep(F) contains regg: S — X5/ which generates
an (additive) infinite cyclic group Rep™®(F) := {n-regg}nez in Rep(F). Similarly
let Rep™® (L) denote the additive subgroup of the ring Rep(L) generated by all the
S-regular representations of (S, F, £); See Definition 1.4.

It follows directly from the definitions that ® restricts to a group homomorphism

®™°8 : Rep™®(L) — Rep™&(F).

8.2. Corollary. The cokernel of ®™°8 is a cyclic p-group. The kernel of ®™°8 is an
abelian torsion p-group and Rep™®(L) = Z & abelian p-torsion group.

Proof. This follows from Proposition 8.1 which in particular implies that the image
of @8 is isomorphic to Z, whence it splits off from Rep™®(L). O

Given a finite group G there is a natural one-to-one correspondence between
equivalence classes of permutation representations G — ¥, and equivalence classes
of G-sets of cardinality n. Sum and products of representations (as described in the
introduction) correspond to disjoint unions and products of the associated G-sets.
Note that reg. corresponds to a free G-set with one orbit.

Let us return to discuss Rep(F). Since the product of a free S-set with any other
S-set is again a free set, it follows that Rep'®(F) and Rep™®(L) are in fact ideals
in Rep(F) and Rep(£) and that ®"°# is a ring homomorphism.

8.3. Example. Let (S,F, L) be the p-local finite group of a finite group G. The
restriction of (B regG)IA): |£|;\ — (BE|G‘);\ to BS is homotopic to n - (B regs)g
where n = |G': S| because regg: G — Xg| renders G a free G-set, whence a free

S-set. In particular (B rcgc);\ 00 is an element in Rep™® (L) which is mapped by ®
to n - regg. It follows that |G: S| € Im(®*8), whence | coker(®*°®)| divides |G: S]|.

8.4. Definition. Let (S, F, L) be a p-local finite group. Define the upper and lower
index of S in £ by
Uind(L: S) = | coker(®*°8)|
Lind(L: S) = |Rep™®(F) : Rep™®(F) N Im(D)|.
Clearly Lind(L: S) divides Uind(L: S) because Im(®**8) < Im(®) N Rep & (F).
8.5. Lemma. Let (S,F,L) be a p-local finite group. Then Uind(L: S) is a p-
power. If there exists a permutation representation p: |L| — (BEn);\ such that

plps ~ B(n -regg) with n > 1 prime to p, then Uind(L: S) = 1, and in particular
also Lind(L: S) = 1.

Proof. The first statement follows from Corollary 8.2. The existence of p shows
that n € Im(®™#) hence, Uind(L: S) = 1. O
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We shall now prove Theorem 1.8. In fact we prove the following stronger result.
8.6. Theorem. Under the hypotheses of Theorem 1.8 we have Uind(L: S) = 1.
Proof. (1) This follows from Lemma 8.5 and Example 8.3.

(2) Let Cy, be the poset {co,ci,ch| i=1,...,n} whose only relations are defined
by ¢t < co and ¢} < ¢} for all i = 1,...,n. View C, as a small category where
x < y corresponds to an arrow x — y.

In [16, Section 7], the authors prove that if the longest chain of proper inclusions
of F-centric F-radical subgroups of S has length < 2, then |£| ~ hocolim¢,, F' where
the functor F': C,, — Top has the following properties. The values of F' are the
classifying spaces of finite groups Go,G% and G% for i = 1,...,n and the maps
F(c) — F(co) and F(c}) — F(ch) are induced by inclusion of groups G4 < Gy
and G < G%. In addition k; = |GY%: GY| are prime to p, and S is a subgroup of Gy
of index prime to p. Also, the map ©: BS — |L] factors up to homotopy through
BGy ~ F(c¢p) — hocolime, F' =~ |L].

Set k =[]} k; and ko = |Go|- k. Note that ko is divisible by |G| and |G3| for all
i because ko = k- |Go| = k- |GY| - |Go: Gi| and k; divides k. Set ¢; = ko/|GY| and
m; = ko/|G%]. Consider the following permutation representations for i = 1,...,n

k-regg,: Go — Xi,, li -reggi : G — Bpy, m; - reggy : Gy — L.

Note that (k - regg,)|q: and (m; - regg; )|q: are equivalent to £; - regg: because all
of them render the set {1,...,ko} a free Gi-set with ¢; orbits. By taking classifying
spaces there results a system of homotopy compatible maps F' — BXy,. It can be
rectified to a system of compatible maps F' — BXy, as follows. First, set the maps
F(¢) — BYj, to be the composition of F(ct) — F(cy) — BYXy,. Next, replace
the maps F(c}) — F(c?) by cofibrations and change the maps F(cy) — B, up to
homotopy to obtain a system of compatible maps F' — BXy, .

There results a map f: |£] =~ hocolim F' — BY, such that f|ps = f o Bi§° ~
k-|Go: S| - Bregg where k - |Go: S| is prime to p. By applying Lemma 8.5 we
deduce that Uind(L: §) = 1.

Now, all the exotic examples in [7, Examples 9.3, 9.4], [8] and [11] satisfy the
condition of [16, Section 7] that chains of proper inclusions of F-centric F-radical
subgroups of S have length < 2. ]

8.7. Conjecture. For all p-local finite groups Uind(L: S) = 1.
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