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Abstract. We construct a homotopy theoretic setup for homology decompositions
of classifying spaces of p-compact groups. This setup is then used to show that
the existence of the Dwyer-Wilkerson centralizer decomposition with respect to the
family of elementary abelian p-subgroups of a p-compact group X is equivalent to the
existence of a subgroup decomposition for X with respect to any family of subgroups
which contains the radical subgroups of X . The resulting subgroup decomposition
we obtain generalizes the subgroup decomposition with respect to radical subgroups
for a compact Lie group constructed by Jackowski, McClure and Oliver.

Homology decompositions are among the most useful tools in the study of the ho-
motopy theory of classifying spaces. Roughly speaking, a homology decomposition for
a space X, with respect to some homology theory h∗, is a recipe for gluing together
spaces, desirably of a simpler homotopy type, such that the resulting space maps into
X by a map which induces an h∗-isomorphism.

When constructing a homology decomposition for a classifying space of a group G, it
is natural to do so using classifying spaces of subgroups of G. For compact Lie groups
two types of mod-p homology decompositions are known: the centralizer decomposition
with respect to elementary abelian p-subgroups, due to Jackowski and McClure [JM],
and the subgroup decomposition with respect to certain families of p-toral subgroups,
due to Jackowski, McClure and Oliver [JMO].

A p-compact group is an Fp-finite loop space X (i.e., a loop space whose mod-p ho-
mology is of finite type and vanishes above a certain degree), whose classifying space
BX is p-complete in the sense of [BK]. These objects, defined by Dwyer and Wilker-
son [DW1], and extensively studied by them and others, are a far reaching homotopy
theoretic generalization of compact Lie groups and their classifying spaces. Dwyer and
Wilkerson also introduced in [DW2] a centralizer decomposition with respect to elemen-
tary abelian p-subgroups for p-compact groups, which generalizes the corresponding
decomposition for compact Lie groups. The aim of this paper is to construct a sub-
group decomposition for p-compact groups, analogous to the subgroup decomposition
for compact Lie groups introduced by Jackowski, McClure and Oliver in [JMO]. We
will in fact show that in the right setup, the Dwyer-Wilkerson theorem about existence
of a centralizer decomposition for p-compact groups, with respect to their elementary
abelian p-subgroups, is equivalent to the existence of subgroup decompositions with
respect to certain other families of subgroups. More detail will be given shortly.

We start by explaining some of the concepts involved. A subgroup of a p-compact
group X is a pair (Y, α) where Y is a p-compact group and α : BY −→BX is a
monomorphism, namely, a pointed map whose homotopy fibre is Fp-finite. The phrase
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“(Y, α) is a subgroup of X” will frequently be abbreviated by Y ≤α X. Recall that a p-
compact torus is a topological group of type K(A, 1), where A is isomorphic to a finite
product of copies of the p-adic integers. A p-compact toral group is a group containing
a p-compact torus as a normal subgroup with p-power index. Every p-compact group
admits a distinguished family of p-compact toral subgroups (S, ι), which are maximal
in the sense that if (P, β) is any other p-compact toral subgroup of X, then there exists
a map f : BP → BS, such that ι ◦ f ≃ β. Any such subgroup will be called a Sylow
subgroup of X (see Definition A.9 and the following discussion).

For any p-compact groupX, we consider two categories: the orbit categoryO(X) and
the fusion category F(X). The objects in both categories are given by all subgroups
(Y, α) of X. A morphism (Y, α) → (Y ′, α′) in O(X) is a homotopy class of a map
h : BY → BY ′ such that α′ ◦ h ≃ α, whereas in F(X) such a morphism is a pointed
homotopy class of a homomorphism f : BY → BY ′ such that α′◦f is freely homotopic
to α.

For any p-compact group X, we consider certain full subcategories of O(X) and
F(X), where the objects are restricted to particular collections of subgroups, defined
by certain properties:

• A subgroup Y ≤α X is said to be quasicentric if the homotopy fibre of the
natural map

α# : Map(BY,BY )id → Map(BY,BX)α

is weakly homotopically discrete and centric if it is weakly contractible.

• A p-compact toral subgroup Y ≤α X of a p-compact group X is said to be
radical if it is quasicentric and if AutO(X)(Y, α) is finite and contains no normal
non-trivial p-subgroup (i.e., it is finite and p-reduced).

Every centric subgroup is obviously quasicentric, and we will show later that every
radical subgroup is centric (Lemma 4.1). For a p-compact group X, we denote by
Oc

p(X) and Or
p(X), the full subcategories of O(X) whose objects are the centric and

radical p-compact toral subgroups, respectively. Similar notation will be used for the
fusion category. These categories are not generally small, but have small (in fact at
most countable) skeletal subcategories (see Proposition 1.7), so defining limits and
colimits over them makes sense. Let Top denote the category of spaces, and hoTop its
homotopy category. We are now ready to state our main theorem.

Theorem A. For any p-compact group X there exists a functor

Φ: Or
p(X) → Top,

such that

(1) For each object (P, α) in Or
p(X), Φ(P, α) ≃ BP and

(2) there is a natural map

hocolim
Or

p(X)
Φ → BX,

which induces a mod-p homology equivalence.

More detail about the method used in the proof will be given in the following section.

We take the pleasure to thank Bob Oliver and Carles Broto for many useful conver-
sations. We would also like to thank the Max-Planck-Institut für Mathematik in Bonn,
the Universities of Aberdeen and Leicester, and Universitat Autonoma de Barcelona
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for giving us several opportunities to meet. We also acknowledge support from EPSRC
for grants obtained to partially fund this project.

1. Approximations and Decompositions

In this section the strategy for proving Theorem A is described in detail and an
auxiliary result, which might be of independent interest, is stated and shown to imply
the theorem.

Let π : Top → hoTop denote the obvious projection functor. For any p-compact
group X, there are functors

φ : O(X) → hoTop and ψ : F(X)op → hoTop,

defined as follows. The functor φ sends a subgroup (Y, α) to BY and any morphism to
the respective homotopy class. The functor ψ takes a subgroup (Y, α) to the mapping
space Map(BY,BX)α and a morphism to the homotopy class of the map induced by any
representative. For a subgroup (Y, α) of X, we denote Map(BY,BX)α by BCX(Y, α)
or BCX(Y ) for short, if no ambiguity can arise. The associated loop space CX(Y ) is
called the centralizer of (Y, α) in X. Dwyer and Wilkerson showed in [DW1, Prop. 5.1,
5.2] that if (P, α) is p-compact toral subgroup of X, then CX(P ) is a p-compact group

and that the evaluation map BCX(P )
ev
→ BX is a monomorphism. (Thus the pair

(CX(P ), ev) is a subgroup of X.)

If C is a collection of p-compact toral subgroups of a p-compact group X, then we
denote by OC(X) and FC(X) the full subcategories of O(X) and F(X), whose objects
are the subgroups in C. We denote by

φC : OC(X) → hoTop and ψC : FC(X)op → hoTop,

the restriction of φ and ψ to the respective full subcategories. Given such a collection C,
one obtains two enlarged collections: the collection C1 obtained by adding the subgroup
(X, 1BX) to C, and the collection C0 obtained by adding the trivial subgroup ({1}, ∗),
where ∗ : B{1} → BX is the inclusion of the base point. Let ι1 : OC(X) →OC1

(X)
and ι0 : FC(X) →FC0

(X) be the respective inclusion functors.

The following definitions are introduced in [DK].

Definition 1.1. If θ : D → hoTop, then a realization of θ is a pair (Θ, γ), where

Θ: D → Top is a functor and π ◦Θ
γ
→ θ a natural isomorphism of functors. Two

realizations (Θ, γ) and (Θ′, γ′) are weakly equivalent if there exists a natural transfor-
mation ǫ : Θ → Θ′, which is a weak equivalence on each object d ∈ D and such that
γ′ ◦ π(ǫ) = γ.

With this terminology we can now define what we mean by subgroup and centralizer
approximations.

Definition 1.2. Let C be a collection of subgroups of a p-compact group X. A subgroup
approximation for X with respect to C is a realization (ΦC1

, γ1) of φC1
. Similarly, a

centralizer approximation for X with respect to C is a realization (ΨC0
, δ0) of ψC0

.

The following lemma provides an alternative, somewhat more intuitive, definition
of subgroup and centralizer approximations. For a category C, and a space Y , let
1Y : C → Top denote the constant functor, taking each object to Y , and each mor-
phism to the identity map.

Lemma 1.3. Let C be a collection of subgroups of a p-compact group X. Then
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(i) X has a subgroup approximation with respect to C if and only if there exists a
realization (ΦC, γ) of φC, and a natural transformation η : ΦC → 1BX .

(ii) X has a centralizer approximation with respect to C if and only if there exists
a realization (ΨC, δ) of ψC, and a natural transformation ζ : ΨC → 1BX .

Proof. We prove only (i), as the proof of (ii) is totally analogous. Assume X admits
a subgroup approximation (ΦC1

, γ1) with respect to C in the sense of Definition 1.2.
Since (X, 1BX) is a terminal object in OC1

(X), the obvious map

hocolim
OC1

(X)
ΦC1

→ ΦC1
(X, 1BX)

is a homotopy equivalence. Let ρ1 : π ◦ ΦC1
→ φC1

be a natural isomorphism. Then

ρ1 determines a homotopy class of a homotopy equivalence ΦC1
(X, 1BX)

≃
→ BX. Fix

a representative ιX for this equivalence.

Let ΦC denote the composite

OC(X)
inc
→OC1

(X)
ΦC1→ Top,

and let γ denote the restriction of γ1 to ΦC . Then (ΦC, γ) is clearly a realization of the
homotopy functor φC on OC(X). Let η denote the natural transformation defined by
taking an object (P, α) of OC(X) to the composite

ΦC(P, α) = ΦC1
(P, α)

ΦC1
(α)
→ ΦC1

(X, 1BX)
ιX→ BX.

Conversely, let (ΦC, γ) be a realization of the homotopy functor φC restricted to
OC(X), and let η : ΦC → 1BX be a natural transformation. We must extend ΦC to
OC1

(X), and define the appropriate natural transformation γ1. Define ΦC1
(X, 1BX) =

BX. If (P, α)
[f ]
→ (X, 1BX) is any morphism in OC1

(X), then f and α have the
same homotopy class. Define ΦC1

([f ]) = η(P, α) : ΦC(P, α) → BX. Define γ1 : π ◦
ΦC1

→ φC1
to coincide with γ on objects different from (X, 1BX), and let γ1(X, 1BX)

be the identity map. Then (ΦC1
, γ1) is a subgroup approximation for X with respect

to C in the sense of Definition 1.2, and the proof is complete. �

Any subgroup approximation (ΦC1
, γ1) for X with respect to C gives rise to a map

hocolim
OC(X)

ΦC
inc∗
→ hocolim

OC1
(X)

ΦC1

≃
→ ΦC1

(X, 1BX) ≃ BX,

where ΦC is the functor ΦC1
pre-composed with the inclusion. By abuse of notation we

denote this map by η (since with the interpretation suggested by Lemma 1.3, this map
would be induced by the natural transformation η). Similarly, a centralizer approxi-
mation (ΨC0

, δ0) gives rise to a map ζ given by the composite

hocolim
FC(X)op

ΨC → hocolim
FC0

(X)op
ΨC0

≃
→ ΨC0

({1}, ∗) ≃ BX,

where ΨC is the functor ΨC0
pre-composed with the inclusion.

Generally the maps η and ζ are not guaranteed to have any good properties, which
brings us to the following

Definition 1.4. We say that a subgroup approximation (ΦC1
, γ1) (resp. centralizer

approximation (ΨC0
, δ0)) is a subgroup (resp. centralizer) decomposition if the map η

(resp. ζ) above induces a mod-p homology equivalence.

A collection C of subgroups of a p-compact group X is called subgroup-ample if there
exists a subgroup decomposition (ΦC1

, γ1) for X with respect to C. Similarly C is said



HOMOLOGY DECOMPOSITIONS FOR p-COMPACT GROUPS 5

to be centralizer-ample if there exists a centralizer decomposition (ΨC0
, δ0) for X with

respect to C.

The claim of our main theorem thus amounts to saying that any p-compact group
admits a subgroup decomposition with respect to the collection of its radical subgroups,
or equivalently that the collection of the radical subgroups of a p-compact group X is
subgroup-ample. Using this terminology, the Dwyer-Wilkerson theorem on homology
decompositions for p-compact groups can be stated as claiming that for any p-compact
group X, the collection of all its elementary abelian subgroups is centralizer-ample.
The term “ample” is borrowed from [D], although there it refers only to a collection
and not to the attempted approximation. It is possible to show that if C is an arbitrary
collection of subgroups of X, then C is centralizer-ample if and only if it is subgroup-
ample. This would justify using the phrase “an ample collection” in the sense Dwyer
does in [D], but we shall not discuss this terminology any further in this paper.

Proposition 1.5. For any p-compact group X the following hold.

(i) If C is a collection of centric subgroups of X, then there exists a subgroup
approximation (ΦC1

, γ1) for X with respect to C, which is unique up to a weak
equivalence.

(ii) If A is a collection of finite abelian p-subgroups of X, there exists a centralizer
approximation (ΨA0

, δ0) for X with respect to A, which is unique up to a weak
equivalence.

Proof. We first recall some terminology from [DK] that will be used in the proof. For
a small category D, a functor θ : D → hoTop is said to define a centric diagram over

D if for every morphism c
f
→ d in D, θ(f) is a the homotopy class of a centric map,

namely, if for any representative f ′ for θ(f), the induced map

f ′
# : Map(θ(c), θ(c))id → Map(θ(c), θ(d))θ(f)

is a weak equivalence.

If θ defines a centric diagram over D, one has a sequence of functors θi : Dop →Ab
given by

θi = πi(Map(θ(d), θ(d))id),

and by [DK, Theorem 1.1], if the groups lim←−
j θi vanish for all i and j, then there exists

a realization Θ of θ which is unique up to weak equivalence.

Lemma 3.1 below implies that if C is a centric collection (i.e., a collection all of
whose objects are centric) of p-compact toral subgroups of a p-compact group X,
then φC : OC(X) → hoTop defines a centric diagram. It is also immediate that
the extended diagram defined by φC1

is centric. The category OC1
(X) has a terminal

object, and hence the higher limits of any contravariant functor from it to the category
of abelian groups vanish. Thus by the Dwyer-Kan theorem stated above, a realization
(ΦC1

, γ1) of φC1
exists and is unique up to weak equivalence.

Lemma 3.1 again, in conjunction with the fact that the centralizer in X of a p-
compact toral subgroup is itself a p-compact group [DW1, Proposition 5.1], implies
that if A is a collection of finite abelian p-subgroup of X, then the diagram defined
by ψA : FA(X)op → hoTop is centric [DW2, Lemma 11.15]. An identical argument
now shows that there exists a realization (ΨA0

, δ0) of ψA0
, which is unique up to weak

equivalence. �
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Remark 1.6. In particular, notice that the uniqueness part of Proposition 1.5 implies
that if a collection is subgroup ample, then any subgroup approximation is a decompo-
sition. A similar comment applies to centralizer approximations.

The main statement of this paper is not in fact an independent claim that the
collection of radical subgroups in a p-compact group is subgroup-ample, but rather
that this statement is equivalent to the claim that the collection of all elementary
abelian subgroups is centralizer-ample. More precisely one has:

Theorem B. For any p-compact group X, the following statements are equivalent:

a) The collection of all p-compact toral centric subgroups of X is subgroup ample.
b) The collection of all radical subgroups of X is subgroup ample.

Furthermore, the following statements are equivalent:

(i) For every p-compact group X the collection of all its non-trivial elementary
abelian subgroups is centralizer ample.

(ii) For every p-compact group X the collection of all its centric p-compact toral
subgroups is subgroup ample.

Statement (i) of Theorem B is a theorem of Dwyer and Wilkerson [DW2, Theorem
8.1]. Thus, Theorem B implies Theorem A at once. Notice the difference between
the two sets of equivalent conditions in the theorem: in the first set the conditions
are stated for a given p-compact group, whereas in the second they are stated for all
p-compact groups. The reason for this difference is the different methods we employ
in proving the two sets of equivalences.

We end this section with a general statement which implies at once that all the
categories considered in this paper have small skeletal subcategories. We say that
two subgroups (Y, α) and (Y ′, α′) of X are ”conjugate”, if they are isomorphic as ob-
jects in O(X). Using this terminology, it follows at once that all Sylow subgroups of
a p-compact group X are conjugate (see Definition A.9). We also talk occasionally
about”conjugacy classes” of subgroups of X, by which we mean simply isomorphism
classes of objects in O(X). This proposition uses the existence of discrete approxima-
tions for p-compact toral groups, established in [DW1].

Proposition 1.7. For any p-compact group X, conjugacy classes of p-compact toral
subgroups of X form a countable set.

Proof. Let S ≤ι X be a Sylow subgroup, and fix a discrete approximation Š of S.
Let (P, α) be an arbitrary p-compact toral subgroup of X, and let P̌ be a discrete
approximation of P . Then, by the defining property of a Sylow subgroup, there is
a map f : BP → BS, such that ι ◦ f ≃ α. By Lemma A.22, f is homotopic to
a map induced by a homomorphism (in fact, a monomorphism) f̌ : P̌ → Š. Thus
conjugacy classes of p-compact toral subgroups of X are in 1–1 correspondence with
conjugacy classes in X of subgroups of the form (Q, ι̌Q), where Q is a subgroup of Š in
the ordinary sense and ι̌Q : BQ∧

p → BX is the p-completion of the inclusion followed

by ι. But Š is a countable group, and the Proposition follows. �

The rest of the paper is organized as follows. Section 2 contains a discussion on
the notion of the normalizer and Weyl spaces for subgroups of a p-compact group,
as well as the Weyl group of a subgroup. The key properties of centric and radical
subgroups are proven in Sections 3 and 4. Section 5 is a study of the orbit category
of radical subgroups. A slightly stronger form of the equivalence between a) and b)
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in Theorem B is shown in Section 6 (Proposition 6.1). The equivalence of (i) and (ii)
in the theorem is contained in Section 7 (Proposition 7.4, again in a slightly stronger
form). Background material needed along the paper is collected in Appendix A. In
Appendix B we show that our decomposition theorem is indeed a generalization of the
Jackowski-McClure-Oliver decomposition theorem.

2. The Normalizer and Weyl spaces of a subgroup

In [DW3] Dwyer and Wilkerson construct a normalizer space NX(Y ) = NX(Y, α)
and a Weyl space WX(Y ) = WX(Y, α) for a subgroup (Y, α) of a p-compact group
X. In this section we give an alternative construction of these spaces and study some
of their properties, which will be useful in analyzing centric and radical collections of
subgroups.

For a subgroup Y ≤α X, we defined

BCX(Y ) = BCX(Y, α)
def
= Map(BY,BX)α.

We denote by CX(Y ) = ΩBCX(Y ) the space of Moore loops in BCX(Y ) based at α.
When Y is a p-compact toral group, BCX(Y ) is the classifying space of a p-compact
group [DW1, Propositions 5.1 and 6.1]. Let P(BCX(Y )) denote the space of Moore

paths in BCX(Y ) based at α, namely, paths [0, r]
ω
→ BCX(Y ), r ≥ 0 with ω(0) = α.

Let

ev : P(BCX(Y )) → BCX(Y )

denote the evaluation map at the end point of a path. Then ev is a fibration, and the
fibre over the base point α is CX(Y ).

Let Map(BY,BY ){α} denote the components of the mapping space which are mapped
to the component of α under the map

α# : Map(BY,BY ) → Map(BY,BX).

Let Map∗(BY,BY ){α∗} denote the corresponding components of the pointed mapping
space. Let WX(Y, α) and NX(Y, α) denote the pull-back spaces of ev along α# and
α# ◦ j respectively, as shown in the following commutative diagram

(1)

NX(Y, α)
π

→WX(Y, α) →P(BCX(Y ))

Map∗(BY,BY ){α∗}

ν
↓

i
→Map(BY,BY ){α}

θ
↓

α#
→ BCX(Y )

ev
↓

,

where the map i is the inclusion. Since both squares are pull-back squares by construc-
tion, the homotopy fibres of i and π are both homotopy equivalent to Y .

Definition 2.1. The spaces NX(Y ) = NX(Y, α) and WX(Y ) = WX(Y, α) are called
the normalizer space and Weyl space of (Y, α) respectively.

As one should expect, these spaces admit a multiplicative structure, as detailed in
the following lemma.

Lemma 2.2. For any subgroup (Y, α) of a p-compact group X, the normalizer and Weyl
spaces of (Y, α) admit a natural structure of topological monoids. Furthermore, the
maps π, θ and ν in diagram (1) above, as well as the fibre inclusion CX(Y ) →NX(Y ),
are all maps of topological monoids.
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Proof. By construction, a point in WX(Y ) is a pair (f, ω), where BY
f
→ BY is a

map, [0, r]
ω
→ BCX(Y ) is a path starting at α, and ω(r) = α ◦ f . Define a monoidal

structure on WX(Y ) as follows. If (f, ω) and (f ′, ω′) are two points in WX(Y ), define
(f, ω) · (f ′, ω′) by (f ◦f ′, f ′(ω)∗ω′), where f ′(ω) is the image of ω under the self map of
Map(BY,BX)α induced by f ′, and ∗ means the juxtaposition of the two paths. This
is clearly an associative composition with a two-sided unit given by the pair (1Y , κα),
where κα means the constant path at α. The map θ is a map of topological monoids
with respect to this operation onWX(Y ) and composition of maps in Map(BY,BY ){α}.
The monoidal structure on NX(Y ) is defined similarly and makes the maps π and ν
into maps of topological monoids. Finally, CX(Y ) can be identified as the subspace of
NX(Y ) given by the fibre of ν over the identity map in Map(BY,BY ){α∗}, and inclusion
is obviously a multiplicative map. �

The sets of components ofWX(Y ) and NX(Y ) obviously have the structure of unital
associative monoids. Moreover, using Lemma A.2, it is easy to see that both topological
monoids consist of self maps of BY which are homotopy monomorphisms, and thus
automorphisms. Therefore, the set of components are in fact groups. We will only use
π0(WX(Y )) in this article.

Definition 2.3. For any subgroup (Y, α) of X, define its Weyl group by

WX(Y ) = WX(Y, α)
def
= π0(WX(Y, α)).

Remark 2.4. The definition of the Weyl space given above coincides up to homotopy
with the one in [DW3, Definition 4.1]. In the same paper (see the discussion following
Remark 4.2) Dwyer and Wilkerson also identify the Weyl space WX(Y, α) with the
homotopy fixed point set (X/Y )hY of the Y -action on the homotopy fibre X/Y of the
map α (or rather on a space of the same homotopy type, which admits such an action).
This alternative description of the Weyl space will be useful in a number of occasions
throughout this paper.

The next two statements give a few useful features of the Normalizer and Weyl
spaces. For a space K we denote by ∗K a choice of a base point in K, and by Ω(K, ∗K)
the Moore loops of K based at ∗K .

Lemma 2.5. For any subgroup Y ≤α X, there is a map of topological monoids

ωα : NX(Y ) → Ω(BX,α(∗BY )). Furthermore, the map ηα
def
= Bωα is an extension of

both α, and the evaluation map BCX(Y ) → BX.

Proof. Let (f, ω) ∈ NX(Y ) be a point. Thus f is a pointed self map of BY and ω is
a Moore path in BCX(Y ), starting at α and ending at α ◦ f . Following ω with the

evaluation map at the base point BCX(Y )
ev
→ BX gives a Moore loop in BX based

at α(∗BY ). Define

ωα : NX(Y ) → Ω(BX,α(∗BY ))

to be the map thus defined. One routinely verifies that ωα is a map of topological
monoids. It is also clear by construction that ωα extends the loops on the evaluation
map CX(Y ) → Ω(BX,α(∗BY )).

Next, notice that Y is homotopy equivalent as a loop space to the normalizer space

NY (Y )
def
= NY (Y, 1Y ) and that α induces a loop map

NY (Y ) →NX(Y ),
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which can be identified up to homotopy with the fibre inclusion in the fibration of loop
spaces and loop maps

(2) Y →NX(Y ) →WX(Y ).

Furthermore, the following square commutes

NY (Y ) →NX(Y )

Ω(BY, ∗BY )

≃ ω1

↓
Ωα
→ Ω(BX,α(∗BY )).

ωα

↓

This shows that ηα extends α, and it clearly extends ev : BCX(Y ) → BX, as claimed.
�

Remark 2.6. Notice that the constructions of CX(Y, α), NX(Y, α) and WX(Y, α) do
not actually require that X is a p-compact group, and that Y is a subgroup. Rather,
these constructions can be carried out for any pair of spaces X and Y , and an arbitrary
map α : X → Y . Furthermore, Lemmas 2.2 and 2.5 both hold in this more general
context.

Proposition 2.7. Let X be a p-compact group and let Y ≤α X, be a p-compact toral
subgroup. Then the following holds.

(i) The Weyl space WX(Y ) and normalizer space NX(Y ) are both Fp-finite.
(ii) The map ηα : BNX(Y ) → BX of Lemma 2.5 is a monomorphism (in the

sense that its homotopy fibre is Fp-finite).
(iii) If X is a p-compact toral group then WX(Y ) and NX(Y ) are also p-compact

toral groups and WX(Y ) is non-contractible.

Proof. By Corollary A.21, WX(Y ) is Fp-finite, and WX(Y ) is a finite group. The
fibration

(3) Y →NX(Y ) →WX(Y )

then implies that π0(NX(Y )) is finite. Since each space in this fibration is a loop space,
the components of each are all homotopy equivalent and in particular each component
of Y andWX(Y ) is Fp-finite. LetNX(Y )0 andWX(Y )0 denote the identity components
of the respective loop spaces. Then there is a fibration

Yc →NX(Y )0 →WX(Y )0

where Yc is the appropriate union of components of Y . A standard Serre spectral
sequence argument, taking into account that this fibration is principal and hence ori-
entable, shows that NX(Y )0 is Fp-finite. This completes the proof of Part (i).

In order to prove Part (ii) we will show that if f : BZ/p → BNX(Y ) is any map
such that ηα ◦ f is null-homotopic, then f is null-homotopic. By Proposition A.3, this
is equivalent to the claim that the homotopy fibre of ηα is Fp-finite.

Let BY ′ denote the homotopy pullback space of the system

BZ/p
π◦f
→ BWX(Y )←

π
BNX(Y ).

Then one has a fibration
BY

ǫ
→ BY ′ γ

→ BZ/p
with a section σ. In particular Y ′ is a p-compact group.

Let h : BY ′ → BNX(Y ) denote the map resulting from the pullback construction.
Then h ◦ σ ≃ f , and so ηα ◦ h ◦ σ ≃ ηα ◦ f is null-homotopic by assumption, and by
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[MN, Theorem 2.17] it follows that ηα ◦ h has a nontrivial kernel. Let K denote the
kernel of ηα◦h, and let Y ′′ denote Y ′/K (c.f., [DW1, §7]). Then one has a commutative
diagram:

BY

	�
�

�ǫ @
@

@
α

R

BY ′ h
→ BNX(Y )

↓
ηα
→ BX

@
@

@
δ

R �
�

��

BY ′′

.

Since α is a monomorphism, so is the composite δ ◦ ǫ by Lemma A.2(i). Consider the
following commutative diagram where the rows and columns are fibrations:

F → BK
ν
→ BZ/p

BY
↓

ǫ
→ BY ′

↓
γ
→ BZ/p

=
↓

BY ′′

δ◦ǫ
↓

=
→ BY ′′

δ
↓

→ ∗
↓

.

Since δ ◦ ǫ is a monomorphism, F is Fp-finite, and hence ν is a monomorphism. Since
BK is nontrivial, ν must be an equivalence, and so F is contractible. Thus δ ◦ ǫ is an
isomorphism of p-compact groups. Consider the composite

BY ′ γ⊤δ

≃
→ BZ/p×BY ′′ id×g

≃
→ BZ/p× BY,

where g is some homotopy inverse for δ ◦ ǫ. The first map is a homotopy equivalence
since for any choice ν ′ of a homotopy inverse for ν, the composite ν ′ ◦ γ is a left
homotopy inverse for the fibre inclusion of BK in BY ′. The second map is obviously a
homotopy equivalence, since g is. Let ϕ denote this composite and choose a homotopy
inverse ϕ′. Then ϕ ◦ σ : BZ/p → BZ/p×BY is equal to γ ◦ σ followed by inclusion
to the first factor, and so ϕ ◦ σ is homotopic to the inclusion to the first factor.

Now, consider the sequence:

BZ/p
ϕ◦σ
→ BZ/p× BY

ϕ′

→ BY ′ h
→ BNX(Y )

ηα
→ BX.

Clearly, ϕ′ ◦ (ϕ ◦ σ) ≃ σ, and so h ◦ ϕ′ ◦ (ϕ ◦ σ) ≃ h ◦ σ ≃ f . Taking adjoints of the
appropriate maps in the sequence, and using Lemma 2.5, one gets a diagram

BZ/p
ad(h◦ϕ′)
→Map(BY,BNX(Y ))inc

ev
→ BNX(Y )

�
�

��

Map(BY,BX)α

ηα#
↓

ev
→ BX

ηα

↓
,

which is clearly homotopy commutative, except for possibly at the top triangle. We
proceed under the assumption that this triangle commutes as well, and will return to
the justification after the argument is completed.

A straight forward diagram chase shows that ev ◦ ad(h ◦ ϕ′) ≃ f . Thus f factors
through BCX(Y ) = Map(BY,BX)α. Since the evaluation map BCX(Y ) → BX is a
monomorphism, and by assumption ηα ◦f ≃ ev ◦ηα# ◦ad(h◦ϕ′) is null-homotopic, the
map ηα# ◦ ad(h ◦ϕ′) factors through the homotopy fibre of the evaluation on BCX(Y ),
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which is Fp-finite by [DW1, Proposition 5.2], and hence is null-homotopic by Miller’s
theorem on the Sullivan conjecture [Mi]. Thus f is null-homotopic, proving Part (ii),
subject to showing that the composite

Map(BY,BNX(Y ))inc → Map(BY,BX)α → BNX(Y )

is homotopic to the evaluation map. To simplify notation let N denote NX(Y ). By
Remark 2.6 we have a commutative diagram

BCN (Y ) → BNN (Y )
≃
→ BN

BCX(Y )

↓
→ BN

≃
↓

→ BX,
↓

where each of the horizontal composites is the respective evaluation map. This com-
pletes the proof of the claim, and hence of Part (ii).

It remains to prove Part (iii). If X is p-compact toral then WX(Y ) is a finite p-
group by Corollary A.21 and hence so is π0(NX(Y )). Furthermore, sinceWX(Y ) is the
homotopy fibre of the map

Map(BY,BY ){α}
α#
→ BCX(Y ),

and since each homotopy class in {α} is the class of a homotopy equivalence, WX(Y ) is
homotopy equivalent as a space to a disjoint union of spaces of the form CX(Y )/Z(Y ),
where Z(Y ) denotes the center of Y (see Definition A.15 and the following remarks).
Under the hypotheses of Part (iii), CX(Y ) is a p-compact toral group. HenceWX(Y ) is
p-compact toral and fibration (3) above implies that NX(Y ) is p-compact toral. Also,
by Corollary A.21

χ(WX(Y )) = χ((X/Y )hY ) ≡ χ(X/Y ) ≡ 0 mod p,

and so WX(Y ) is not contractible. �

3. Centric p-compact toral subgroups

We now specialize to centric collections of p-compact toral subgroups of a p-compact
group X, i.e., collections all of whose objects are centric in X. We start by analyzing
the automorphism group of a centric subgroup as an object in the orbit category O(X).

Lemma 3.1. Let X be a p-compact group.

(i) If Y ≤β X is a centric subgroup, then WX(Y ) is homotopically discrete.
(ii) If P ≤γ Y ≤β X and P ≤α X is a p-compact toral centric subgroup, where α

denote β ◦ γ, then P is centric in Y and (X/Y )hP is homotopically discrete.

Proof. The first statement follows directly from the definition. Thus it remains to prove
the second.

Assume P ≤γ Y ≤β X, and P is p-compact toral and centric in X. Then the
composite

Map(BP,BP )id
γ#
→ Map(BP,BY )γ

β#
→ Map(BP,BX)α

is an equivalence, and since P is p-compact toral, all spaces in this sequence are clas-
sifying spaces of p-compact groups [DW1, Proposition 5.1]. Hence γ# is a monomor-
phism and β# an epimorphism by the first two statements of Lemma A.2. Since β
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is a monomorphism by assumption, and the evaluation maps are monomorphisms by
[DW1, Propositions 5.2 and 6.1], commutativity of the following diagram of fibrations

(X/Y )hP k
→Map(BP,BY ){α}

β#
→Map(BP,BX)α

X/Y

ev
↓

j
→ BY

ev
↓

β
→ BX,

ev
↓

and Lemma A.2 again imply that β# is a monomorphism on each component. (The
subscript {α} in the diagram denotes the set of components mapped to the component
of α under β#.) Hence Lemma A.2(iv) applies to show that β# is an isomorphism on
each component and hence γ# is an isomorphism as well, proving that (P, γ) is centric
in Y . In particular, since β# is an equivalence on each component, this also shows that
(X/Y )hP is homotopically discrete. �

Corollary 3.2. Let (P, α) and (Y, β) be subgroups of a p-compact group X. Assume
P is p-compact toral and centric in X. Then

MorO(X)((P, α), (Y, β)) = π0((X/Y )hP ).

In particular AutO(X)(P, α) = WX(P ) and if X is p-compact toral and P is a proper
subgroup of X (i.e., α is not an equivalence) then WX(P ) is a non-trivial finite p-group.

Proof. The morphism set MorO(X)((P, α), (Y, β)) is given by the set {α} of homotopy

classes of maps BP
ζ
→ BY , such that β ◦ ζ ≃ α. The homotopy fibre of the map

β# : Map(BP,BY ){α} → Map(BP,BX)α

is (X/Y )hP by [DW1, Lemma 10.4], and since P is centric in X, (X/Y )hP is homotopi-
cally discrete by Lemma 3.1(ii). In particular β# is a homotopy equivalence on each
component, and so the inclusion of its homotopy fibre

(X/Y )hP → Map(BP,BY ){α}

induces a bijection on components. The identification of automorphism group of (P, α)
in O(X) as the respective Weyl group follows from the interpretation of the Weyl
space as a homotopy fixed point space (see Remark 2.4) and Lemma 3.1(i). Finally,
if X is p-compact toral, then WX(P ) ≃ (X/P )hP is a non-trivial p-compact group
by Proposition 2.7(iii), and since it is homotopically discrete, WX(P ) must be a finite
non-trivial p-group. �

The following lemma shows that the class of centric p-compact toral subgroups of a
p-compact group is closed under supergroups.

Lemma 3.3. Let P ≤γ Q ≤β X be a pair of p-compact toral subgroups of a p-compact
group X, and let α denote the composite β ◦ γ. If (P, α) is centric in X, then so is
(Q, β).

Proof. Suppose first that P is a normal subgroup of Q of finite index (see Definition
A.13). Thus there is a fibration

BP
γ
→ BQ → Bπ,

where π is a finite p-group. Let B̃P denote the pull-back of the universal cover of

Bπ along the projection BQ → Bπ. Then B̃P is homotopy equivalent to BP and
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admits a free action of π with orbit space BQ. Let {α} denote the set of components
of all maps BQ → BX extending α. Then

Map(BQ,BX){α} ≃ Map(B̃P hπ, BX){α} ≃ (Map(B̃P , BX)α)hπ

Similarly, let {γ} denote the set of components of all self maps of BQ extending γ.
Then

Map(BQ,BQ){γ} ≃ (Map(B̃P , BQ)γ)
hπ,

and there is a commutative diagram

Map(BQ,BQ){γ}
≃
→ (Map(B̃P , BQ)γ)

hπ

Map(BQ,BX){α}

β#

↓
≃
→ (Map(B̃P , BX)α)hπ.

(β#)hπ

↓

Since P ≤α X is centric, P ≤γ Q is centric by Lemma 3.1, and so βhπ
# is induced

by an equivariant map which is a homotopy equivalence, implying that it is itself a
homotopy equivalence. Commutativity implies that β# is a homotopy equivalence as
well. Restricting to the component Map(BQ,BQ)id, this shows that Q ≤β X is centric
in this case.

Assume now that P ≤γ Q is arbitrary. By Lemma A.23 there is a sequence

P = P0 ≤ P1 ≤ P2 ≤ · · · ≤ Pk ≤ Pk+1 ≤ · · ·Q0 ≤ Q1 ≤ · · · ≤ Qn−1 ≤ Qn = Q

such that BQ0 = hocolimiBPi, and each group in the sequence is a normal subgroup
of finite index in the following one. By induction Pk is centric in X for all k.

By [DW1, Propositions 5.2 and 6.18] there exists some sufficiently large N , such that

Map(BPk, BQ0)ιk ≃ Map(BQ0, BQ0)id

and
Map(BPk, BX)αk

≃ Map(BQ0, BX)β0

for all k ≥ N , where ιk, αk and β0 denote the appropriate restrictions. But Pk ≤βk
X

is centric by the argument given for the case of a normal subgroup of finite index, so
Pk ≤ιk Q0 is centric by Lemma 3.1, and

β# : Map(BPk, BQ0)ιk → Map(BPk, BX)αk

is an equivalence. Naturality now implies that

β# : Map(BQ0, BQ0)id → Map(BQ0, BX)β0

is an equivalence, and so Q0 ≤β X is centric.

The statement for a normal subgroup of finite index applied inductively to the sub-
groups in the sequence

Q0 ≤ Q1 ≤ · · · ≤ Qn−1 ≤ Qn = Q

shows that Q ≤β X is centric. �

If P ≤ Y ≤ X, and P is centric in Y , then it is not generally the case that P is
centric in X. The following lemma singles out a family of subgroups Y ≤ X, which
are a very useful exception to the rule.

Lemma 3.4. Let P ≤α X be a p-compact toral subgroup and let E ≤γ X be an
elementary abelian p-subgroup. If P ≤β CX(E), then P is centric in CX(E) if and only
if it is centric in X.
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Proof. Denote CX(E) by C for short and assume P ≤β C. If P is centric in X, then it
is centric in C by Lemma 3.1. Conversely, assume P is centric in C. Since E is central
in C (see Definition A.15), for any p-compact toral subgroup Q ≤ C,

E ≤ Z(C) = CC(C) ≤ CC(Q).

In particular E ≤ CC(P ) ≃ Z(P ) and E ≤ E(P ), where E(P ) is the maximal central
elementary abelian subgroup of P (see Lemma A.17). Hence

P ≤ CX(E(P )) ≤ CX(E) = C,

and since P is centric in C, it is centric in CX(E(P )) by Lemma 3.1. Write Ê
def
= E(P )

and Ĉ
def
= CX(Ê) for short, and let

β̂ : BP → BĈ and γ̂ : BÊ → BX

be the obvious maps factoring β and γ respectively. Then

BC bC(P )
def
= Map(BP,BĈ)bβ

def
= Map(BP,Map(BÊ,BX)bγ)bβ ≃

Map(BÊ,Map(BP,BX)α)ad2 bβ

def
= Map(BÊ,BCX(P ))ad2 bβ

≃

ev
→ BCX(P ).

The first equivalence is in fact a homeomorphism given by double adjunction, and the
second follows because E(P ) ≤ Z(P ), which is central in BCX(P ). This composite of
equivalences is easy to identify with the map induced by the evaluation map

BC bC(P )
def
= Map(BP,Map(BÊ,BX)bγ)bβ

ev#
→ Map(BP,BX)α

def
= BCX(P ).

Since P is centric in Ĉ, it now follows at once that it is centric in X. �

4. Radical subgroups

In this section we describe some basic properties of the collection of radical p-compact
toral subgroups of a p-compact group X. Recall that a subgroup (Y, α) of a p-compact
group is said to be radical if it is quasicentric and if AutO(X)(Y, α) is finite and p-
reduced.

We start by observing that radical p-compact toral subgroups of a p-compact group
are also centric. (This stands in contrast to the case of compact Lie group, where
radical subgroups are not in general p-centric.)

Lemma 4.1. Any radical p-compact toral subgroup P of a p-compact group X is centric
in X.

Proof. Let P ≤α X be a radical p-compact toral subgroup. Then there is a homotopy
fibre sequence

WX(P ) → Map(BP,BP ){α}
α#
→ BCX(P ).

Notice that the total space and fibre in this fibration are topological monoids, and the
fibre inclusion is a multiplicative map. Therefore, the associated homotopy long exact
sequence gives an exact sequence of groups

π1(BZ(P ))
π1(α#)
→ π1(BCX(P ))

∂
→WX(P ) → π0(Map(BP,BP ){α}) → 1.

The group π1(BCX(P )) is a finite p-group, since CX(P ) is a p-compact group, and
Im(∂) is a normal subgroup of WX(P ) isomorphic to Coker(π1(α#)). Since (P, α) is
radical, Im(∂) has to be trivial, and hence π1(α#) is an epimorphism. Moreover, since
(P, α) is quasicentric in X, WX(P ) is homotopically discrete and so α# induces an
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isomorphism on all homotopy groups. Hence α# restricted to the identity component
of its source is a homotopy equivalence, implying that (P, α) is centric in X. �

Next, we show that any Sylow subgroup of a p-compact group is radical.

Lemma 4.2. Any Sylow subgroup S ≤ X of a p-compact group X is radical there.

Proof. Let S ≤ιS X be a Sylow subgroup, and let T ≤ S be a maximal torus in S, and
thus in X. Notice that T is in particular a normal subgroup of S. By [DW1, Proposi-
tion 8.10], WS(T ) and WX(T ) are homotopically discrete and Fp-finite, so WS(T ) and
WX(T ) are finite groups.

Consider the fibration
S/T →X/T →X/S

induced by the inclusions of subgroups T ≤ S ≤ X. Taking homotopy fixed point sets
under the action of T and using the identification of Weyl spaces as homotopy fixed
point sets (see Remark 2.4), one obtains a fibration

(4) WS(T ) →WX(T ) → (X/S)hT .

Notice that the fibre inclusion in this fibration is a homomorphism of topological
monoids. Also, since T ⊳ S, T acts trivially on S/T , and so there are equivalences of
topological monoids S/T ≃ (S/T )hT =WS(T ) ≃ WS(T ).

By Corollary A.21, (X/S)hT is Fp-finite, and since WS(T ) and WX(T ) are homo-
topically discrete, the long exact homotopy sequence for the fibration (4) implies that
(X/S)hT is aspherical. Since spaces of type K(π, 1), with π a finite non-trivial p-
group, are never Fp-finite, and since (X/S)hT is p-complete, the fundamental group of
any connected component of (X/S)hT is either infinite or trivial. Since the connecting

map π1(X/S)hT ∂
→ π0(WS(T )) must be a monomorphism, and since π0(WS(T )) is

finite, the fundamental group of each connected component of (X/S)hT must be triv-
ial. This shows that (X/S)hT is homotopically discrete, and that the homomorphism
WS(T ) →WX(T ) is a monomorphism. By Corollary A.21, χ(X/S)hT ≡ χ(X/S)
mod p, and χ(X/S) is prime to p, since S is a Sylow subgroup. Hence the image of
WS(T ) in WX(T ) is a subgroup of index prime to p, (i.e., a Sylow p-subgroup).

Putting this together, one has

WX(S)
def
= (X/S)hS ≃ ((X/S)hT )hWS(T ) ≃ (WX(T )/WS(T ))hWS(T ).

The first equivalence follows from [DW1, Propositions 6.8, 6.9 and Lemma 10.5], and
the second from the fact that the projection to the set of components is equivariant
with respect to the action of WS(T ). By definition, homotopy fixed points and ordinary
fixed points of a discrete group action on a discrete set coincide. Thus the right hand
side can be identified with (WX(T )/WS(T ))WS(T ), which is clearly a finite set of order
prime to p. This shows that |WX(S)| has order prime to p and the claim follows. �

The following lemma is a one-sided analogue of 3.4 for radical subgroups. Notice
that if P ≤ Y ≤ X and P is radical in X, it is not necessarily radical in Y .

Lemma 4.3. Let P ≤α X be a p-compact toral subgroup and let E
def
= E(P ) ≤ǫ X be

a maximal central elementary abelian p-subgroup of P . Then P ≤ CX(E) and if P is
radical in X, then it is radical in CX(E).

Proof. The first statement is obvious (see Remark A.19). Write K
def
= CX(E) for short.

If P is radical in X, then it is centric there by Lemma 4.1, and hence WX(P ) is
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homotopically discrete by Lemma 3.1. By the same lemma, since P ≤ K, P is also
centric in K, and WK(P ) as well as (X/K)hP are homotopically discrete. The Weyl
group WK(P ) is finite by Corollary A.21, and it remains to show that it is p-reduced.
To show that, we construct a homomorphism

WX(P ) →WX(K),

with kernel WK(P ). Having done that, the claim follows from the assumption that
WX(P ) is p-reduced and Lemma 4.4 below.

Notice first that the obvious group homomorphism WK(P )→WX(P ) is a monomor-
phism. To see this, consider the fibration sequence

K/P → X/P →X/K.

Applying homotopy fixed points of P , we get a fibration of homotopically discrete
spaces:

WK(P ) →WX(P ) → (X/K)hP .

The claim follows by taking sets of components. We thus may identify WK(P ) with
its image in WX(P ).

Each element WX(P ) is the homotopy class of some self equivalence f of (P, α). If
[f ] ∈WX(P ), and f is any representative, then one has an induced self equivalence f#

of (CX(P ), ev). Since BCX(P ) ≃ BZ(P ), f# induces a self equivalence of (E, j), where
j : BE → BX is the inclusion BE → BP followed by α. By abuse of notation
we denote the last self equivalence by f# as well. This map in turn induces a self

equivalence f̂ of (K, ev), whose restriction to BP is homotopic to f . Notice that this

immediately implies that if f̂ ≃ 1BK , then [f ] is an element of WK(P ). Conversely,

if [f ] ∈ WK(P ), then for any representative f , the induced self map f̂ of (K, ev) is
homotopic to 1BK . Naturality of the construction implies at once that the map defined

by [f ] 7→ [f̂ ] is a group homomorphism WX(P ) →WX(K), and by the observations
above its kernel is WK(P ). �

Lemma 4.4. Let H ⊳ G be a normal subgroup of the finite group G. If G is p-reduced,
then so is H.

Proof. Let Q ≤ H be the intersection of all Sylow p-subgroups of H . Then, Q ⊳ H
and, since H ⊳ G, it follows that Q ⊳ G. Moreover, H is p-reduced if and only if Q
is the trivial group. Thus, if H is not p-reduced then G is also not p-reduced, which
proves the statement. �

The following lemma can be thought of as a homotopy version of [JMO, Lemma 1.5]
for radical p-compact toral subgroups.

Lemma 4.5. Let (P, α) and (Q, β) be p-compact toral subgroups of X. Assume that

(P, α) is radical and let (P, α)
γ
→ (Q, β) be a morphism in O(X). Consider the maps

WX(P )
γ#
→WX(P,Q)←

γ#

WX(Q),

where WX(P,Q)
def
= π0((X/Q)hP ). Then γ is an isomorphism of p-compact groups if

and only if there exists a monomorphism of groups WX(P )
δ
→WX(Q) such that

γ#δ ≃ γ#.

Proof. If γ is an isomorphism, then δ
def
= (γ#)−1 ◦ γ# gives the required group homo-

morphism. Thus it remains to prove the converse.
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Since P is radical in X, it is also centric there by Lemma 4.1, and thus Q is centric in
X by Lemma 3.3. By Lemma 3.1, P is centric in Q, and the spaces (X/P )hP , (X/Q)hQ,
(X/Q)hP and (Q/P )hP are all homotopically discrete.

There is a short exact sequence of sets

WQ(P )
β#
→WX(P )

γ#
→WX(P,Q)

obtained by taking components on the fibration of homotopically discrete spaces

(Q/P )hP β#
→ (X/P )hP γ#

→ (X/Q)hP .

In particular β# is a monomorphism and WX(P,Q) is isomorphic as a WX(P )-set to
WX(P )/β#(WQ(P )).

Assume γ is not an isomorphism of p-compact groups, and letK
def
= Ker(δ) ⊳ WX(P ).

Then the relation γ# ◦ δ = γ# implies that the inclusion of K into WX(P ) factors
through WQ(P ), which is a non-trivial finite p-group by Corollary 3.2. Hence K is
itself a finite p-group. Since K is a normal subgroup of WX(P ), and since P is assumed
radical, K must be trivial, and therefore δ is injective.

Next we claim that γ# is injective. Having shown that, it follows that γ# is injective
as well. Since γ#◦β is trivial, and since ι is injective, WQ(P ) is the trivial group, and by
Corollary 3.2 again this implies that γ is an equivalence. Indeed, the map γ# is induced
by the inclusion of homotopy fixed point sets (X/Q)hQ → (X/Q)hP . Without loss
of generality, γ may be replaced by an inclusion of p-compact toral groups. By Lemma
A.23, it suffices to prove the claim under the assumption that P is a normal subgroup
of Q of finite index. But in that case (X/Q)hQ ≃ ((X/Q)hP )h(Q/P ), and since (X/Q)hP

is homotopically discrete, (X/Q)hQ is homotopy equivalent to the fixed point set of the
Q/P action on π0((X/Q)hP ). It follows that γ# is a monomorphism, as claimed. �

5. The orbit category of radical subgroups

In this section we study the orbit category of p-compact toral radical subgroups of
a p-compact group X. In particular we study the behavior of the orbit category of
radical subgroups and the respective subgroup approximations under extension of a
p-compact group by a p-compact toral group. We also show that the orbit category
of radical subgroups of a p-compact group has a finite skeletal subcategory. This last
observation is crucial in carrying out inductive procedures later on.

Definition 5.1. Let X and Z be p-compact groups. An extension of Z by X is a
fibration

BX → BY → BZ,

where both the projection and the fibre inclusion are homomorphisms (i.e. pointed
maps).

Notice that an extension of p-compact groups automatically gives rise to a p-compact
group. To see this, notice that the total space in a fibration defining an extension of
p-compact groups is automatically p-complete, and its loop space is the total space
in a fibration with Fp-finite base and fibre, and is thus itself Fp-finite by inspection
of the associated Serre spectral sequence. Our first observation in this section is that
extending a p-compact group by a p-compact toral group leaves the associated orbit
category of radical subgroups unchanged up to equivalence.
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From this section onwards it will be useful to consider subcategories of the orbit
category (and later of the fusion category as well) of a p-compact group, whose objects
are a particular family of subgroups of a fixed Sylow subgroup.

Definition 5.2. Let X be a p-compact group with a Sylow subgroup S ≤ιS X, and fix
a discrete approximation Š of S. Let OS(X) and FS(X) denote the full subcategories
of the orbit and fusion categories of X whose objects are of the form (P, ιP ), where
BP = BP̌ ∧

p for some subgroup P̌ ≤ Š, and ιP is the p-completion of the composite

P̌ ≤ Š ≤ S ≤ιS X.

Lemma 5.3. For any p-compact group X and a Sylow subgroup S ≤ X, the categories
OS(X) and FS(X) of Definition 5.2 are equivalent to the full subcategories of O(X)
and F(X) whose objects are all p-compact toral subgroups P ≤ X.

Proof. This is immediate from the defining property of a Sylow subgroup, and Lemma
A.22. (See also Proposition 1.7.) �

Thus, given a p-compact groupX, we shall fix, whenever necessary, a Sylow subgroup
S ≤ιS X and a discrete approximation Š for S, and work with collections of subgroups
of X of the form (P, ιP ) where P corresponds to a subgroup P̌ ≤ Š, and ιP is induced
by the natural inclusion followed by ιS. When this cannot lead to ambiguity, such
subgroups will be denoted by P , Q, etc. (i.e., as opposed to (P, ιP ), (Q, ιQ) etc.), but
the symbol ιP will always be understood to be in the background.

We are now ready to state and prove our main claim about extensions: an extension
of a p-compact group by a p-compact toral group keeps invariant, up to an equivalence,
the orbit category of p-compact toral radical subgroups. More precisely we have the
following.

Proposition 5.4. Let

BK
ι
→ BX

π
→ BY

be an extension of p-compact groups where K is p-compact toral. Then there is an
equivalence of categories

Ψ: Or(Y ) →Or(X).

Proof. Let (S, ιS) be a Sylow subgroup for X, and let Š ≤ S be a discrete approxima-
tion. Let Ǩ ≤ K denote the kernel of π|BŠ. Then Ǩ is a discrete approximation for

K, and Ř
def
= Š/Ǩ is a discrete approximation for a Sylow subgroup (R, ιR) for Y . In

particular one has an extension of discrete groups

1 → Ǩ
ι̌
→ Š

π̌
→ Ř → 1.

Applying the classifying space functor followed by p-completion, one has an exten-
sion of p-compact toral groups, which maps to the extension of Y by K given in the
lemma. Notice that there is an obvious 1–1 correspondence between subgroups of Ř
and subgroups of Š containing Ǩ.

By Lemma 5.3, to prove the proposition, it suffices to show that there is an isomor-
phism of categories ΨS : Or

R(Y ) →Or
S(X), where Or

S(X) is the full subcategory of
OS(X) whose objects are radical in X, and similarly Or

R(Y ). The functor ΨS we use
is in fact defined on OS(X), but will only be shown to be an isomorphism of categories
when restricted to Or

S(X).

Definition of ΨS: For an object P of OR(Y ) corresponding to a subgroup P̌ ≤ Ř,
define ΨS(P ) to be the p-compact toral subgroup P ′ of S given by taking the inverse
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image of P̌ in Š under π̌, and applying the classifying space functor followed by p-
completion to it. Notice that the square

BP ′ ιP ′

→ BX

BP
↓

ιP→ BY

π
↓

is a homotopy pullback. Unless ambiguity may arise, we will denote ΨS(P ), ΨS(Q) by
P ′, Q′ etc., for short.

We next define ΨS on morphisms. A morphism (P, ιP )
[f ]
→ (Q, ιQ) in OR(Y ) is the

homotopy class of a map f : BP → BQ, such that ιQ ◦ f ≃ ιP . Thus given such a
morphism, one has an induced map, well defined up to homotopy

ΨS([f ]) : ΨS(P ) = BP ′ → BQ′ = ΨS(Q)

such that [ιQ′] ◦ ΨS([f ]) = [ιP ′ ]. This completes the definition of ΨS as a functor on
OR(Y ).

ΨS is bijective on morphism sets: Let P,Q ∈ OR(Y ) be any two objects, and
let P ′, Q′ ≤ X denote ΨS(P ) and ΨS(Q) respectively, as before. Then one has the
following sequence of homotopy equivalences

(5) (X/Q′)hP ′

≃ (Y/Q)hP ′

≃ ((Y/Q)hK)hP ≃ (Y/Q)hP .

The first equivalence holds since X/Q′ ≃ Y/Q. The second follows from [DW1, Lemma
10.5]. For the last equivalence, notice that K acts trivially on Y/Q, implying that
(Y/Q)hK = Map(BK, Y/Q). Furthermore, Y/Q is p-complete and Fp-finite, and so the
evaluation map

Map(BK, Y/Q)
≃

ev
→ Y/Q

is an equivalence, by the Sullivan conjecture for p-compact groups [DW2, Theorem
9.3]. Taking components now implies that ΨS is a bijection on morphism sets:

MorO(X)(P
′, Q′)

def
= π0((X/Q

′)hP ′

) ∼= π0((Y/Q)hP )
def
= MorO(Y )(P,Q).

ΨS is injective on objects: Since objects in OR(Y ) are in 1–1 correspondence via ΨS

with objects of OS(X) which contain K, it follows that ΨS, and hence its restriction
Or

R(Y ), is injective on objects.

Restriction to Or
R(Y ): Set P = Q in Equation (5) above. Taking components, one

obtains a group isomorphism WX(P ′) ≃ WY (P ). Hence, P ′ ≤ιP ′
X is radical if and

only if P ≤ιP Y is radical. This shows that ΨS restricted to Or
R(Y ) takes values in

Or
S(X).

ΨS is surjective on objects: To show that ΨS is surjective on objects, it suffices to
show that any subgroup P̌ ′ ≤ Š such that (P ′, ιP ′) is radical in X must contain Ǩ, and
thus is in the image of ΨS. This part of the proof is the only place where radicality is
used.

Let P ′ ≤ S be such a subgroup. Let Q̌
def
= 〈P̌ ′, Ǩ〉 ≤ Š, and let ǨP ′

def
= Ǩ ∩ P̌ ′. Then

Q̌ and ǨP ′ are discrete approximations for the subgroups (Q, ιQ) and (KP ′, ιKP ′
) of X,

and if we let P ≤ Y denote the subgroup whose discrete approximation is given by
P̌ ′/ǨP ′, then by definition P ′ = ΨS(P ).
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We proceed by showing that the inclusion P ′ ≤j Q is in fact an isomorphism. Since
this inclusion is induced by the corresponding inclusion of discrete approximations, the
claim follows, proving that ΨS is surjective on objects.

Using the identification of Weyl spaces with the appropriate homotopy orbit spaces

(see Remark 2.4), and Lemma 4.5, it suffices to show that (X/Q)hQ j#

→ (X/Q)hP ′

is
an equivalence, and that the map δ : WX(P ′) →WX(Q), induced by the composite

WX(P ′) ≃ (X/P ′)hP ′ j#
→ (X/Q)hP ′ (j#)−1

→ (X/Q)hQ ≃ WX(Q),

is a group homomorphism.

By [DW1, Lemma 10.5],

(X/Q)hQ ≃ ((X/Q)hK)hP and (X/Q)hP ′

≃ ((X/Q)hKP ′ )hP ,

and so to prove that j# is an equivalence, it is enough to prove that the restriction

r : BKP ′ → BK induces a homotopy equivalence r# : (X/Q)hK → (X/Q)hKP ′ . In
fact we will show that both spaces are equivalent to X/Q.

By construction one has the following homotopy commutative diagram where the
columns are fibrations.

(6)

BKP ′ → BK ===BK

BP ′

↓

→ BQ
↓

→ BX
↓

BP
↓

====BP
↓

→ BY
↓

.

In particular, it follows that X/Q ≃ Y/P , and that (X/Q)hK ≃ (Y/P )hK. Further-
more, one has the following commutative diagram, where the rows are fibrations.

(Y/P )hK →Map(BK,BP ){c} →Map(BK,BY )c

Y/P

↓
→ BP

ev
↓

→ BY

ev
↓

.

The space Map(BK,BP ){c} is in fact connected. This follows at once from the Sullivan
conjecture for p-compact groups [DW2, Theorem 9.3] and the fact that Y/P is Fp-finite.
The Sullivan conjecture also implies that the two right vertical arrows in this diagram
are homotopy equivalences. Hence, so is the induced map on homotopy fibres. This
shows that (X/Q)hK ≃ X/Q. The same argument applies to show that (X/Q)hKP ′ ≃
X/Q.

Finally we must show that the map δ : WX(P ′) →WX(Q) defined above is a group
homomorphism. Let x, y ∈ WX(P ′) be any two elements. Let x̂, ŷ denote a choice of

self maps of BP ′, whose homotopy classes are x and y respectively. Let δ̂(x), δ̂(y) and

δ̂(xy) denote a choice of self maps of BQ whose homotopy classes are δ(x), δ(y) and

δ(xy) respectively. We must show that δ̂(xy) ≃ δ̂(x) ◦ δ̂(y). By construction we have
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a homotopy commutative diagram

BP ′ by
→ BP ′ bx

→ BP ′

BQ

j
↓

dδ(y)
→ BQ

j
↓

dδ(x)
→ BQ

j
↓
,

which remains homotopy commutative if the bottom composite is replaced by δ̂(xy).
Since P ′ is radical in X, it is centric there by Lemma 4.1. Hence by Lemma A.4, j is

an epimorphism in the categorical sense, i.e., δ̂(x) ◦ δ̂(y) ≃ δ̂(xy). This completes the
proof. �

Proposition 5.4 allows to compare subgroup ampleness of radical subgroups of a p-
compact group Y with that of radical subgroups of any extension of Y be a p-compact
toral group.

Proposition 5.5. Let X be an extension of a p-compact group Y by a p-compact toral
group K. Then, the collection of all radical subgroups of X is subgroup-ample if and
only if the collection of all radical subgroups of Y is subgroup-ample.

Proof. Let S ≤ X and R ≤ Y be Sylow subgroups, such that K ⊳ S and S/K ∼= R,

and let BS
π
→ BR denote the projection. It suffices to prove the claim for the

collections of all subgroups of S and R which are radical in X and Y respectively.

By Lemma 4.1 and Proposition 1.5, there exists a subgroup approximation (Defini-
tion 1.2)

φ : Or
R(Y ) → Top.

Let

φ : Or
R(Y ) → Top

be the functor which takes a subgroup P ≤ R to the pullback space in the diagram

φ(P ) → φ(P )

BX

η
↓

π
→ BY

η
↓

= 1BY (P )

.

Here 1BY is the constant functors on Or
R(Y ) with value BY , and η is the natural

transformation associated to φ. Notice that since π is a fibration, φ is well defined, and
comes equipped with an obvious natural transformation η : φ → 1BX . Furthermore,
since φ is defined using the pullback construction, the conditions of Puppe’s theorem
[Dr, pp.179] are automatically satisfied, and the commutative square above gives rise
to a commutative diagram of fibrations

BK → hocolim
Or

R(Y )
φ → hocolim

Or
R(Y )

φ

BK

=
↓

→ BX

|η|
↓

→ BY.

|η|
↓

Since Y and X are p-compact groups, their fundamental groups are finite p-groups.
Hence |η| (resp. |η|) is a mod-p equivalence if and only if its homotopy fibre is mod-p
acyclic. Since the fibres of η and η are homotopy equivalent, it follows that |η| is a
mod-p equivalence if and only if |η| is a mod-p equivalence.
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Finally, by Lemma 5.4 the categories Or
S(X) and Or

R(Y ) are isomorphic, and the
composite

Or
S(X)

Ψ−1
S→Or

R(Y )
φ
→ Top

is obviously a subgroup approximation for X. The proposition follows at once. �

We end this section by showing the for every p-compact group X the category Or(X)
is equivalent to a finite category.

Proposition 5.6. For any p-compact group X, the orbit category Or(X) has a finite
skeletal subcategory.

Proof. Since all radical subgroups in X are centric in X by Lemma 4.1, each morphism
set MorOr(X)(P,Q) is given by the set of components of the respective homotopy orbit
space (X/Q)hP , which is homotopically discrete by Lemma 3.1, and finite by Corollary
A.21. Hence, it suffices to show that Or(X) has a finite number of isomorphism classes
of objects.

If X is a p-compact toral group and Q ≤ X is a proper subgroup, then the Weyl
group WX(Q) is always a nontrivial finite p-group by Corollary 3.2. Hence, the only
radical subgroup of X is X itself. This proves the claim in this case.

Let X be an arbitrary p-compact group, which is not p-compact toral. Let Y be
the centerfree quotient of X, which exists by Lemma A.16. Since Or(X) ≃ Or(Y )
by Proposition 5.4, we are reduced to showing the statement for centerfree p-compact
groups.

We proceed by downward induction on the order of X (see Definition A.7). Thus
assume the claim for all p-compact groups of order strictly less than that of X. By
[DW2, Proposition 8.3], there exist only finitely many conjugacy classes of elementary
abelian subgroups of X. If P ≤ X is a radical subgroup, then P ≤ CX(E(P )), where
E(P ) is the maximal central elementary abelian subgroup of P , and P is radical there
by Lemma 4.3. Since X is centerfree |CX(E(P ))| < |X|, and by induction hypothesis
CX(E(P )) has only finitely many conjugacy classes of radical p-compact toral subgroups.
Hence the conjugacy class of P can only be one of a finite list of conjugacy classes of
p-compact toral subgroups of X, each of which is radical in CX(E) for some elementary
abelian p-subgroup E ≤ X. This completes the proof. �

6. Subgroup ampleness of centric and radical collections

Let C be a family of centric subgroups of a p-compact group X, which contains at
least one representative from the conjugacy class of each radical subgroup of X. The
objective of this section is to show that the collection C is subgroup-ample if and only
if the collection of all radical subgroups of X is subgroup ample.

It is convenient to restrict attention to collections which are contained in a fixed
Sylow subgroup. Thus, let X be a p-compact group with a Sylow subgroup S ≤ιS X,
and let C be a collection of subgroups of S all of which are centric in X. We assume also
that C contains all subgroups of S, which are radical in X. From this point onwards,
our discussion becomes quite categorical in nature. The required material is collected
in the Appendix for the convenience of the reader.

Let

τC : Or
S(X) →OC(X)
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denote the inclusion functor. For each object P ∈ C, we denote by P↓τC the under-
category for of P with respect to τC . Objects in the undercategory are pairs (Q, [u]),

where Q ≤ιQ X is radical, and P
[u]
→ Q is a morphism in OC(X). A morphism

[g] : (Q, [u]) → (Q′, [u′])

is determined by a morphism Q
[g]
→ Q′ in Or

S(X), such that [g] ◦ [u] = [u′]. The
functor τC is said to be right cofinal if |P↓τC | is contractible for each P ∈ C. The claim
that this is indeed the case (Proposition 6.2) is the key ingredient in the proof of the
main statement of the section, which is a slightly more general form of the equivalence
of statements (a) and (b) in Theorem B.

Proposition 6.1. Let X be a p-compact group with a Sylow subgroup S ≤ιS X, and
let C be a collection of subgroups of S, all of which are centric in X, and such that C
contains all subgroups of S, which are radical in X. Then the collection of all radical
subgroups in X is subgroup ample if and only if C is subgroup ample.

Proof. By Proposition 6.2 the inclusion functor τC : Or
S(X) →OC(X) is right cofinal.

If
φ : OC(X) → Top

is a subgroup approximation, then its restriction φ ◦ τC to Or
S(X) is a subgroup ap-

proximation, and one has a commutative square

hocolim
Or

S(X)
φ ◦ τC → hocolim

OC(X)
φ

BX
↓

=============BX,
↓

which implies the claim by Proposition 1.5 and Remark 1.6. �

It remains to prove:

Proposition 6.2. For any p-compact group X, the inclusion functor

Or
S(X)

τ
→Oc

S(X)

is right cofinal.

Notice that this statement suffices for the purpose of proving Proposition 6.1, since if
C is a collection of subgroups of S which are centric in X, and C contains all subgroups
of S which are radical in X, then the inclusion functor τC is certainly right cofinal if
the inclusion into the orbit category Oc

S(X) is right cofinal. The proof of Proposition
6.2 will occupy the rest of the section.

The following technical lemma is our main tool in an inductive proof of Proposition
6.2.

Lemma 6.3. Let X be a p-compact group with a Sylow subgroup S ≤ιS X. Let P ≤ S
be a subgroup which is centric in X, and let

P = P0 ≤ P1 ≤ P2 ≤ · · · ≤ Pj ≤ Pj+1 ≤ · · ·Q = colim
j

Pj ≤ S

is a sequence of subgroups, such that for each j ≥ 0, Pj is a normal subgroup of finite
index in Pj+1. Then there exists a positive integer j0 such that for all j ≥ j0 the functor

Q↓τ → Pj↓τ,

induced by the inclusion Pj ≤ Q, is an equivalence of categories. Here, as before,

τ : Or
S(X) →Oc

S(X) denotes the inclusion.
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Proof. Let R ≤ S be a subgroup, which is radical in X. Then one has a sequence of
maps between the homotopy fixed point spaces

(7) (X/R)hQ → . . . → (X/R)hPj+1 → (X/R)hPj → . . . .

Since R is radical, it is also centric by Lemma 4.1, and so all homotopy fixed point sets
in the sequence are either empty or homotopically discrete by Lemma 3.1(ii). Since
Pj ⊳ Pj+1 for all j, one has (X/R)hPj+1 = ((X/R)hPj)h(Pj+1/Pj) by [DW1, Propositions
6.8, 6.9 and Lemma 10.5]. Furthermore, since (X/R)hPj is homotopically discrete, and
since the projection from any G-space to the G-set of its connected components is
G-equivariant,

((X/R)hPj)h(Pj+1/Pj) ≃ (π0((X/R)hPj))h(Pj+1/Pj) = (π0((X/R)hPj))Pj+1/Pj ,

where the equality follows from the fact that for discrete G-sets homotopy fixed points
and fixed points coincide by definition. This shows that all maps in the sequence (7)
above induce monomorphisms on sets of path components.

Since π0((X/R)hP ) is finite by Corollary A.21, the induced sequence on sets of path
components has to stabilize above some sufficiently large j(R), depending only on
the isomorphism class of (R, ιR) in Or

S(X). By Proposition 5.6, there are only finitely
many isomorphism classes of objects in this category. Hence one can define j′0 to be the
maximum of all j(R), where R runs over a set of representatives of isomorphism classes
of objects in Or

S(X). Thus, for all j ≥ j′0 and all R ∈ Or
S(X), one has equivalences

(X/R)hPj0 ≃ (X/R)hPj ≃ (X/R)hQ.

By definition of the undercategory, for all j ≥ 0

Obj((Pj↓τ) =
⋃

R∈Or
S(X)

MorOc
S
(X)(Pj, R) =

⋃

R∈Or
S(X)

π0((X/R)hPj).

Thus the same argument as above shows that the sequence of functors

· · · → Pj+1↓τ → Pj↓τ → · · ·

stabilizes on objects for all j > j′0.

It remains to show that the sequence stabilizes on morphism sets. The morphism
set in each of the categories Pj↓τ and in Q↓τ , between objects (R, [u]) and (R′, [u′]), is
a subset of MorOr

S(X)(R,R
′), which is finite for all R,R′ ∈ Or

S(X) by Proposition 5.6,
and its cardinality depends only on the isomorphism classes of R and R′ in Or

S(X).
By Proposition 5.6 again, there are only finitely many isomorphism classes of objects
in Or

S(X), and so the sequence of functors above must stabilize for all j > j′′0 for
some sufficiently large j′′0 . Let j0 = max{j′0, j

′′
0}. Then for all j > j0 the functor

Q↓τ → Pj↓τ is an equivalence of categories, as claimed. �

Our next aim is to identify the nerve of the undercategories P↓τ . To do this, it is
more convenient to use the inclusion functor τ : Or(X) →Oc(X), rather than the
respective categories where all objects are subgroups of a fixed Sylow subgroup.

Let X be a p-compact group, and let P ≤α X be a centric p-compact toral subgroup.
Let N = NX(P, α) be the normalizer space and ηα : BN → BX be the extension of

α constructed in Lemma 2.5. Let W = WX(P, α)
def
= π0(WX(P, α)) denote the Weyl
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group. Then there is a diagram

BP
inc

→ BN → BW

@
@

@α R 	�
�

�
ηα

BX

,

where the row is a fibration, up to homotopy, sinceWX(P, α) is homotopically discrete.
For every p-subgroup π ≤ W define a p-compact toral subgroup (Pπ, απ) of X, where
Pπ is the p-compact toral group whose classifying space is given as the pull-back space
of the system

BN → BW ←
inc

Bπ,

and where απ is the composition of ηα with the obvious map BPπ → BN . By Lemma
2.7(ii), (Pπ, απ) is indeed a subgroup of X, and it is centric in X by Lemma 3.3 since it

contains P as a subgroup. Notice that the map BP
γπ
→ BPπ is a morphism in Oc(X).

If π ≤ π′ ≤ W are p-subgroups, then one has an induced map δπ,π′ : BPπ → BPπ′

such that δπ,π′ ◦ απ ≃ απ′. In other words δπ,π′ represents a morphism in Oc(X). Let
Sp(W ) denote the poset of all nontrivial p-subgroups of W (regarded as a category).
Then, by naturality of the construction above, for every p-compact toral subgroup
(P, α) which is centric in X one gets a functor δ = δ(P,α) : Sp(W ) →Oc(X), where
δ(π) = (Pπ, απ), and if we let ιπ,π′ denote the inclusion π ≤ π′, then δ(ιπ,π′) = [δπ,π′].

Next, consider the functor τ op↓− : Oc(X)op → Cat, where Cat denotes the category
of small categories, given by taking an object (Q, β) to the category τ op↓(Q, β). Let

∆ = ∆(P,α) : Sp(W )op → Cat,

denote the composite functor τ op↓δop. Thus, for each π ≤W ,

∆(π)
def
= τ op↓(Pπ, απ),

and if π ≤ π′ then

∆(ιop
π,π′)

def
= δ(ιπ,π′)∗ : τ op↓(Pπ′, απ′) → τ op↓(Pπ, απ).

We are now ready to identify the nerve of the undercategories (P, α)↓τ for arbitrary
centric p-compact toral subgroups of X. Clearly, it suffices to consider the case where
(P, α) is non-radical in X, since if it is radical, then the category has an initial object
and hence its nerve is contractible.

Lemma 6.4. If P ≤α X is a centric non-radical p-compact toral subgroup, then

|(P, α)↓τ | ≃ hocolim
Sp(W )op

|∆| .

Proof. We will show in fact that the right hand side is homotopy equivalent to the
nerve of the opposite category ((P, α)↓τ)op = τ op↓(P, α). This suffices since any small
category and its opposite have canonically isomorphic nerves. Objects in τ op↓(P, α)
are triples (Q, β, [h]op) where (Q, β) ∈ Or(X)op, and [h]op : (Q, β) → (P, α) is a
morphism in Oc(X)op, i.e., [h] is a homotopy class of a map h : BP → BQ, such that

α ≃ β ◦ h. A morphism (Q, β, [h]op)
[f ]op

→ (Q′, β ′, [h′]op) is determined by a morphism

(Q′, β ′)
[f ]
→ (Q, β) in Or(X) such that [f ] ◦ [h′] = [h].

On the other hand, consider the Grothendieck category Gr(Sp(W )op,∆), whose geo-
metric realization gives the homotopy colimit of ∆ over Sp(W )op (see Appendix A). Its
objects are quadruples (π, (Q, β, [h]op)) where π ≤W is a p-subgroup, and (Q, β, [h]op)
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is an object of ∆(π) = τ op↓(Pπ, απ). More specifically, (Q, β) is an object of Or(X)op,
and [h]op : (Q, β) → (Pπ, απ) is a morphism in Oc(X)op. A morphism

(π, (Q, β, [h]op)) → (π′, (Q′, β ′, [h′]op))

is a pair (ιop
π′,π, [f ]op), where ιπ′,π is the inclusion π′ ≤ π (if π′ � π then there is no

morphism between these objects), and

[f ]op : ∆(ιop
π′,π)(Q, β, [h]op) → (Q′, β ′, [h]op)

is a morphism in ∆(π′) = τ op↓(Pπ′ , απ′), i.e., [f ] : (Q′, β ′) → (Q, β) is a morphism in
Or(X), such that [f ] ◦ [h′] = [h] ◦ δ(ιπ′,π).

To prove the Lemma, we will produce functors

Gr(Sp(W )op,∆)
L
→←

R
τ op↓(P, α),

such that L ◦R = Id, and a natural transformation from R ◦L to the identity functor.

Definition of L. Define L : Gr(Sp(W )op,∆) → (P, α)↓τ by

L(π, (Q, β, [h]op)) = (Q, β, [hπ]op),

where [hπ] = [h] ◦ [γπ], and BP
γπ
→ BPπ is the obvious map. A morphism

(ιop
π′,π, [f ]op) : (π, (Q, β, [h]op)) → (π′, (Q′, β ′, [h′]op))

is sent by L to [f ]op : (Q, β, [hπ]
op) → (Q′, β ′, [h′π′]op). An easy diagram chasing, using

the definitions, shows that L is well defined, i.e., that f ◦ h′π′ ≃ hπ.

Definition of R. Define, R : τ op↓(P, α) → Gr(Sp(W )op,∆) as follows. Observe first
that if (Q, β, [h]op) be an object in τ op↓(P, α) then there is a homotopy commutative
diagram of fibrations

WQ(P, h) →Map(BP,BP ){h} →Map(BP,BQ)h

WX(P, α)

↓

→Map(BP,BP ){α}

↓

→Map(BP,BX)α,

β#

↓

where BP
h
→ BQ is a choice of a representative for [h]. Taking components on Weyl

spaces we get a subgroup

WQ
def
= Im(WQ(P, h)-

β#
→WX(P, α)) ≤W.

Furthermore, WQ is a p-subgroup by Proposition 2.7(i), and by construction there is

an equivalence of p-compact toral groups PWQ

≃
→NQ(P, h). Define

R(Q, β, [h]op) = (WQ, (Q, β, [ρh]
op)),

where ρh denotes the composite BPWQ

≃
→ BNQ(P, h)

ηh→ BQ, and ηh is the exten-
sion of h constructed in Lemma 2.5. This defines R on objects. Notice that R cannot
be defined at all if (P, α) is radical in X, since in that case (P, α, [IdP ]op) is an object in
the over category, and the corresponding WP , as defined above, is the trivial subgroup,
which is not an object of Sp(W ).

Next, we define R on morphisms. Let (Q, β, [h]op)
[f ]op

→ (Q′, β ′, [h′]op) be a morphism

in τ op↓(P, α). Thus [f ] is a homotopy class of a map BQ′ f
→ BQ such that [β ′] =

[β] ◦ [f ] and [f ] ◦ [h′] = [h]. Fix a choice of a representing map h for each object
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(Q, β, [h]op) of τ op↓(P, α). Then any choice of a representative f for [f ] gives rise to a
homotopy commutative triangle

Map(BP,BQ′)h′

f#
→Map(BP,BQ)h

@
@

@
β′

#

R 	�
�

�β#

Map(BP,BX)α,

which in turn induces a commutative triangle of groups and monomorphisms

WQ′(P, h′)
f#
→WQ(P, h)

@
@

@
β′

#

R 	�
�

�β#

W

Hence

WQ′

def
= β ′

#(WQ′(P, h′)) ≤ β#(WQ(P, h))
def
= WQ,

and we let WQ′

ωQ′,Q
→WQ denote the inclusion. Furthermore, it is easy to check that f

induces a homomorphism of p-compact groups

f# : NQ′(P, h′) →NQ(P, h),

which is compatible with the projections to the respective Weyl groups, and so f#

coincides up to homotopy with δ(ωQ′,Q). It is also immediate that f ◦ ηh′ ≃ ηh ◦ f#.
Thus for a morphism [f ]op in τ op↓(P, α) as above, define

R([f ]op)
def
= (ωop

Q′,Q, [f ]op) : (WQ, (Q, β, [ηh]
op)) → (WQ′, (Q′, β ′, [ηh′ ]op)).

The discussion above implies that R is well defined.

The composites L ◦R and R ◦ L. We first show that L ◦R = Id. By definition for
any object (Q, β, [h]op) in τ op↓(P, α)

L ◦R(Q, β, [h]op) = L(WQ, (Q, β, [ρh]
op)) = (Q, β, [ηh ◦ γQ]op),

where BP
γQ
→ BNQ(P, h) is the obvious map. Hence [ηh ◦ γQ] = [h] by Lemma 2.5,

and L ◦ R is the identity functor on objects. If (Q, β, [h]op)
[f ]op

→ (Q′, β ′, [h′]op) is a
morphism in τ op↓(P, α), then L ◦ R([f ]op) = [f ]op, and so L ◦ R is in fact the identity
functor on τ op↓(P, α).

Next, we construct a natural transformation ζ from R ◦L to the identity functor on
the Grothendieck category. By definition

(R ◦ L)(π, (Q, β, [h]op)) = R(Q, β, [h ◦ γπ]
op) = (WQ, (Q, β, [ρhγπ ]op)),

where ρhγπ denotes the composite

BPWQ

≃
→ BNQ(P, h ◦ γπ)

ηhγπ→ BQ.

Notice that (Pπ, h) is a subgroup of Q, and Pπ contains P as a normal subgroup (with
quotient π). Thus h induces a map

BPπ ≃ BNPπ(P, γπ)
h#
→ BNQ(P, h ◦ γπ) ≃ BPWQ

,
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which implies that π is a subgroup of WQ
def
= WQ(P, h ◦ γπ), and if we let ιπ,WQ

denote
the inclusion π ≤ WQ, then δ(ιπ,WQ

) ≃ h#. Let ζ be the transformation taking the
object (π, (Q, β, [h]op)) to the morphism

(ιop
π,WQ

, [1BQ]op) : (WQ, (Q, β, [ηhγπ ]op)) → (π, (Q, β, [h]op)).

Since the composite

BPπ ≃ BNPπ(P, γπ)
h#
→ BNQ(P, h ◦ γπ)

ηhγπ→ BQ

is homotopic to h, ζ is well defined for each object (π, (Q, β, [h]op)), and it remains to
show naturality.

Let

(ιop
π′,π, [f ]op) : (π, (Q, β, [h]op)) → (π′, (Q′, β ′, [h′]op))

be a morphism in the Grothendieck category. By definition

R ◦ L(ιop
π′,π, [f ]op) = (ιop

Q′,Q, [f ]op).

Thus naturality of ζ amounts to showing that the diagram

(WQ, (Q, β, [ηhγπ ]op))
(ιop

π,Q,[1BQ]op)
→ (π, (Q, β, [h]op))

(WQ′, (Q′, β ′, [ηh′γπ′
]op))

(ιop

Q′,Q
,[f ]op)
↓

(ιop

π′,Q′ ,[1BQ′ ]op)
→ (π′, (Q′, β ′, [h′]op))

(ιop

π′,π
,[f ]op)

↓

commutes. By definition of composition in the Grothendieck category

(ιop
π′,π, [f ]op) ◦ (ιop

π,Q, [1BQ]op)
def
= (ιop

π′,π ◦ ι
op
π,Q, [f ] ◦∆(ιop

π′,π)([1BQ]op)) = (ιop
π′,Q, [f ]op),

while

(ιop
π′,Q′, [1BQ′]op) ◦ (ιop

Q′,Q, [f ]op)
def
= (ιop

π′,Q′ ◦ ι
op
Q′,Q, [1BQ′]op ◦∆(ιop

π′,Q′)([f ]op)) = (ιop
π′,Q, [f ]op).

This shows that the diagram commutes, and hence completes the proof. �

We are now ready to conclude the section with a proof of Proposition 6.2, and thus
complete the proof of Proposition 6.1.

Proof of Proposition 6.2. We have to show that, for all centric p-compact toral sub-
groups P ≤α X the undercategories (P, α)↓τ are contractible. We do this by a de-
scending induction on the order of objects in Oc(X).

For every p-compact toral radical subgroup (P, α) of X, the undercategory (P, α)↓τ
has an initial object, and is therefore contractible. Thus, the claim holds for all radical
subgroups of X, and in particular for any Sylow subgroup (which is radical by Lemma
4.2).

Let (P, α) be an object in C which is not radical. Then by [Q], the nerve of
the poset Sp(WX(P )) is contractible, since WX(P ) contains a nontrivial normal p-
subgroup. Assume first that the claim holds for any centric p-compact toral sub-
group Q ≤β X of the same dimension as that of P , and such that |π0(Q)| > |π0(P )|.
In particular we may assume that it holds for the p-compact toral group Pπ corre-
sponding to a p-subgroup π ≤ WX(P ). Thus for each such subgroup, |(Pπ, απ)↓τ | ≃
|((Pπ, απ)↓τ)op| = |τ op↓(Pπ, απ)| = |∆(π)| is contractible. Hence, by Lemma 6.4,
|(P, α)↓τ | ≃ |Sp(WX(P ))|, which is contractible.



HOMOLOGY DECOMPOSITIONS FOR p-COMPACT GROUPS 29

Next, assume that the claim holds for all subgroups whose dimension is strictly larger
than that of P , and that it does not hold for (P, α). By Lemma 6.4

|(P, α)↓τ | ≃ hocolim
Sp(WX(P ))op

|∆|.

By assumption, the left hand side is not contractible, and, since |Sp(WX(P ))| is con-
tractible, there must exist a centric p-compact toral subgroup

(P1, α1)
def
= (Pπ, απ)

for some non-trivial p-subgroup π ≤ WX(P ), such that |(P1, α1)↓τ | is not contractible.
Moreover, P ≤γπ P1 is a proper subgroup, since π is nontrivial. Repeating this argu-
ment produces a chain of infinite length

(P, α) � (P1, α1) � · · · � (Pn, αn) � · · ·

of centric p-compact toral subgroups. Furthermore, since all Pn have the same coho-
mological dimension, and since all homomorphisms Pn → Pn+1 are proper monomor-

phisms, the order of π0(Pn) must increase strictly with n. Let Q
def
= colimn Pn and let

(Q, β) be the resulting subgroup of X. Then, dim(Q) 	 dim(P ) and, by Lemma 6.3,
|(Q, β)↓τ | ≃ |(Pn, αn)↓τ | for all sufficiently large values of n . Therefore, the claim
can not hold for (Q, β), which contradicts the induction hypothesis and completes the
proof. �

7. Subgroup ampleness of centric subgroups and centralizer

ampleness of elementary abelian subgroups

This section contains the proof of Theorem B. The core of the proof is a comparison
result between the homotopy type of homotopy colimits over Oc(X) and F e(X)op.

Let X be a p-compact group, and fix a Sylow subgroup S ≤ιS X. We start by
constructing a functor E : Oc

S(X) →F e
S(X)op. Let P ≤ S be a subgroup which is

centric in X. Define E(P ) to be the maximal central elementary abelian subgroup of P
(see Lemma A.17). Then E(P ) is an elementary abelian subgroup ofX via the inclusion
to P followed by ιP . The following lemma shows how to define E on morphisms, and
will be useful throughout the section.

Lemma 7.1. Let X be a p-compact group with a Sylow subgroup S ≤ιS X. Let P,Q ≤
S be subgroups which are centric in X. Then for every morphism [h] : P → Q in
Oc

S(X), there is a unique homomorphism E[h] : E(Q) → E(P ) such that the diagram

BE(P )
inc
→ BP

BE(Q)

BE[h]
↑

inc
→ BQ

h
↓

commutes up to homotopy.

Proof. Fix a discrete approximation Š for S, and let P̌ , Q̌ ≤ Š be the corresponding
discrete approximations for P and Q respectively. Then the morphism [h] can be
represented by a homomorphism ȟ : P̌ → Q̌, unique up to conjugacy. Assume first
that P and Q are abelian p-compact toral groups, not necessarily centric in X. Then,
the maximal elementary abelian subgroups E(P̌ ) ≤ P̌ and E(Q̌) ≤ Q̌ coincide with
E(P ) and E(Q) respectively, and both are fully characteristic. Hence ȟ restricted to
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E(P̌ ) takes values in E(Q̌). Applying classifying spaces and p-completion, one gets a
homotopy commutative square

BE(P )
inc
→ BP

BE(Q)

h′

↓
inc
→ BQ

h
↓
,

where h′ = B(ȟ|E(P̌ ))
∧
p . Notice that in this case the homomorphism h′ is uniquely

determined by the homotopy class of h.

Let P,Q ≤ S be any subgroups which are centric in X, and let [h] : P → Q be a
morphism in Oc

S(X). Then one has the following homotopy commutative diagram

(8)

BZ(P )
def
= Map(BP,BP )id

ev
→ BP

Map(BP,BQ)h

≃ h#

↓
ev
→ BQ

h
↓

BZ(Q)

hZ

↑

def
=Map(BQ,BQ)id

h#
↑

ev
→ BQ

wwwww

where hZ
def
= (h#)−1 ◦ h# for some choice of a homotopy inverse for h#. The lower

right square commutes up to homotopy since h can be chosen to be a pointed map
within its unpointed homotopy class. The two other squares commute automatically.
Notice that the homotopy classes of h# and h# as unpointed maps depends only on the
unpointed homotopy class of h, and not on its pointed homotopy class. Since all the
spaces in the middle column of the diagram are classifying spaces of abelian p-compact
toral groups, pointed and unpointed homotopy classes of maps coincide. Hence the
homotopy class of hZ depends only on the unpointed homotopy class of h, and so
there exists a unique homomorphism Z(h) : Z(Q) →Z(P ) such that BZ(h) ≃ hZ .
Applying the construction of the previous paragraph to hZ completes the proof. �

Lemma 7.1, provides the definition of E on morphisms in Oc
S(X), and shows that

E is well defined as a functor. The next proposition provides a useful identification of
overcategories of E.

Proposition 7.2. Let X be a p-compact group with a Sylow subgroup S ≤ιS X. Let
E0 ≤ S be an elementary abelian subgroup and let S0 ≤ CX(E0) be a Sylow subgroup.
Then there is an equivalence of categories

ΘE0
: Oc

S0
(CX(E0)) → E ↓ E0.

Proof. Fix an elementary abelian subgroup E0 ≤ S and a Sylow subgroup S0 ≤ CX(E0).
Objects in the overcategory E ↓ E0 are pairs (P, [f ]), where P ≤ S is centric in X, and
[f ] : E0 → E(P ) is a morphism in F e

S(X). A morphism [h] : (P, [f ]) → (P ′, [f ′])
is determined by a morphism [h] : P → P ′ in Oc

S(X), such that E[h] ◦ [f ′] = [f ] in
F e

S(X).
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Construction of ΘE0
. By the defining property of a Sylow subgroup, there is a map

f0 : BS0 → BS, such that the following square commutes up to homotopy

BS0
f0
→ BS

BCX(E0)

ιS0↓

ev
→ BX.

ιS
↓

Thus for any subgroup P ≤ιP S0, the pair (P, κP ), where κP = ιS◦f0◦ιP is a p-compact
toral subgroup of X. Moreover, P ≤ S0 is centric in CX(E0) if and only if (P, κP ) is a
centric subgroup of X by Lemma 3.4.

Let P ≤ CX(E0) be a centric subgroup. Then, one has obvious maps

BE0 → BZ(CX(E0))
ι#P→ BCCX (E0)(P ) ≃ BZ(P ),

whose composite defines E0 as a central subgroup of P . Hence, by maximality of E(P ),
the above composite factors up to homotopy through a map jP : BE0 → BE(P ).
Define

ΘE0
(P ) = (P, [jP ]).

Notice that the pointed homotopy class of jP is uniquely defined (since all the maps
involved are monomorphisms, and all groups are abelian), and so ΘE0

is well defined
on objects.

Let [h] : P → P ′ be a morphism in Oc
S0

(CX(E0)). Then one has a diagram in which
the external square commutes up to homotopy as do all triangles except for possibly
the right hand side one.

Map(BP ′, BCX(E0))ιP ′
←

inc
BE(P ′)

kQ
Q

Q
Q

Q ��������
jP ′

*

BE0

+�
�

�
�

� HHHHHHHH
jP

j
Map(BP,BCX(E0))ιP

h#

↓

←
inc

BE(P )

E[h]

↓

.

The left triangle commutes by definition of morphisms in Oc
S0

(CX(E0)) and naturality,
the two middle triangles commute by the argument in the previous paragraph, and the
external rectangle by Lemma 7.1 and naturality. Since all maps are monomorphisms of
abelian p-compact groups, it follows that E[h]◦jP ′ ≃ jP . Hence [h] induces a morphism
[h] : (P, [jP ]) → (P ′, [jP ′ ]) in E ↓ E0, which is defined to be the image of [h] under
ΘE0

. We proceed by showing that ΘE0
is an equivalence of categories.

ΘE0
induces an isomorphism on morphism sets. The map

MorOc
S0

(CX (E0))(P, P
′) → MorE↓E0

(ΘE0
(P ),ΘE0

(P ′))

induced by ΘE0
is injective by definition. On the other hand, if [h] : (P, [jP ]) →

(P ′, [jP ′]) is a morphism in MorE↓E0
(ΘE0

(P ),ΘE0
(P ′)), then E[h] ◦ [jP ′ ] = [jP ], and

by choosing representatives and applying BCX(−) we get a homotopy commutative
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diagram

BP
h

→ BP ′

BCX(E(P ))

↓
E[h]#

→ BCX(E(P ′))

↓

@
@

@
j#

P

R 	�
�

�j#

P ′

BCX(E0)

where the triangle homotopy commutes. Thus to prove surjectivity it suffices to show
that the square at the top of the diagram commutes as well.

It is easy to check that the following diagram is strictly commutative:

BP
i
→Map(Map(BP,BP )id, BX)ev◦ιP = BCX(Z(P ))

BP

wwwww
j
→Map(Map(BP,BP ′)h, BX)ev◦ιP ′

≃ (h#)#
↑

=BCX(CP ′(P ))

BP ′

h
↓

k
→Map(Map(BP ′, BP ′)h, BX)ev◦ιP ′

(h#)#

↓

=BCX(Z(P ′))

,

where i(b)(f)
def
= ιP (f(b)), and j and k are defined similarly (compare with Diagram

8 in the proof of Lemma 7.1). The map ((h#)#)−1 ◦ (h#)# is, up to homotopy, the
restriction of E[h]#, and the maps i and k factor the inclusions BP → BCX(E(P )) and
BP ′ → BCX(E(P ′)). This completes the proof of surjectivity.

ΘE0
is injective on isomorphism classes of objects. Let P, P ′ ≤ S0 be two

subgroups which are centric in CX(E0), and assume

(P, [jP ]) = ΘE0
(P ) ∼= ΘE0

(P ′) = (P ′, [jP ′]).

Then, there is an isomorphism P
[h]
→ P ′ in Oc(X), such that E[h] ◦ [jP ′] = [jP ] in

F e
S(X). Picking representatives E(h), jP and jP ′ for the respective maps between clas-

sifying spaces, applying Map(−, BP ), and taking the appropriate components (using
Lemma 7.1), one obtains a homotopy commutative diagram

BP ≃ Map(BE(P ), BP )inc

@
@

@
j#
P

R

Map(BE(P ′), BP )inc◦E(h)

E(h)# ≃
↓

Map(BE0, BP )inc◦[f ]
ιP #
→Map(BE0, BX)ιE0

�
�

�
j#

P ′

�

BP ′ ≃ Map(BE(P ′), BP ′)inc

h# ≃
↓

.

This shows that P and P ′ are isomorphic as objects of Oc
S0

(CX(E0)), and hence that
Θ is injective on isomorphism classes of objects.

Θ is surjective on isomorphism classes. Let (P, [f ]) be an object of E↓E0. Then

E0
[f ]
→ E(P ) is a morphism in F e

S(X), and the composite

BP
i
→ BCX(E(P ))

f#

→ BCX(E0)
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factors through BS0, by the defining property of a Sylow subgroup. Let ιf : BP →
BCX(E0) denote the composite f# ◦ i. In particular, there exists a subgroup P ′ ≤ S0,
such that (P ′, ιP ′) and (P, ιf ) are isomorphic objects of O(CX(E0)) (the full orbit cat-

egory), and P ′ is centric in CX(E0). We claim that ΘE0
(P ′)

def
= (P ′, [jP ′]) is isomorphic

to (P, [f ]) in E↓E0. Showing that amount to the claim that ΘE0
is surjective on iso-

morphism classes of objects.

The map ιf factors through an isomorphism P → P ′ of objects in Oc
S(X), which

we also denote by ιf . To show that this morphism is in fact an isomorphism in E↓E0,
it suffices to show that E(ιf ) ◦ [jP ′ ] = [f ]. But, by Lemma 7.1 on has a diagram of
abelian p-compact groups, where the square and the external circle commute:

E(P )
inc
→Z(P )

�
�

�[f ] �

E0

@
@

@[jP ′ ] R

E(P ′)

∼= E(ιf )

↑

inc
→Z(P ′)

∼= [f ]#

↑

.

Since all maps are monomorphisms, the triangle commutes as well. This shows that
ΘE0

is surjective, and hence bijective on isomorphism classes of objects. Thus ΘE0
is

an equivalence of categories as claimed. �

The next proposition is a key ingredient in our analysis, as it sets the ground for an
inductive proof of the equivalence of statements (i) and (ii) in Theorem B.

Proposition 7.3. Let X be a p-compact group with a Sylow subgroup S ≤ιS X. Assume
that for every elementary abelian p-subgroup E0 ≤ S, and any Sylow subgroup S0 of
CX(E0), the collection of all subgroups of S0 which are centric in CX(E0) is subgroup-
ample for CX(E0). Let

Φ: Oc
S(X) → Top

be a subgroup approximation functor, and let E : Oc
S(X) →F e

S(X)op be the functor
constructed above. Let ΦE0

denote the functor on E↓E0, which takes an object (P, [f ])
to the mapping space Map(BE0,Φ(P ))f . Define a functor Ψ: F e

S(X)op → Top by

Ψ(E0)
def
= hocolim

E↓E0

ΦE0
.

Then Ψ is a centralizer approximation functor for X. Furthermore, the functor Ψ is
naturally homotopy equivalent to the left homotopy Kan extension LE(Φ).

Proof. We first observe that Ψ is well defined. The definition on objects is clear, and

we only need to check the action of Ψ on morphisms. Let E0
[h]
→ E1 be a morphism in

F e
S(X)op. Then [h] induces an obvious functor E↓E0

[h]#

→ E↓E1, which in turn induces
a map hocolimE↓E0

ΦE1
◦[h]# → hocolimE↓E1

ΦE1
. Furthermore, [h] induces a natural

transformation γh : ΦE0
→ ΦE1

◦ [h]#, taking an object (P, [f ]) to the map

Map(BE0,Φ(P ))f
h#

→ Map(BE1,Φ(P ))f◦h.

The composite

Ψ(E0) = hocolim
E↓E0

ΦE0

γh∗

→ hocolim
E↓E0

ΦE0
◦ [h]# → hocolim

E↓E1

ΦE1
= Ψ(E1)

defines the action of Ψ on morphisms.
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Since Φ is a subgroup approximation for X, it comes equipped with a natural trans-
formation Φ → 1BX , which induces natural transformations ΦE0

→ 1BCX(E0) and
ΦE0
→ 1BX (the second by composing the first with the evaluation). Thus, to finish the

proof that Ψ is a centralizer approximation, it remains to show that Ψ is a realization
of the homotopy functor on F e

S(X)op taking an elementary abelian subgroup to the
classifying space of its centralizer in X.

Let E0 ≤ S be an elementary abelian subgroup, and let S0 ≤ CX(E0) be a Sylow sub-

group. By Proposition 7.2, the functor ΘE0
: Oc

S0
(CX(E0)) ≃

→ E↓E0 is an equivalence

of categories, and hence induces a homotopy equivalence

hocolim
Oc

S0
(CX (E0))

ΦE0
◦ΘE0

≃
→ hocolim

E↓E0

ΦE0
= Ψ(E0).

By the definitions,

ΦE0
◦ΘE0

(P ) = ΦE0
(P, [jP ]) = Map(BE0,Φ(P ))jP

≃ BP

for any object P in Oc
S0

(CX(E0)). The last equivalence follows since jP : BE0 → Φ(P )
is a central map. It follows easily from the definitions that the composite functor
ΦE0
◦ΘE0

sends any morphism in Oc
S0

(CX(EE0
)) to a map in the same homotopy class.

Hence ΦE0
◦ ΘE0

followed by the projection to the homotopy category is naturally
isomorphic to the homotopy functor on Oc

S0
(CX(E0)) sending a subgroup P ≤ S0 to its

classifying space. The natural transformation Φ → 1BX induces, as above, a natural
transformation ΦE0

◦ΘE0
→ 1BCX (E0), and so by Lemma 1.3, ΦE0

◦ΘE0
is a subgroup

approximation functor for CX(E0).

By assumption, the collection of all subgroups of S0 which are centric in CX(E0) is
subgroup-ample. Hence, by Proposition 1.5 any subgroup approximation for CX(E0)
with respect to this collection is a decomposition. This shows that Ψ(E0) ≃ BCX(E0),
and what remains to be shown is that this equivalence is natural with respect to
morphisms in F e

S(X)op.

Any morphism E0
α
→ E1 in F e

S(X)op induces a map CX(E0)
α#

→ CX(E1). Let

S1 ≤ CX(E1) be a Sylow subgroup, and let S0
α′

→ S1 be a map factoring the composite
α# ◦ ιS0

up to homotopy. If P ≤ S0 is any p-compact toral subgroup, then P is centric
in CX(E0) if and only if it is centric in X, or equivalently if and only if its image in S1

under α′ is centric in CX(E1), both by Lemma 3.4. Thus one has an induced functor

Oc
S0

(CX(E0))
α∗

→Oc
S1

(CX(E1)), and it is not hard to verify that the square

OS0
(CX(E0))

α∗

→OS1
(CX(E1))

E↓E0

ΘE0↓
E↓α

→ E↓E1

ΘE1↓

commutes, where the vertical maps are equivalences of categories, by Proposition 7.2.
Thus α induces a map

α∗ : hocolim
Oc

S0
(CX (E0))

ΦE0
◦ΘE0

→ hocolim
Oc

S1
(CX(E1))

ΦE1
◦ΘE1

,
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such that the diagram

BCX(E0)←
≃

hocolim
Oc

S0
(CX (E0))

ΦE0
◦ΘE0

≃
→ hocolim

E↓E0

ΦE0
= Ψ(E0)

BCX(E1)

α∗

↓
←

≃
hocolim

Oc
S1

(CX (E1))
ΦE1
◦ΘE1

α∗

↓
≃
→ hocolim

E↓E1

ΦE1

Ψ(α)
↓

= Ψ(E1)

commutes up to homotopy. This shows that Ψ followed by the projection to the
homotopy category is naturally isomorphic to the centralizer homotopy functor on
F e

S(X)op, and finishes the proof that Ψ is a centralizer approximation for X with
respect to the collection of all elementary abelian subgroups in S.

It remains to show that Ψ is naturally homotopy equivalent to the left homotopy
Kan extension LE(Φ) : F e

S(X)op → Top of Φ along E. By definition, for each object
E0 ≤ S of F e

S(X)op,

LE(Φ)(E0)
def
= hocolim

E↓E0

Φ̂.

Where Φ̂ is the composite of Φ with the obvious functor E↓E0 → Oc
S(X). For each

object (P, [f ]) of E↓E0, the evaluation map

ΦE0
(P, [f ]) = Map(BE0,Φ(P ))f → Φ(P ) = Φ̂(P, [f ])

is a homotopy equivalence, since E0 is central in P . Hence one has an induced natural
transformation Ψ → LE(Φ) which is a homotopy equivalence on every object. �

We are now ready to prove the equivalence of statements (i) and (ii) in Theorem
B. The following proposition claims the equivalence of two more general statements,
which implies the equivalence claimed in the theorem. The proposition makes use of
the concept of the order |X| of a p-compact group X, i.e., the pair (dX , oX), where dX

is the cohomological dimension of X, and oX = |π0(X)|. (See Definition A.7)

Proposition 7.4. Fix an ordered pair of nonnegative integers (d, o). Then the following
statements are equivalent.

(i) For any p-compact group X with a Sylow subgroup S, such that |X| ≤ (d, o),
the collection of all subgroups of S which are centric in X is subgroup ample.

(ii) For any p-compact group X with a Sylow subgroup S, such that |X| ≤ (d, o),
the collection of all elementary abelian subgroups E ≤ S is centralizer ample.

Proof. (i)⇒(ii): Fix a p-compact group X of order |X| ≤ (d, o) with a Sylow subgroup
S ≤ X. For any elementary abelian subgroup E ≤ S, |CX(E)| ≤ (d, o). Hence,
assumption (i) applied to CX(E) for any elementary abelian E ≤ S is that for any
Sylow subgroup S ′ ≤ CX(E), the collection of all subgroups Q ≤ S ′ which are centric
in CX(E) is subgroup ample. By Lemma 7.3, if Φ is a subgroup approximation functor
for X with respect to the collection of all P ≤ S which are centric in X, then the left
Kan extension LE(Φ) is a centralizer approximation functor for X with respect to all
elementary abelian subgroups E ≤ S. Moreover, by the universal property of the left
homotopy Kan extension,

hocolim
Oc

S(X)
Φ ≃ hocolim

Fe
S(X)op

LE(Φ).

Hence if Φ is a subgroup decomposition of X, then LE(Φ) is a centralizer decompo-
sition. In particular, assuming (i) for X, every subgroup approximation for X with
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respect to the collection of all subgroups P ≤ S, which are centric in X, is a subgroup
decomposition. Hence (ii) holds for X.

(ii)⇒(i): Notice first that for finite p-groups (i.e., p-compact groups of cohomological
dimension 0), (i) and (ii) hold independently of each other (see for instance [D]).

Assume by induction that (ii)⇒(i) for all p-compact group Y , such that |Y | < (d, o).
Let X be a p-compact group of order (d, o), and assume (ii) holds for X. We must
show that (i) hold for X as well.

Consider first the special case where X is assumed to be centerfree. With this
assumption, |CX(E)| < |X| for any nontrivial elementary abelian subgroup E ≤ S.
For a fixed elementary abelian subgroup E ≤ S, assumption (ii), applied to CX(E) is
that for any Sylow subgroup S ′ ≤ CX(E) the collection of all nontrivial elementary
abelian subgroups F ≤ S ′ is centralizer ample for CX(E). By induction hypothesis, the
collection of all subgroups Q ≤ S ′ which are centric in CX(E) is subgroup ample. Let
Φ: Oc

S(X) → Top be a subgroup approximation functor, which exists by Proposition
1.5, and let LE(Φ) denote the left Kan extension of Φ along E. By Proposition 7.3,
LE(Φ) is a centralizer approximation functor for X with respect to the collection of
all elementary abelian subgroups F ≤ S. Assumption (ii) applied to X is that this
collection is centralizer ample, and so there are homotopy equivalences:

hocolim
Oc

S(X)
Φ ≃ hocolim

Fe
S(X)op

LE(Φ) ≃ BX.

The first by the universal property of the left homotopy Kan extension [HV], and the
second by ampleness. This shows that the collection of all subgroups P ≤ S which are
centric in X is subgroup ample and completes the proof in this case.

Let X be an arbitrary p-compact group of order (d, o). By Proposition 6.1, the
collection of all subgroups P ≤ S which are centric in X is subgroup ample if and only
if the collection of all subgroups of S which are radical in X is subgroup ample. By
Proposition A.16, X is an extension of a centerfree p-compact group X ′ by a p-compact
toral group K. Let S ′ be a Sylow subgroup for X ′. By Proposition 5.5, it suffices to
show that the collection of all subgroups P ′ ≤ S ′ which are radical in X ′ is subgroup
ample, which is equivalent to the statement that the collection of all subgroups of S ′

which are centric in X ′ is subgroup ample, by Proposition 6.1. But |X ′| ≤ |X| and
X ′ is centerfree, in which case we have already proven the claim. This completes the
proof in the general case. �

Appendix A. p-compact groups

A p-compact group is a triple (X,BX, e) such that X is Fp-finite, BX is pointed
and p-complete, and e : X → ΩBX is a homotopy equivalence. The space BX is
called the classifying space of X.

Homomorphisms. A homomorphism f : X → Y of p-compact groups f : X → Y is
a pointed map Bf : BX → BY between their classifying spaces. The homotopy fibre
of Bf is denoted by Y/f(X).

Definition A.1. A homomorphism of p-compact groups f : X → Y is said to be

• a monomorphism if Y/f(X) is Fp-finite,
• an epimorphism if Y/f(X) is the classifying space of a p-compact group, and
• an isomorphism if Bf is an homotopy equivalence.
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A short exact sequence of p-compact groups is a sequence of homomorphisms X
f
→

Y
g
→ Z such that BX

Bf
→ BY

Bg
→ BZ is a fibration, up to homotopy. Such a short exact

sequence is also called an extension of Z by X.

The behavior of monomorphisms and epimorphisms between p-compact groups with
respect to composition was considered in several papers (e.g. [DW1, DW3, MN]). The
following Lemma gives a summary for future reference.

Lemma A.2. Let X
g
→ Y

f
→ Z be homomorphisms of p-compact groups.

(i) If f ◦ g is a monomorphism, then g is a monomorphism.
(ii) If g is a monomorphism and f ◦g is an epimorphism, then f is an epimorphism.
(iii) If f is a monomorphism and an epimorphism then it is an isomorphism.
(iv) If f : X → X is a monomorphism then f is an isomorphism.

Proof. (i) is implicit in [DW1, Theorem 7.3] and [MN, Theorem 2.17]. For (iii), see
[DW1, Remark 3.3]. Finally (iv) is proved in [DW3, Proposition 4.3]. To prove (ii),
consider the following diagram of fibrations

Ω(Z/f(Y )) → Y/g(X) → BK

∗
↓

→ BX
↓

=
→ BX
↓

Z/f(Y )

↓
→ BY

g
↓

f
→ BZ

f◦g
↓

where Y/g(X) is Fp finite since g is a monomorphism and K is a p-compact group
since the composite f ◦ g is an epimorphism. The space Z/f(Y ) is p-complete, being
the homotopy fibre of a map between p-complete spaces, and Ω(Z/f(Y )) is Fp finite by
inspection of the Serre spectral sequence of the fibration K → Ω(Z/f(Y ))→ Y/g(X).
Hence, Z/f(Y ) is the classifying space of a p-compact group, which means that f is
an epimorphism. �

A triple (Y,BY, e) is called an extended p-compact group if BY is the total space of
a fibration BZ → BY → BG, where BZ is the classifying space of a p-compact
group, G is a finite group, and e : Y → ΩBY is a homotopy equivalence. Obviously
any p-compact group is extended, but the converse isn’t true. The next lemma is well
known for p-compact groups, but we actually use it in the following stronger form.

Proposition A.3. Let Y be an extended p-compact group, and let X be any p-compact
group. Given a pointed map f : BY → BX, the following conditions are equivalent:

(i) The homotopy fibre of f is Fp-finite.
(ii) If α : BZ/p → BY is such that f ◦ α is null homotopic, then α is null

homotopic.

Proof. By definition, there is a fibration

BZ → BY → BG

where BZ is the classifying space of a p-compact group and G is a finite group. Let
Gp be a fixed Sylow p-subgroup of G, and let BYp be the pullback space of the system

BGp
inc
→ BG← BY.
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Then Yp
def
= ΩBYp is a p-compact group (in fact, and extension of the finite p-group Gp

by the p-compact group Z).

If Y itself is a p-compact group, the proposition follows from [MN, Theorem 2.17].
Therefore, it suffices to prove that each of (i) and (ii) holds for f if and only if it holds
for f ◦ ι, where ι : Yp → Y is the map just constructed.

Consider the following diagram of fibrations

G/Gp → G/Gp → ∗

F ′

↓

→ BYp

↓
f◦ι
→ BX
↓

F
↓

→ BY

ι
↓

f
→ BX

=
↓

.

Since G/Gp is and finite, F ′ is Fp-finite if and only if F is Fp-finite. Hence (i) holds for
f if and only if it holds for f ◦ ι.

Next, we show that (ii) holds for f if and only if it holds for f ◦ ι. Notice first
that if α : BZ/p → BYp is any map, the ι ◦ α is null homotopic if and only if α is
null homotopic. One direction is clear, and for the other notice that if ι ◦ α is null
homotopic, then α lifts to G/Gp which is discrete, and so α is null homotopic.

Assume (ii) is satisfied for f and let α : BZ/p → BYp be a map such that f ◦ ι ◦ α
is null homotopic. Then ι ◦α is null homotopic by (ii), and by the previous paragraph
α is null homotopic.

Conversely, assume that (ii) is satisfied for f ◦ ι, and let α : BZ/p → BY be a map
such that f◦α is null homotopic. The map ι is up to homotopy a finite covering of index

prime to p, and so by the theory of covering spaces, α lifts to a map BZ/p
α′

→ Yp,
such that ι ◦ α′ ≃ α. Thus f ◦ ι ◦ α′ ≃ f ◦ α is null homotopic. But f ◦ ι satisfies (ii),
and so α′ is null homotopic, and thus so is α. �

The following useful lemma (see the proofs of Lemma 4.5 and Proposition A.20)
stand in contrast to the definition of epimorphisms of p-compact groups as formulated
in [DW1].

Lemma A.4. Let X be a p-compact group. Then all morphisms Oc(X) are epimor-
phisms in the categorical sense (i.e., if α, β, γ are morphisms in Oc(X), such that
β ◦ α = γ ◦ α, then β = γ.

Proof. Let α : P → Q and β, γ : Q → Q′ be morphisms in Oc(X) such that β ◦α =

γ ◦α. Let α̂, β̂ and γ̂ be maps between the appropriate classifying spaces, representing
α, β and γ respectively. Then the diagram

BP
bα

→ BQ

@
@

@
ιP

R 	�
�

�ιQ

BX

�
�

�ιQ � I@
@

@
ιQ′

BQ

bα

↓

bγ
→ BQ′

bβ

↓
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commutes up to homotopy. We must show that β̂ ≃ γ̂.

Assume first that P ⊳ Q, i.e., that NQ(P, α̂) ∼= Q as p-compact groups. Thus there
is an extension of p-compact toral groups

BP
bα
→ BQ → BW,

where W = WQ(P, α̂). Let B̃P
def
= EQhP , where EQ is a free contractible Q space.

Then B̃P ≃ BP , and W acts on B̃P with homotopy orbit space B̃P hW ≃ BQ. Let

{β} denote the set of all homotopy classes of maps BQ → BQ′, which can replace β̂
in the diagram above, leaving it homotopy commutative (in particular the homotopy
class of γ̂ is there). Thus

Map(BQ,BQ′){β} ≃ Map(B̃P hW , BQ
′){β} ≃ (Map(B̃P , BQ′)bβbα)hW ,

and similarly, Map(BQ,BX)ιQ is equivalent to a component of (Map(B̃P , BX)ιP )hW .
Furthermore, the map

ιQ′# : Map(B̃P , BQ′)bβbα → Map(B̃P , BX)ιP

is equivariant with respect to the action of W , and a homotopy equivalence, since P is
centric in X (and hence in Q′, by Lemma 3.1). Thus the induced map

Map(BQ,BQ′){β} ≃ (Map(B̃P , BQ′)bβbα)hW ιQ′#

→ (Map(B̃P , BX)ιP )hW ,

is a homotopy equivalence, and upon identifying the target space with a subspace of

Map(BQ,BX), takes β̂ and γ̂ to ιQ′ ◦ β̂ and ιQ′ ◦ γ̂ respectively. But, in Map(BQ,BX)

both maps are in the component of ιQ by commutativity. Hence β̂ ≃ γ̂, as claimed.

Assume now that P is not necessarily normal in Q. Fix discrete approximations
P̌ , Q̌ and Q̌′ for P , Q and Q′ respectively. Then α̂ is induced up to homotopy by

a homomorphism P̌
α̌
→ Q̌ which is unique up to conjugacy, and without loss of

generality we may assume that α̌ is an inclusion, so P̌ ≤ Q̌. Define a sequence of
p-discrete toral subgroups

P̌ = P̌0 ⊳ P̌1 ⊳ P̌2 ⊳ · · · P̌j−1 ⊳ P̌j ⊳ · · · P̌ω

by setting for each j ≥ 0, P̌j
def
= NQ̌(P̌j−1), and P̌ω

def
= colimj P̌j. Let ιj : P̌j → Q̌

denote the inclusion, and let β̌, γ̌ : Q̌ → Q̌′ denote the homomorphisms, unique up

to conjugacy, inducing β̂ and γ̂ respectively, up to homotopy. Set β̌j = β̌ ◦ ιj and
γ̌j = γ̌ ◦ ιj . By the argument for the case where P ⊳ Q, and induction, for each j ≥ 0,

β̌j and γ̌j are conjugate in Q̌′. Thus the induced maps β̌ω and γ̌ω are conjugate in Q̌′,
and so the maps BP̌ω → BQ̌′ are homotopic. Let Pω be the subgroup of Q whose
classifying space is (BP̌ω)∧p . Then, either the sequence constructed above is finite, in
which case Pω = Q, and the proof is complete, or the dimension of Pω is strictly larger
that of P . Induction on the difference between the dimensions of P and Q now finishes
the proof. �

Subgroups, Maximal Tori, and Sylow Subgroups. One of the most important
concepts in this paper is that of a subgroup.

Definition A.5. A subgroup of a p-compact group X, is a pair (Y, α), where Y is a
p-compact group, and α : BY → BX is a monomorphism.
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A p-compact torus of rank n is a p-compact group T , such that

BT ≃ K((Z∧
p )n, 2) ≃ (B(Z/p∞Z)n)∧p ,

where Z/p∞ is the direct limit of all cyclic groups Z/pr under inclusion. The group
(Z/p∞Z)n is called a p-discrete torus or a discrete approximation for T (where the
prime p is understood). A maximal torus of a p-compact group X is a subgroup
(TX , ι), where TX is a p-compact torus, which is maximal in the sense that if (T, j)
is any other subgroup with T a p-compact torus, then there exists a homomorphism
k : T → TX such that j ≃ ι ◦ k.

Theorem A.6. [DW1, Theorem. 8.13] Any p-compact group admits a maximal torus
unique up to conjugacy.

The next useful concepts we introduce are those of the order of a p-compact group,
and the index of a subgroup.

Definition A.7. Let X be a p-compact group. Define the order of X to be the pair
(dX , oX), where dX is the mod-p cohomological dimension of X and oX is the order of
its group of components. The order of X is denoted by |X|. If Y is another p-compact
group, then we say |Y | ≤ |X| if dY ≤ dX or if dY = dX and oY ≤ oX. More generally,
if Y ≤ X is a subgroup, define the index of Y in X, denoted as usual |X : Y |, to be
the pair (dX/Y , oX/Y ), where dX/Y is the mod-p cohomological dimension of X/Y , and
oX/Y the order of the set of components of X/Y . Thus |X| = |X : 1|. We say that Y is
a subgroup of X of finite index, or of index n, if |X : Y | = (0, n) for some n (essentially
finite).

Similarly, for a compact Lie group G, define the order |G| of G to be the pair (dG, oG),

where dG is the dimension of G, and oG
def
= |π0(G)|. Lexicographical ordering, as above,

endows the class of all compact Lie groups with a linear order.

The next lemma shows that the order behaves as one would expect under taking
subgroups.

Lemma A.8. Let X be a p-compact group and let Y ≤α X be a subgroup. Then
|Y | ≤ |X| with equality holding if and only if α is an isomorphism.

Proof. By [DW1, Proposition 6.15], dX = dY + dX/Y . Hence dY ≤ dX with equality
if and only if dX/Y = 0, i.e., if and only if X/Y is homotopically discrete. By [DW1,
Remark. 6.16] this is the case if and only if α induces a homotopy equivalence between
Y and a union of components of X, or equivalently if and only if oY ≤ oX . Hence
|Y | ≤ |X| and equality holds if and only if α is a homotopy equivalence, i.e., an
isomorphism of p-compact groups. �

A p-compact toral group is a p-compact group P , which is an extension of a finite
p-group π by a p-compact torus. An important family of p-compact toral subgroups of
any p-compact group is the collection of its maximal p-compact toral subgroups, which
behaves in many ways like Sylow p-subgroups do in a finite group.

Definition A.9. A Sylow subgroup of a p-compact group X is a p-compact toral sub-
group S ≤ι X, which is maximal in the sense that every other p-compact toral subgroup

Y ≤α X factors through it. In other words, there exists a homomorphism BY
f
→ BS,

such that ι ◦ f ≃ α.

Notice that a Sylow subgroup of X is unique up to conjugacy. Notice also that since
the prime p is fixed and since a p-compact toral group is in general not a p-group, we
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omit the prime p from the terminology and use “Sylow subgroup”, rather than “Sylow
p-subgroup”.

By [DW2, Proposition 2.10] the p-normalizer of the maximal torus in a p-compact
group X, Np(T ) is a subgroup such that χ(X/Np(T )) is relatively prime to p, and
by Proposition 2.14 in the same paper Np(T ) is a Sylow subgroup of X in the sense
defined here. With the existence of at least one Sylow subgroup granted, the following
lemma demonstrates the analogy of our concept with Sylow p-subgroups in the usual
sense.

Lemma A.10. Let X be a p-compact group, and let P ≤α X be a p-compact toral
subgroup. Then the following conditions are equivalent.

(i) (P, α) is a Sylow subgroup in X.
(ii) The Euler characteristic χ(X/P ) is not divisible by p.
(iii) (P, α) is a p-compact toral subgroup of maximal order.

Proof. The implication (ii)⇒(i) is [DW2, Proposition 2.14]. Conversely, if (P, α) is
a Sylow subgroup for X, then (P, α) is conjugate to Np(T ), and hence χ(X/P ) =
χ(X/Np(T ), which is relatively prime to p, by [M2, Theorem 1.2].

Next we prove (i)⇒(iii). Let (P, α) be a Sylow subgroup of X, and let Q ≤β X be
any other p-compact toral subgroup. Then, by definition, there is a monomorphism
f : BQ → BP , and by Lemma A.7 |Q| ≤ |P |, so P is a subgroup of maximal order.

Finally we show (iii)⇒(i). Let (P, α) be a p-compact toral subgroup of X of maximal
order, and let (Q, β) be a Sylow subgroup. Then there is a monomorphism f : P → Q,
such that β ◦ f ≃ α. But, by the previous argument, |P | ≤ |Q|, and so by maximality
|P | = |Q|, and f is an isomorphism. This shows that (P, α) is also a Sylow subgroup.

�

Extensions. Our discussion requires the concept of “extensions” of p-compact groups.
Before we can make sense of this, we need the following preliminary lemma.

Lemma A.11. Let F
j
→ E

q
→ B be a fibration of connected spaces, and assume

that the evaluation map Map(F,B)c → B is a homotopy equivalence, where F
c
→ B

is the constant map. Then there is a fibration,

Map∗(F, F ){j}
j#
→ Map(F,E)j

ev
→ E,

where {j} denotes the union of components of the mapping space which are mapped to
the component of j via j#.

Proof. Consider the diagram

Map(F, F )
j#
→Map(F,E){c}

q#
→Map(F,B)c

F

ev
↓

j
→ E

ev
↓

q
→ B

ev ≃
↓

Here {c} denotes all components which are mapped to the component of the constant
map by q#. The right vertical arrow is a equivalence by assumption, and both rows are

fibrations. This shows that Map∗(F, F )
j#
→ Map∗(F,E){c} is a homotopy equivalence.



42 NATALIA CASTELLANA, RAN LEVI, AND DIETRICH NOTBOHM

Since j ∈ {c}, the space Map(F,E)j is a component of Map(F,E){c}. Hence restric-
tion defines a fibration

Map(F, F ){j} → Map(F,E)j → Map(F,B)c,

where the fibre consists of those components of the full mapping space over the com-
ponent of j. Restricting the top row of the diagram to this fibration, and taking
fibres on the vertical maps now gives a diagram whose central column is the required
fibration. �

Corollary A.12. Let

BY
α
→ BX

π
→ BZ

be a fibration, where all spaces are classifying spaces of p-compact groups. Then the
natural map NX(Y, α) → X is a homotopy equivalence of loop spaces.

Proof. Since Map∗(BY,BX)c is contractible, Lemma A.11 applies. Consequently, the
homotopy fibre of the map

Map∗(BY,BY ){α} → BCX(Y, α)
def
= Map(BY,BX)α

is homotopy equivalent to X as a loop space. But by definition, this homotopy fibre is
NX(Y, α). �

Our construction of the normalizer space allows us to define what it means for a
subgroup to be normal.

Definition A.13. A subgroup Y ≤α X of a p-compact group X is said to be normal
if the natural map ηα : NX(Y ) → X defined in Proposition 2.5 is an isomorphism of
p-compact groups.

Corollary A.12 thus provides a justification to regarding fibrations, where all spaces
involved are classifying spaces of p-compact groups, as extensions of p-compact groups.
Such a fibration defines Y as a normal subgroup of X with quotient group Z. We say
in that case that X is an extension of Z by Y .

Centralizers and Centers. Let X be a p-compact group and let Y ≤α X be a
subgroup. The centralizer of (Y, α) in X is defined to be the loop space of the space

BCX(Y, α)
def
= Map(BY,BX)α.

Proposition A.14. Let Y ≤α X be a p-compact toral subgroup of a p-compact group
X. Then CX(Y, α) is a p-compact group.

Proof. [DW1, Proposition 5.1, and Proposition 6.1] �

Next we define the center of a p-compact group.

Definition A.15. A subgroup Z ≤α X is central if CX(Z) ∼= X, or in other words if
ev : Map(BZ,BX)α → BX is a homotopy equivalence. A central subgroup of X is said
to be the center of X, if every other central subgroup factors through it. A p-compact
group X is said to be centerfree if it has no nontrivial central subgroup.

For a p-compact group X, Dwyer and Wilkerson showed that

Z(X) = Ω Map(BX,BX)id

is an abelian p-compact toral group and has the property that the evaluation map
BZ(X) → BX is, up to homotopy, a final object among all central monomorphisms
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into X [DW2, Theorems 1.2, 1.3]. Thus, whenever we say “the center of X”, we mean
the subgroup (Z(X), ev). Notice that X is centerfree if and only if Z(X) is weakly
contractible.

The following lemma is useful in reducing certain claims to the centerfree case.

Lemma A.16. Every p-compact group X is an extension of a centerfree p-compact
group by a p-compact toral group.

Proof. For a p-compact groupX we denote byX0 the component of the identity element
and by π = π0(X) the group of components. The canonical fibration

BX0 → BX → Bπ

is classified by a map Bπ
α
→ BAut(BX0). Let Z0 = Z(X0) be the center, and let

X ′
0 = X0/Z0 be the centerfree quotient of X0 (see [DW2, Theorem 6.3]). Every self

equivalence h of BX0 preserves the center, and thus there is a group homomorphism

π0(Aut(BX0)) → π0(Aut(BX ′
0)).

But,

Aut1(BX
′
0)

def
= Map(BX ′

0, BX
′
0)id

def
= BZ(X ′

0),

and X ′
0 is centerfree. This shows that Aut1(BX

′
0) is trivial, and hence that Aut(BX ′

0)
is aspherical. Therefore, the canonical map

BAut(BX ′
0) → Bπ0(Aut(BX ′

0))

is a homotopy equivalence, and the composite

Bπ
α
→ BAut(BX0) → Bπ0(Aut(BX0)) →

→ Bπ0(Aut(BX ′
0)) ≃ BAut(BX ′

0)

gives rise to an extension X ′ of π by X ′
0, and a commutative diagram of extensions of

p-compact groups
BX0 → BX → Bπ

BX ′
0

↓

→ BX ′

↓

→ Bπ

=
↓
.

If X ′ is centerfree, we are done, as we have presented X as an extension of a centerfree
p-compact group by Z0, and abelian p-compact group (in particular p-compact toral).
Otherwise, let Z ′ = Z(X ′) be the center of X ′. Since X ′

0 is centerfree, the composite
BZ ′ → BX ′ → Bπ is a monomorphism, and Z ′ is a central subgroup of π. Taking
the quotients ofX ′ and π by Z ′ gives a commutative diagram of extensions of p-compact
groups

BX ′
0 → BX ′ → Bπ

BX ′
0

=
↓

→ BX1

↓
→ Bπ1

↓
,

where |π1| � |π|. Notice that the homotopy fibre of the homomorphism BX → BX1

is an extension of Z ′, which is a finite abelian p-group, by Z0 which is an abelian p-
compact group. Thus the homotopy fibre is the classifying space of a p-compact toral
group.

If X1 is centerfree, the proof is complete. Otherwise, divide X1 by its center, which
by the same argument as above is also a central subgroup of π1, to obtain an extension
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X2 of a finite p-group π2, with |π2| � |π1|, by X ′
0, and such that the homotopy fibre

of the projection BX → BX2 is the classifying space of a p-compact toral group.
Applying this process repeatedly yields in finitely many steps (since π is finite) a p-
compact group quotient Y of X, such that Y is centerfree, and the homotopy fibre of
the projection BX → BY is the classifying space of a p-compact toral group. �

Next, we consider the maximal central elementary abelian subgroup of a p-compact
group.

Lemma A.17. Any p-compact group X admits a maximal central elementary abelian
subgroup E(X).

Proof. Since Z(X) is an abelian p-compact toral group, it admits a maximal elementary
abelian p-subgroup of E(X) ≤ι Z(X), and since the evaluation map

ev : Map(BE(X), BX)ι → BX

is an equivalence, its homotopy fibre is weakly contractible. This shows that E(X)

is unique up to homotopy. i.e., that if BE(X)
f
→ BX is any other map such that

Map(BE(X), BX)f
≃
→ BX, then f ≃ ι. The subgroup (E(X), ι) is clearly maximal

in the sense that if F ≤β X is any other central elementary abelian p-subgroup of X,
then β factors up to homotopy through BE(X). �

Remark A.18. Notice that the symbol E(X) is used elsewhere to denote a functor.
The reader should not be confused by this abuse of notation. If X is a p-compact toral
group and X̌ is a discrete approximation, then the algebraic center of X̌ is a discrete
approximation for the center of X. With this setup, it is possible to define E(X)
canonically. We choose to use the same symbol here to emphasize that it is practically
the same construction we discuss here, but without specifying discrete approximations.

Remark A.19. Let Y ≤α X be a subgroup, let E(Y ) ≤ Z(Y ) denote a maximal central
elementary abelian subgroup and consider the maps δ and ǫ given by the composites

δ
def
=

(
BY ×BE(Y ) → BY × BZ(Y )

mult
→ BY

α
→ BX

)

and

ǫ
def
=

(
E(Y ) →Z(Y ) → Y

α
→X

)
.

Then the map ad(δ) : BY → Map(BE(Y ), BX)ǫ makes the following diagram ho-
motopy commutative

BY
ad(δ)

→Map(BE(Y ), BX)ǫ

@
@

@α R 	�
�

�
ev

BX
Thus Y ≤ CX(E(Y )) ≤ X is a factorization of Y ≤α X.

Weyl Groups. The aim of the following discussion is to show that if P,Q ≤ X are
p-compact toral subgroups, then the morphism sets between them as objects of O(X)
are finite. In particular, the Weyl group of p-compact toral subgroup of X is always a
finite group. The following lemma will be used in the proof of this statement.

Proposition A.20. Let X be a p-compact group, and Q,P ≤ X be p-compact toral
subgroups of X. Then there exists a finite p-subgroup K of P , such that (X/Q)hP ≃
(X/Q)hK.
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Proof. Let P̌ = colimPn be a discrete approximation of P . Let Tn be the kernel

of the composite Pn → P̌ → π, where π
def
= π0(P ). Then Ť

def
= colimn Tn is a

discrete approximation for T , and for a sufficiently large n, the map Pn → π is an
epimorphism. For each n one has a map

(X/Q)hP ≃ ((X/Q)hT )hπ → ((X/Q)hTn)hπ ≃ (X/Q)hPn.

Hence, if we show that for n sufficiently large the map (X/Q)hTn → (X/Q)hT is an
equivalence, then the lemma holds for all p-compact toral groups.

Thus assume P = T , a p-compact torus, with a discrete approximation Ť = colim Tn.
Let ιn be the restriction of ιT : BT → BX to BTn. Then, there is a homotopy
commutative diagram of fibrations

(9)

(X/Q)hTn+1 → (X/Q)hTn

Map(BTn+1, BQ){ιn+1}

↓
inc♯

→Map(BTn, BQ){ιn}

↓

Map(BTn+1, BX)ιn+1

ιQ♯
↓

inc♯

→Map(BPn, BQ)ιn

ιQ♯
↓

where {ιk} is the set of homotopy classes of maps BTk
f
→ BQ, such that ιQ ◦ f ≃ ιk.

Notice that the sets {ιk} are finite sets, since by [DW1, Theorem 4.6, and Theorem
5.8], (X/Q)hTk is Fp-finite for all k.

Next we show that, for n sufficiently large, the map between the total spaces in the
diagram above induces a monomorphism on the sets of components. This is equivalent
to the claim that, if f, g : BTn+1 → BQ are two maps whose homotopy classes are
contained in {ιn+1}, and such that their restriction to BTn are homotopic, then f ≃ g.
In other words, if f and g are as above and both render the diagram

BTn
ιn
→ BQ

�
�

�f
g

�

BTn+1

j
↓

ιn+1

→ BX

ιQ
↓

homotopy commutative, then f ≃ g.

Apply the functor Map(Tn,−) to the diagram above. Since , Tn and Tn+1 are abelian,
this gives a homotopy commutative diagram

BTn
ιn♯
→ BCQ(Tn)

�
�

�f#

g#

�

BTn+1

j♯

↓

hn+1♯

→ BCX(Tn)

ιQ♯
↓

.

For n sufficiently large, the map BCX(Tn+1) → BCX(Tn) is an equivalence by [DW1,
Propsition 6.18], and hence the compsite

BTn+1 → BCX(Tn+1) → BCX(Tn)

is central. By [DW2, Lemma 6.5] it now follows that f♯ ≃ g♯ and hence that f ≃ g.

We have thus shown that, for n sufficiently large, the map between total spaces in
Diagram (9) above induces a monomorphism on path components. Hence the sequence
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of path components stabilizes, and is equal to the set {ιT} which is finite. By [DW1,
Propsition 6.18] again, the map between total spaces in the diagram is a homotopy
equivalence for n sufficiently large. Hence for such an n, the induced map on homotopy
fibres is a homotopy equivalence, and the result follows. �

Corollary A.21. For any p-compact toral subgroups P,Q ≤α X, (X/Q)hP is Fp-finite
and χ((X/Q)hP ) ≡ χ(X/Q) mod p. In particular WX(P ) is a finite group.

Proof. By Proposition A.20, (X/Q)hP ≃ (X/P )hK, for some finite p-group K. Hence,
by [DW1, Proposition 5.8], for every subgroup L ≤ K, each component of (X/Q)hL

is p-complete. Hence by [DW1, Theorem 4.6] (X/Q)hP ≃ (X/Q)hK is Fp-finite and
χ((X/Q)hP ) ≡ χ(X/Q) mod p. The last statement follows at once. �

Normal Refinement. The main aim of the next two lemmas is to show that any
monomorphism between p-compact toral groups can be refined to a (generally infinite)
normal sequence with finite p-group quotients (Lemma A.23).

Lemma A.22. Let P and Q be p-compact toral groups and let P̌ ≤ιP P and Q̌ ≤ιQ Q
be discrete approximations. Then the map

ιQ# : Map(BP̌ ,BQ̌) → Map(BP̌ ,BQ)

is a mod-p equivalence.

Proof. The homotopy fibre of ιQ is an Eilenberg-MacLane space of type K(V, 1), where

V is a Q∧
p -vector space. For each homotopy class of maps BP̌

α
→ BQ, there is a

fibration

BV hP̌ → Map(BP̌ ,BQ̌)α → Map(BP̌ ,BQ)α.

Since P̌ is discrete and V is a rational vector space, it follows that BV hP̌ is again a
space of type K(U, 1), where U is the invariant subspace in V under the P̌ action. In

particular BV hP̌ is connected and mod-p acyclic and so α consists of a single component
and

Map(BP̌ ,BQ̌)α

ιQ#
→ Map(BP̌ ,BQ)α

is a mod-p equivalence. �

Lemma A.23. Let Q be a p-compact toral group and let P ≤α Q be a subgroup. Then
there is a sequence

P = P0 ≤ P1 ≤ P2 ≤ · · · ≤ Pk ≤ Pk+1 ≤ · · ·Q0 ≤ Q1 ≤ · · · ≤ Qn−1 ≤ Qn = Q

such that BQ0 = hocolimiBPi, and each group in the sequence is a normal subgroup
of finite index in the following one.

Proof. Without loss of generality we may assume that α is a homomorphism (a pointed
map). Consider first the case where P is of finite index in Q (in particular, P and Q

have the same cohomological dimension). Let P0
def
= P , α0

def
= α, P1

def
= NQ(P0, α0)

and let α1 : BP1 → BQ denote ηα0
as defined in Proposition 2.5. Assuming Pk and

αk : BPk → BQ have been defined, let

Pk+1
def
= NQ(Pk, αk),
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and let αk+1
def
= ηαk

. Then by Proposition 2.7(ii), (Pk, αk) is a subgroup of Q, Pk ⊳ Pk+1

for each k ≥ 0 and WPk+1
(Pk) is a non-trivial p-compact toral group. In particular

Pk � Pk+1. An easy inductive argument also shows that

[Q : P ] = (

k−1∏

i=0

[Pi+1 : Pi]) · [Q : Pk]

for each k ≥ 0. Since [Q : P ] is finite, there is some n ≥ 0, such that Pn = Q. This
proves the claim in the finite index case. Notice also that in this case the sequence is
finite

For the general case, let TQ denote the identity component of Q and let πQ denote its
group of components. Let π′ ≤ πQ be the image of the composite BP → BQ→ BπQ

on fundamental groups. Define BQ′ to be the pull-back space in the square

BQ′ → BQ

Bπ′

↓

→ BπQ

↓
.

Then Q′ ≤ Q is a subgroup of Q of finite index [Q : Q′] = [πQ : π′] by construction.
The map α : BP → BQ factors through BQ′ via a map, which by Lemma A.2 is a
monomorphism, and by construction induces an epimorphism on fundamental groups.
The map BQ′ → BQ resulting from this construction can be refined into a finite
sequence of normal subgroups by the previous paragraph, and thus to complete the
proof we only need to consider the case where α induces an epimorphism on groups of
components.

Thus assume that the composite BP
α
→ BQ → BπQ induces an epimorphism on

fundamental groups. Hence, its homotopy fibre is the classifying space of a subgroup
A ≤ P , which maps injectively to BTQ. Thus we get a diagram of fibrations,

BA → BP → BπQ

BTQ

↓
→ BQ
↓
→ BπQ.

=
↓

By Lemma A.22 if one picks discrete approximations P̌ , Q̌ for P and Q respectively,
there is a unique monomorphism α̌ : P̌ → Q̌, such that (Bα̌)∧p ≃ α. Furthermore,

the projection from Q̌ to the group of components πQ is determined uniquely, and by
taking kernels one gets discrete approximations for TQ and A. Thus the left square in
the diagram above turns into a square of discrete p-toral groups and homomorphisms
between them

Ǎ → P̌

ŤQ

↓

→ Q̌.

↓

Now, let P̌ ′
i , i ≥ 0, denote the subgroup of Q̌ generated by P̌ and all elements of

order pi in ŤQ. Then P̌ ′
0 = P̌ ,

⋃
i P̌

′
i = Q̌, and [P̌i+1 : P̌i] is finite. Apply classifying

spaces and p-completion to the resulting sequence to get a sequence

P = P ′
0 ≤ P ′

1 ≤ · · · ≤ P ′
k ≤ P ′

k+1 ≤ · · ·Q,
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such that each subgroup has finite index in the next one. Now apply the procedure for
the finite index case to each pair (P ′

k, P
′
k+1) to complete the proof. �

Some categorical constructions. Standard references for this material is [HV] and

[T]. Let F : C → D be a functor between small categories. For an object d ∈ D, the
”undercategory” d↓F is the category with objects given by pairs (c, α), where c is an
object in C, and α : F (c) → d is a morphism in D. A morphism (c, α) → (c′, α′)
in d↓F is a morphism ϕ : c → c′ in C, such that α′ ◦ F (ϕ) = α. The functor F is
said to be ”right cofinal if the nerve of the undercategory d↓F is contractible for every
object d in D. The ”overcategory” F↓d is defined by analogy, and F is said to be ”left
cofinal” if F↓d is contractible for every d ∈ D. If F : C → D is right cofinal and
φ : D → Top is any functor then the induced map

hocolim
C

F ∗φ → hocolim
D

φ

is a homotopy equivalence.

Let C
F
→D be a functor between small categories, and let C

φ
→ Top be any func-

tor. The ”left homotopy Kan extension” of φ along F is the functor LF (φ) : D → Top

defined on objects by

LF (φ)(d)
def
= hocolim

F↓d
φ ◦ ι,

where ι : F↓d → C is the obvious functor taking (c, α) to c. The left homotopy Kan
extension has the property that there is a natural homotopy equivalence

hocolim
D

LF (φ) ≃ hocolim
C

F.

Let Cat denote the category of small categories and functors between them. Given
a functor F : C → Cat, one obtains a functor |F | : C → Top by composing F with
the nerve followed by geometric realization functor | − |. The ”Grothendieck category”
Gr(C, F ) is the category whose objects are pairs (c, x), where c is an object in C, and
x an object in F (c). A morphism (c, x) → (c′, x′) in Gr(C, F ) is a pair (f, g), where
f : c → c′ is a morphism in C, and g : F (f)(x) → x′ is a morphism in F (c′).
Composition of morphism is defined by (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ F (f)(g′)). The
Grothendieck category has the property that the realization of its nerve is homotopy
equivalent to hocolimC |F |, where |F | denotes the functor F followed by the geometric
realization of the nerve.

Appendix B. Subgroup decompositions for classifying spaces of

compact Lie groups

The main theorem of this paper is the existence of a subgroup homology decom-
position for p-compact groups with respect to the collection of all their radical sub-
groups. The first such decomposition was constructed for classifying space of compact
Lie groups by Jackowski, McClure and Oliver [JMO]. In this appendix we show that
our main theorem is in fact a generalization of the Jackowski-McClure-Oliver result.
By this we mean that the orbit category of radical subgroups, as defined in [JMO] is
equivalent to the orbit category of radical subgroups constructed in this paper from
the homotopy type of the respective p-completed classifying space. Furthermore, the
decomposition functor constructed in this paper, and the one used in [JMO] also coin-
cide up to homotopy, as we explain below. We start by recalling the basic construction
from [JMO].
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For a compact Lie group G, the orbit category Op(G) is a category whose objects are
G-orbits G/P , where P ≤ G is a p-toral subgroup, and whose morphisms are G-maps
G/P → G/Q. The morphism set MorOp(G)(G/P,G/Q) can be identified with the
fixed point set (G/Q)P . We call this category ”the group theoretic orbit category of
all p-toral subgroups of G”. Let Or(G) ⊂ Op(G) denote the full subcategory whose
objects are orbits G/P , where P ≤ G is a p-toral p-radical subgroup of G, i.e. those

subgroups P whose Weyl group WG(P )
def
= NG(P )/P is finite and p-reduced. There is

a functor

Φg : Or(G) → Top,

which takes an orbit G/P to the homotopy orbit space (G/P )hG
def
= G/P ×G EG,

and a G-map G/P → G/Q to the induced map. Furthermore, the obvious natural
transformation from the forgetful functor Or(G) → G-Top to the constant functor
with value a point induces a natural transformation ξ : Φg → 1BG. Thus one gets a
map

ξ∗ : hocolim
Or(G)

Φg → BG,

which by [JMO] is a mod-p equivalence.

If G is a compact Lie group and π0(G) is a finite p-group, then G∧
p is a p-compact

group with classifying space B(G∧
p ) ≃ (BG)∧p . The respective orbit category, as defined

in this paper, is called ”the homotopy theoretic orbit category of all p-toral subgroups
of G”. Our aim is to show that there the group theoretic orbit category of p-radical
subgroups of G is equivalent to the orbit category of radical subgroups of G∧

p . We will
also observe that this claim fails if one does not restrict to p-radical subgroups.

Let

ϕG : Or(G) →Op(G
∧
p )

be the functor taking an object G/Q to the p-compact toral subgroup (Q∧
p , ιQ), where

ιQ : BQ∧
p → BG∧

p is the p-completion of the map

BQ ≃ (G/Q)hG → ∗hG = BG.

For a morphism G/Q
a
→ G/Q′ in Or(G), ϕG(a) is defined to be the homotopy class

of the induced map.

Proposition B.1. Let G be a compact Lie group such that π0(G) is a finite p-group.
Then, the functor ϕG takes values in Or(G∧

p ) and

ϕG : Or(G) →Or(G∧
p )

is an equivalence of categories.

Let Φ: Or(G∧
p ) → Top be any subgroup decomposition functor, and consider the

composite functor Φ ◦ϕG on Or(G). By Proposition B.1, Or(G) can be identified with
Or(G∧

p ), and the functors (Φg)
∧
p and Φ◦ϕG are clearly subgroup approximation functors

on it. By Proposition 1.5, these two functors are naturally homotopy equivalent. Hence,
one obtains a homotopy equivalence

hocolim
Or(G)

(Φg)
∧
p ≃ hocolim

Or(G)
Φ ◦ ϕG.

This shows that our decomposition, restricted to the class of p-compact groups which
arise as the p-completed classifying spaces of appropriate Lie groups, coincides with
the Jackowski-McClure-Oliver decomposition, up to p-completion.
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The following two lemmas are needed for the proof of Proposition B.1. Recall that
a p-toral group is an extension of a finite p-group π by a torus T = (S1)n for some
n ≥ 0. A space X is said to be p-good if the completion map X → X∧

p is a mod-p
equivalence.

Lemma B.2. Let Q be a p-toral compact Lie group and K a p-good finite Q-complex.
Then, (KQ)∧p ≃ (K∧

p )h(Q∧
p ).

Proof. By the generalized Sullivan conjecture for p-toral compact Lie groups [N], the
map KQ → (K∧

p )hQ is a mod-p equivalence. Hence, we have to show that (K∧
p )hQ ≃

(K∧
p )h(Q∧

p ). As homotopy fixed point sets, these spaces are given as the fibre of the left
and right vertical arrows in the diagram

Map(BQ, (K∧
p )hQ){id}

l∗
→Map(BQ, (K∧

p )h(Q∧
p )){l}←

l∗

≃
Map(BQ∧

p , (K
∧
p )h(Q∧

p )){id}

Map(BQ,BQ)id

π∗

↓
l∗
→Map(BQ,BQ∧

p )l

π∗

↓

←
l∗

≃
Map(BQ∧

p , BQ
∧
p )id,

π∗

↓

where l denotes the completion map BQ → BQ∧
p , and the map π denotes, in each

case, the map induced by the projection from the homotopy orbit space to the respective
classifying space. Since (K∧

p )h(Q∧
p ) and BQ∧

p are p-complete, both arrows marked l∗ are
homotopy equivalences, and so the homotopy fibres of the right and middle vertical
arrows are equivalent. The left square arises by applying the functor Map(BQ,−)
to a pull-back diagram and is therefore itself a pull-back diagram. This shows that
homotopy fibres of all vertical arrows homotopy equivalent and finishes the proof. �

Lemma B.3. Let G be a compact Lie group such that π0(G) is a finite p-group. Let
(Q, β) be a p-compact toral subgroup of G∧

p , which is either finite or radical in BG∧
p .

Then there exists a p-toral subgroup P ≤ G and a mod-p equivalence h : BP → BQ
such that the diagram

BP
BιP → BG

BQ

h
↓

β
→ BG∧

p

↓

commutes up to homotopy, where P
ιP
→ G is the inclusion.

Proof. If Q is a finite p-group, then Map(BQ,BG∧
p ) ≃ Map(BQ,BG)∧p (see for instance

[BL, Proposition 2.1]. In particular both sides have the same path components, and

the components in the right hand side are given by Rep(Q,G)
def
= Hom(Q,G)/ ∼,

where the equivalence relation is given by conjugation in G. Thus let Q
ϕ
→ G be

a homomorphism, such that Bϕ ≃ β, let P
def
= Imϕ, and let BP

h
→ BQ the map

induced by the inverse of ϕ (considered as a map Q→ P ). Then the statement holds
for P and h.

Let G be a compact Lie group with π0(G) a finite p-group. Let Op(G) denote the

maximal normal p-toral subgroup of G, and let G denote the quotient group G/Op(G).
(Notice that Op(G) exists, since it can be taken to be the intersection of all Sylow

subgroups of G) Then G contains no normal p-toral subgroup, and in particular its
center contains no such subgroup. On the other hand, since Z(Ḡ) is an abelian compact
Lie group, it is isomorphic to a product of a torus and a finite abelian group. Hence,
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Z(G) is a finite group of order prime to p. Notice also that π0(G) is a finite p-group,

since G is a quotient group of G. Thus G∧
p is a p-compact group, and since Z(G) is a

finite group of order prime to p, G∧
p is centerfree. By Proposition 5.4, there is a 1–1

correspondence between isomorphism classes of p-compact toral radical subgroups of

G∧
p and those of G∧

p (considered as objects of the orbit category in both cases). Hence,
it suffices to prove the claim for compact Lie groups whose center is a finite group of
order prime to p.

The claim is obvious if G is p-toral, since the only radical subgroup of G∧
p in that case

is G∧
p itself. The proof now proceeds by induction on the order. Let G be an arbitrary

compact Lie group, such that π0(G) is a finite p-group. Assume the lemma holds for
all compact Lie groups H , satisfying the same condition, and such that |H| � |G|. We
must show that it holds for G.

By the discussion above, we may assume that Z(G) is finite of order prime to p.
Thus G∧

p is a centerfree p-compact group. Let Q ≤β G
∧
p be a radical p-compact toral

subgroup, and let E(Q) be the maximal central elementary abelian subgroup in Q.
Since E(Q) is a finite p-group, we may assume by the discussion above that E(Q) is a
p-subgroup of G. Since

CG(E(Q))∧p ≃ Ω(Map(BE(Q), BG)inc)
∧
p ≃ Ω(Map(BE(Q), BG∧

p )inc) = CG∧
p
(E(Q)),

and since Q ≤ CG∧
p
(E(Q)) is radical there by Lemma 4.3, it suffices to prove the claim

for CG(E(Q)). But since Z(G) is finite of order prime to p, |CG(E(Q))| � |G| and the
claim follows from the induction hypothesis. �

Proof of Proposition B.1. Fix a compact Lie group G with π0(G) a finite p-group. For
radical p-toral subgroups Q,Q′ ≤ G, the fixed point set (G/Q′)Q is finite or empty.
Hence there are homotopy equivalences

(G/Q′)Q ≃ (G/Q′)Q∧
p ≃ ((G/Q′)∧p )h(Q∧

p ),

where the second equivalence follows from Lemma B.2. This shows that Q ≤ G is
radical if and only if Q∧

p ≤ G∧
p is radical, and so the functor ϕG takes values in the

category Or(G∧
p ). Furthermore, since the morphisms in the respective categories are

the path components of the left and right hand sides of the spaces in the equation above,
ϕG induces an isomorphism on morphism sets. It is also clear that ϕG is an injection
on isomorphism classes of objects, and by Lemma B.3, it is also an epimorphism on the
isomorphism classes of objects. Thus ϕG is an equivalence of categories as stated. �

We end this appendix with the observation that Lemma B.3 (and hence our argument
in the proof of Lemma B.1) fails if one does not require that the subgroup Q ≤β G

∧
p is

either finite or radical.

Remark B.4. LetG
def
= S1×S1, let α, β ∈ Z∧

p be units, and let f : (BS1)∧p → BG∧
p be

a map induced by the monomorphism Z∧
p

(α,β)
→ Z∧

p ×Z∧
p , sending 1 to (α, β). If Lemma

B.3 held with respect to this setup, it would mean that there is a map g : BS1 → BG
and a mod-p equivalence h : BS1 → (BS1)∧p , such that g∧p ≃ f ◦ h∧p . But g must

be induced by a monomorphism Z
(a,b)
→ Z × Z, sending 1 to the pair (a, b) for some

integers a, b, whereas h is induced by multiplication by some p-adic unit u. An easy
calculation now shows that α

β
= a

b
, and since the right hand side is a rational number,

there are clearly choices of α and β, where this equation cannot hold. Thus the lemma
fails in this case.
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élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244.
[Mi] Miller, H. The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984),

no. 1, 39–87.
[M1] J. Møller, Rational isomorphisms of p-compact groups, Topology 35 (1996), no 1, 201–225.
[M2] J. Møller, Normalizers of maximal tori, Math. Z.231 (1999), no 1, 51–74.
[MN] J. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew.

Math. 456 (1994), 99–133.
[N] D. Notbohm The fixed-point conjecture for p-toral groups, Algebraic topology and transformation

groups (Göttingen, 1987), 253–260, Lecture Notes in Math., 1361, Springer, Berlin, 1988.
[NS] D. Notbohm and L. Smith, Rational homotopy of the space of homotopy equivalences of a flag
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