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ON THE p-COMPACT GROUPS CORRESPONDING TO THE
p-ADIC REFLECTION GROUPS G(q, r,n)

NATÀLIA CASTELLANA

Abstract. There exists an infinite family of p-compact groups whose Weyl
groups correspond to the finite p-adic pseudoreflection groups G(q, r, n) of fam-

ily 2a in the Clark-Ewing list. In this paper we study these p-compact groups.

In particular, we construct an analog of the classical Whitney sum map, a
family of monomorphisms and a spherical fibration which produces an analog

of the classical J-homomorphism. Finally, we also describe a faithful complex-

ification homomorphism from these p-compact groups to the p-completion of
unitary compact Lie groups.

Introduction

The notion of a Lie group was introduced in the last century. The classical ex-
amples are matrix groups such as orthogonal, unitary or symplectic groups. The
program for the understanding of the homotopy properties of compact Lie groups
led to the concept of a p-compact group that was introduced by Dwyer and Wilker-
son [9] in 1994. They are p-local versions of finite loop spaces. Namely, a p-compact
group is a triple X = (X,BX, e) where BX is a p-complete pointed space, X is
a space such that H∗(X; Fp) is finite, and where e : X → ΩBX is a homotopy
equivalence.

The first examples of p-compact groups are the p-completions (in the sense of
Bousfield-Kan [4]) of compact connected Lie groups and their classifying spaces.
Many properties of compact Lie groups can be reinterpreted as homotopy theoretic
properties of the classifying spaces in such a way that the concept extends to the
category of p-compact groups (see [10]). For example, they admit a concept of
maximal torus and Weyl group. The Weyl group is a finite p-adic reflection group,
that is, a pair (W,L) where L is a Ẑp-lattice and W is a finite subgroup of GL(L)
generated by reflections.

The recently completed classification of the p-compact groups at odd primes [2]
states that connected p-compact groups are in one-to-one correspondence with finite
Ẑp-reflection groups via the Weyl group action on the maximal torus. Since finite
Ẑp-reflection groups, p odd, were classified by Notbohm [23] (from the classification
over C by Shephard and Todd [25] and over Q∧

p by Clark and Ewing [8]), this gives
a rather complete picture. This classification contains four infinite families and we
also use their numbering of the diferent cases (namely families 1,2a,2b,3).
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Those p-compact groups whose Weyl group belong to one of the infinite fami-
lies in the classification of Ẑp-pseudoreflection groups X(q, r, n) generalize classical
matrix groups, in the sense that their Weyl group looks like the one of classical
matrix Lie groups, but allowing matrix entries to be finite roots of unity in (Ẑp)∗.
Their Weyl groups, as pseudoreflection groups, correspond to the family no. 2a in
the Clark-Ewing list [8].

Let us describe their Weyl groups (G(q, r, n), Ln) where Ln = (Ẑp)n. For any
q ≥ 1, fix an embedding µq ⊂ (Ẑp)∗ of the group of qth roots of the unity where
q|p− 1. If r|q, n > 1, define

A(q, r, n) = { (z1, . . . , zn) ∈ µnq | z1 · · · zn ∈ µq/r }.

G(q, r, n) is a split extension of Σn by A(q, r, n) (Σn acts on A(q, r, n) by permuting
the factors). G(q, r, n) has a representation in GL(n, Ẑp) generated by A(q, r, n)
regarded as diagonal matrices, and the group Σn of permutation matrices,

G(q, r, n) ∼= A(q, r, n) o Σn.

Because of the uniqueness property in [22, Thm 5.2], and the fact that any
classical group in the above sense not in the family no. 2a in the Clark-Ewing
list [8] (families no. 1, 2b, 3) is either the Weyl group of a Lie group (family
no. 1) or non-modular (families no. 2b,3), we can speak of the unique p-compact
group X(q, r, n) realizing the Weyl group data (G(q, r, n), Ln). The Weyl groups of
SO(2n) and SO(2n+ 1) belong to the family no. 2a: by taking (q, r, n) = (2, 2, n)
and (q, r, n) = (2, 1, n) respectively.

The purpose of this paper is to study these p-compact groups X(q, r, n) and
certain homogeneous spaces which arise from monomorphisms between them. In
particular, we construct an analog of the classical Whitney sum map, a family of
monomorphisms and a spherical fibration which produces an analog of the classical
J-homomorphism.

Theorem A. Let p be an odd prime. There exists a unique morphism of p-compact
groups

Φ : X(q1, r1, n1)× · · · ×X(qs, rs, ns)→ X(q, r, n)

where ri|qi, qi|q|(p−1),
qi
ri
|q
r

and
∑
ni = n such that the induced map on the Weyl

groups corresponds to the canonical coordinate-wise inclusion

(G(q1, r1, n1), Ln1)× · · · × (G(qs, rs, ns), Lns)→ (G(q, r, n), Ln).

Moreover Φ is unique up to homotopy satisfying this condition.

When the p-compact groups involved are the p-completions of classifying spaces
of matrix groups, the morphisms defined in Theorem A are homotopic to the p-
completion of the classical Whitney sum maps.

By considering the homotopy fiber of the above Whitney sum map Φ, we obtain
p-compact versions of the classical Grassmann manifolds. In a similar way, p-
compact versions of classical Stiefel manifolds can also be constructed.

The restriction of the morphisms Φ in Theorem A to each factor gives monomor-
phisms between the p-compact groups X(q, r, n). The following theorem describes
another type of monomorphisms between these p-compact groups.
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Theorem B. Let p be an odd prime. Suppose r1|q1|p − 1 and r|q|p − 1. There
exists a unique monomorphism of p-compact groups Γ,

Γ : X(q1, r1, n)→ X(q, r, n+m)

where q1|q and m > 0 such that the induced map on Weyl groups is

ι : (G(q1, r1, n), Ln)→ (G(q, r, n+m), Ln+m)

defined by

ι((a1, · · · , an), σ) = ((a1, . . . , an, (a1 · · · an)−1, 1, . . . , 1), σ)

where (a1, . . . , an) ∈ A(q1, r1, n) and σ ∈ Σn, and it is an inclusion on the first
coordinates on the Ẑp-lattices.

The p-completion of the inclusion of SO(2n+1) into SO(2(n+1)) is an example
of a morphism of the type described in Theorem B.

These p-compact groups X(q, r, n) are closely related to the classifying space for
orientable mod p spherical fibrations. This relation is explicitly stated in Theorems
C and D.

Theorem C. Let p be an odd prime. There exists a mod p spherical fibration ηn,

(S2n+1)∧p → E → BX(p− 1, p− 1, n+ 1)

whose Euler class is e ∈ H∗(BX(p− 1, p− 1, n+ 1); Fp) ∼= Fp[y1, . . . , yn, e], where
deg(yi) = 2i(p− 1) and deg(e) = 2(n+ 1).

For p = 2, the existence of such a fibration is classical. It can be obtained by
considering the action of U(n+ 1) on the unit sphere in R2(n+1).

The spherical fibrations in Theorem C lead to an analog of the classical J-
homomorphism. Let BSG the classifying space of orientable spherical fibrations.
We consider the morphisms X(p−1, p−1, n)→ X(p−1, p−1, n+1), which are re-
strictions of the monomorphisms Φ in Theorem A to the first factor, and we denote
by BX(p− 1) the corresponding homotopy colimit, hocolimnBX(p− 1, p− 1, n).

Theorem D. Let p be an odd prime. There exists a map J : BX(p− 1)→ BSG∧p
such that J∗ is an F -isomorphism.

The cohomology of BSG has been computed by Tsuchiya [26] for odd primes,
and by Milgram [20] when p = 2.

Finally, we answer the question of whether a p-compact group of type X(q, r, n)
admits a monomorphism into a unitary group.

Theorem E. Let p be an odd prime. For r|q|p− 1, there exists a monomorphism
of p-compact groups

c : X(q, r, n)→ U(nq)∧p .

When q = 2, this morphism is the p-completion of the complexification map for
classical compact Lie groups.

The proof of Theorems A and B follows by using the results and methods in [22].
The proof of Theorem D relies on the description of the cohomology of BSG and
the computation of the characteristic classes for the mod p spherical fibrations in
Theorem C.

From now on, p is an odd prime and H∗(−) := H∗(−; Fp). This paper is or-
ganized as follows. The construction of generalized Whitney sum maps (Theorem
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A) and a family of monomorphisms (Theorem B) is given in Section 2 and the
study of the homogeneous spaces in Section 3. Section 4 analyzes the relation
between p-compact groups X(p − 1, p − 1, n) and the classifying space for mod p
spherical fibrations (Theorems C and D). The complexification map (Theorem E)
is constructed in Section 5.

I am grateful to Carlos Broto for his useful comments and suggestions. I would
like to thank the referee for her/his many comments which improved the paper.

2. Maps between generalized Grassmannians

This section is devoted to the proof of Theorems A and B. For completeness, we
sketch the construction of the p-compact groups X(q, r, n) as a homotopy colimit
following [22].

Let H be a family of subgroups of a given finite group G. The orbit category
OH(G) associated to H is the category whose objects are orbits G/H for each
H ∈ H and morphisms are given by G-maps between orbits, HomG(G/H,G/K).

Definition 2.1. [22] Let H be the family of subgroups H ≤ G(q, r, n) conjugate
to some Σ(Π) := Σn1 × · · · × Σns where n1 + · · · + ns = n and ni = pj for some
j ∈ N ∪ {0}.

Theorem 2.2. [22] Fix any odd prime p, any r|q|(p−1) with q > 1, and any n > 1.
Let G(q, r, n) and OH(G(q, r, n)) be as above. Then there exists a functor Ψ,

Ψ : OH(G(q, r, n)) −→ Top

such that:
(1) For any partition {n1, . . . , ns} of n with ni = pj for some j ∈ N ∪ {0},

Ψ(G/Σ(Π)) ' BU(Π)∧p .
(2) The composite H∗(−; Ẑp) ◦Ψ is isomorphic to the fixed point functor

G(q, r, n)/H - Z∧p [x1, . . . , xn]H .

(3) If we set BX(q, r, n) := (hocolim Ψ)∧p ,

H∗(BX(q, r, n); Fp) ∼= Fp[x1, . . . , xn]G(q,r,n).

Notation. For simplicity, we will use the following notation,

X× : = X(q1, r1, n1)× · · · ×X(qs, rs, ns),

G× : = G(q1, r1, n1)× · · · ×G(qs, rs, ns),
where ri|qi|(p − 1) for any i = 1, . . . , s. H× is the family of subgroups of G×

corresponding to the product H1 × · · · × Hs where Hi is the family H considered
in Definition 2.1 corresponding to G(qi, ri, ni).

The special feature of families H in Definition 2.1 is described in [22, Lemma
3.1]: each p-subgroup of G(q, r, n) is contained in a unique minimal element in H.
This property is strongly used in order to compute higher limits of certain functors
([22, Section 2]). In the next lemma, we check that this property is also satisfied
when we consider products of such families of subgroups.

Lemma 2.3. Let G1, G2 be two finite groups. If Hi is a family of subgroups of
Gi for i = 1, 2 such that each p-subgroup of Gi is contained in a unique minimal
element of Hi, then the family H1 ×H2 defined in the obvious way (H ∈ H1 ×H2
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if and only if H = H1 × H2 where Hi ∈ Hi for i = 1, 2) also satisfies the same
property with respect to G1 ×G2.

Proof. For i = 1, 2, let pi : G1×G2 → Gi be the corresponding projections on each
component. We need to check that if P is a p-subgroup of G1 × G2, then there
exists a unique minimal H1 ×H2 ∈ H1 ×H2 such that P ≤ H1 ×H2.

First of all, we observe that if Pi = pi(P ), then P ≤ P1 × P2, where Pi ≤ Gi
are p-subgroups for i = 1, 2. By [22, Lemma 3.1], there exists a unique minimal
subgroup Hi ∈ Hi such that Pi ≤ Hi. Therefore, P ≤ P1 × P2 ≤ H1 ×H2.

Next, we show that this subgroup H1×H2 is minimal. Suppose that there exists
Q1×Q2 ∈ H1×H2 such that P ≤ Q1×Q2. Since Pi = pi(P ) ⊂ pi(Q1×Q2) = Qi
and Hi are minimal with this property, it follows that Hi ⊂ Qi. Finally, we obtain
that H1 ×H2 ⊂ Q1 ×Q2. �

Proof of Theorem A. We denote G(q, r, n) simply by G. Each subgroup in the
family H× also belongs to the family H of subgroups defined for G in Definition
2.1. Therefore, there exists a functor between the corresponding orbit categories,

φ : OH×(G×) −→ OH(G),

defined on objects by φ(G×/H) = G×G× G×/H ∼= G/H and, in the obvious way,
on morphisms (a G×-equivariant map G×/H → G×/K induces a G-equivariant
map G×G× G×/H → G×G× G×/K).

Let Ψ : OH(G)→ Top be the functor defined in Theorem 2.2 such that

BX(q, r, n) := (hocolim
OH(G)

Ψ)∧p ,

and Ψ(G/Σ(Π)) ' BU(Π)∧p .
The composite Ψ ◦ φ provides an induced functor on OH×(G×),

φ\(Ψ) = Ψ ◦ φ : OH×(G×)→ OH(G)→ Top,

and a map between the p-completions of the corresponding homotopy colimits,

( hocolim
OH× (G×)

φ\(Ψ))∧p → (hocolim
OH(G)

Ψ)∧p .

In order to construct the map Φ, it only remains to show that the homotopy
colimit on the left hand side is homotopy equivalent to BX×. We proceed by
constructing a map

i : ( hocolim
OH× (G×)

φ\(Ψ))∧p → BX×,

which induces an isomorphism in mod p cohomology. For each G×/Σ(Π), where
Σ(Π) ∈ H×, there is a map

iΠ : φ\(Ψ)(G×/Σ(Π)) '
∏

BU(ni)→ BX×.

All these maps combine to define an element in the inverse limit

[{iΠ}] ∈ lim
OH× (G×)

[
∏

BU(ni), BX×].

The obstructions to extend {iΠ} to a map from the homotopy colimit are de-
scribed by Wojtkowiak in [28]. These obstructions lie in

lim←−
i+1

OH× (G×)

πi(Map(BU(n1)× · · · ×BU(ns), BX×)iΠ).
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We show that these higher limits vanish by describing the homotopy type of the
mapping spaces involved. There is a homotopy equivalence of spaces ([22, Propo-
sition 4.6])

Map(BU(n1)× · · · ×BU(ns), BX×)iΠ ' BZ(
∏

BU(ni)).

Since BZ(U(Π))∧p ' K(((Ẑp)n)Σ(Π), 2), the following homotopy groups

πi(Map(BU(n1)× · · · ×BU(ns), BX×)iΠ) = πi(BT )Σ(Π),

are the invariants by a permutation action. By Lemma 2.3, the family H× satisfies
the hypothesis of [22, Proposition 2.3]. Therefore, the higher limits vanish,

lim←−
i

OH× (G×)

πj(BT )Σ(Π) =

{
0 i > 0
πj(BT )G

×
i = 0.

(1)

It remains to show that the map just constructed induces an isomorphism on
mod p cohomology. In order to compute the cohomology of the homotopy colimit
of the functor φ\, we use the Bousfield-Kan spectral sequence [4]. It is a spectral
sequence with E2-term

Ei,j2
∼= lim←−

i

G×/Σ(Π)∈OH× (G×)

Hj(BU(Π))

converging to H∗(hocolimOH× (G×) φ\(Ψ)).
This spectral sequence collapses at the E2 term because of the vanishing of the

following higher limits ([22, Proposition 2.3]):

lim←−
i

G×/Σ(Π)∈OH× (G×)

Hj(BU(Π)) ∼= lim←−
i

G×/Σ(Π)∈OH× (G×)

Fp[x1, . . . , xn]Σ(Π)

∼=
{

0 i > 0
Fp[x1, . . . , xn]G

×
i = 0.

Therefore, H∗(BX×) ∼= Fp[x1, . . . , xn]G
×
, and, by construction, the map i induces

an isomorphism in mod p cohomology.
Summarizing, we have constructed a morphism of p-compact groups

BX× ' ( hocolim
OH× (G×)

φ\(Ψ))∧p → BX

which induces the coordinate-wise inclusion of Weyl groups

(G(q1, r1, n1), Ln1)× · · · × (G(qs, rs, ns), Lns
) ι→ (G(q, r, n), Ln).

Moreover, Φ is a regular (also called p-toric) map (see [21, Proposition 2.4 ]).
Therefore, the induced morphism between the Weyl groups is unique.

Assume that f : X× → X is another morphism of p-compact groups such that
that the induced map in the Weyl groups is ι. SinceH∗(BX; Q∧

p ) ∼= H∗(BT ; Q∧
p )WX

([9, Theorem 9.7]), Bf and BΦ induce the same morphism in rational cohomology.
The restrictions of Bf and BΦ to each BU(Π)∧p also induce the same homomor-
phism in H∗(−; Ẑp) ⊗ Q. Applying [22, Proposition 3.3] to the situation in which
X = X(q, r, n), G = U(n) and H = U(Π), we obtain that, in fact, these restrictions
are homotopic. That means that BΦ and Bf define the same element in the inverse
limit

lim
OH(Π)(G×)

[BU(Π)∧p , BX].
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The obstructions for the two maps to be homotopic lie in the following higher
limits (see [28]),

lim←−
i

G/Σ(Π)∈OH× (G×)

πi(Map(BU(Π)∧p , BX)iΠ)

for i ≥ 1. These higher limits have been computed in (1) and they all vanish.
Therefore, the obstructions for uniqueness vanish, and Bf ' BΦ. �

Lemma 2.4. Let i : BZ/pZ → BU(n) × (BS1)m → BX(q, r,m + n), where the
first map is given by the inclusion of Z/pZ in the centre of U(n) and the last map
is the corresponding inclusion of

Ψ(G(q, r, n+m)/(Σn × 1× · · · × 1)) ' BU(n)∧p × ((BS1)∧p )m

into the homotopy colimit BX(q, r,m+ n). Then,

Map(BZ/p,BX(q, r, n+m))i ' BU(n)×BX(q, r,m),

up to p-completion.

Proof. The cohomology of the mapping space can be computed using Lannes T -
functor machinery [16]. The components of the T-functor applied to algebras of
invariants can be computed by means of the isotropy subgroups of each component
(see [11, Proof of Theorem 1.1]). Since the isotropy subgroup of i∗ is Σn×G(q, r,m),
then

Ti∗(H∗(BX(q, r, n+m))) ∼= Ti∗(Fp[x1, . . . , xn+m]G(q,r,m+n))
∼= Fp[x1, . . . , xn+m]Σn×G(q,r,m)

∼= H∗(BU(n)×BX(q, r,m)).

Next, we consider the composite

BZ/pZ×BU(n)∧p ×BX(q, r,m)
µ×id→ BU(n)∧p ×BX(q, r,m)→ BX(q, r, n+m)

where the first map is given by multiplication with the central subgroup Z/pZ in
U(n) and the last one is a morphism described in Theorem A. From the previous
considerations on the cohomology of that mapping space, it follows that the adjoint
of the above composite of morphisms

BU(n)∧p ×BX(q, r,m)→ Map(BZ/pZ, BX(q, r, n+m))i

induces an isomorphism in mod p cohomology. �

Proof of Theorem B. We consider the following composite

gΠ : BU(Π) i1→ BU(Π)× (BS1)m → BX(q, r, n+m),

where the first map is the inclusion in the first factor and the last map is the
corresponding inclusion of

Ψ(G(q1, r1, n)/(Σ(Π)× 1× · · · × 1)) ' BU(Π)∧p × ((BS1)∧p )m

into the homotopy colimit BX(q, r,m+ n).
Next, we check that these maps commute up to homotopy with maps induced

by morphism in the orbit category OH(G(q1, r1, n)). Let f be such a morphism in
the orbit category inducing the following diagram,
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BU(Π)∧p
i1- BU(Π)∧p × ((BS1)∧p )m - BX(q, r, n+m)

BU(Π′)∧p

f
? i1- BU(Π′)∧p × ((BS1)∧p )m.

g
?

-

The maps induced by morphisms in the orbit category are of three types. We
consider them separately. If f is an inclusion map or a permutation of the factors,
then we take g = f× id. If f is a product of Adams operations Ψa1×· · ·×Ψas , then
we let g = Ψa1 × · · · ×Ψas ×Ψ(a1···as)−1 × id. With this choice of g, the left square
is homotopy commutative. The right triangle is homotopy commutative because it
commutes in H∗(−; Ẑp)⊗Q ([22, Proposition 3.3]).

Summarizing, we have obtained an element in the following inverse limit:

{[gΠ]} ∈ lim
OH(G(q1,r1,n))

[BU(Π)∧p , BX(q, r, n+m)].

The obstructions to extend these compatible maps to a morphism fromBX(q1, r1, n)
lie in the following higher limits ([28]):

lim←−
i+1

OH(G(q1,r1,n))

πi(Map(BU(Π)∧p , BX(q, r, n+m))gΠ).

First, we analyze the homotopy type of these mapping spaces,

Map(BU(Π)∧p , BX(q, r, n+m))gΠ

' Map(BZ/p×BU(Π)∧p , BX(q, r, n+m))gΠ◦Bmult
' Map(BU(Π)∧p ,Map(BZ/p,BX(q, r, n+m))gΠ|BZ/p

)ad,

where Z/pZ is a central subgroup of U(Π) which is also central in U(n). The first
homotopy equivalence follows from [9, Lemma 7.5]. Moreover, by Lemma 2.4,

Map(BZ/p,BX(q, r, n+m))gΠ|BZ/p
' BU(n)×BX(q, r,m),

up to p-completion. Therefore, by [22, Proposition 4.6]

Map(BU(Π)∧p , BX(q, r, n+m))gΠ ' Map(BU(Π)∧p , BU(n)∧p ×BX(q, r,m))incl×∗
' BZ(U(Π))∧p ×BX(q, r,m).

Applying [22, Proposition 2.3], we obtain the desired vanishing result,

lim←−
i πj(Map(BU(Π), BX(q, r, n+m))gΠ)

∼= lim←−
i πj(BTn)Σ(Π) × πj(BX(q, r,m)) = 0,

if i > 0.
Finally, BΓ is a monomorphism since the cohomology of its homotopy fiber is

Fp-finite (Definition 3.1 and Proposition 3.2). �

The uniqueness properties of the maps constructed in Theorems A and B can
be used to check that the following diagrams are homotopy commutative:

BX(q1, r1, n1)×BX(q2, r2, n2)×BX(q3, r3, n3)
BΦn1,n2 × id- BX(q, r, n1 + n2)×BX(q3, r3, n3)

BX(q1, r1, n1)×BX(q, r, n2 + n3)

id×BΦn2,n3

?

BΦn1,n2+n3

- BX(q′, r′, n1 + n2 + n3)

BΦn1+n2,n3
?
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BX× τ - BX×

BX(q, r, n)

BΦ
? =- BX(q, r, n)

BΦ
?

where τ is any permutation of the factors. These diagrams can be interpreted as
the homotopy associative and commutative property of the morphisms described
in Theorem A. Moreover, we see next that BΦ commutes with certain selfmaps.

The classification of self maps of the p-compact groups X(q, r, n) is described in
[22, Theorem 7.2]. Among them there are unstable Adams’ operations ψa for each
a ∈ (Ẑp)∗,

ψa : BX(q, r, n)→ BX(q, r, n).
The induced map on maximal tori BT∧p → BT∧p is multiplication by a. For each
a = (a1, . . . , an) ∈ ((Ẑp)∗)n, we can consider a self map of type

ψa := ψa1 × · · · × ψan : BX× → BX×.

There is another type of selfmaps ϕa of BX(q, r, n) which we consider. They are
given by elements a = (a1, n1. . ., a1, . . . , as, ns. . ., as) ∈ µnq ⊂ ((Ẑp)∗)n. Its restriction to
the maximal torus is (ψa1)n1 × · · · × (ψas)ns . Again, by the uniqueness property
of the morphisms Φ constructed in Theorem A, the following square is homotopy
commutative,

BX× ψa1 × · · · × ψas

- BX×

BX

BΦ
? ϕa - BX.

BΦ
?

Proposition 2.5. The following diagram is homotopy commutative,

BX(q, r, n)×BX(q, r1, s)
BΓ× id- BX(q, r1, n+m)×BX(q, r1, s)

BX(q, r,m+ n)

BΦ
? BΓ - BX(q, r1,m+ n+ s),

BΦ
?

where
q

r1
|q
r
.

Proof. First, we check that the diagram commutes when restricted to subgroups
(BU(Π)×BU(Π′))∧p in BX(q, r, n)×BX(q, r1, s). This fact follows from the fac-
torization of this restriction map through the corresponding diagram of unitary
subgroups

BU(Π)∧p ×BU(Π′)∧p
i× id- (BU(Π)∧p × ((BS1)∧p )m)×BU(Π′)

BU(Π)∧p ×BU(Π′)

id
? id×1- BU(Π)∧p ×BU(Π′)× ((BS1)∧p )m

τ
?

BX(q, r1,m+ n+ s).
?
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Therefore BΦ◦ (BΓ× id) and BΓ◦BΦ define the same element in the inverse limit

lim←−
OH(G(q,r,n)×G(q,r1,m))

[(BU(Π)×BU(Π′))∧p , BX(q, r1, n+m+ s)].

The obstructions to uniqueness of the extension lie in the following higher limits
([28]):

lim←−
i πi(Map((BU(Π)×BU(Π′))∧p , BX(q, r1,m+ n+ s))gΠ).

If we show that these higher limits vanish, then the proof is complete. We first
analyze the homotopy type of these mapping spaces.

Map((BU(Π)×BU(Π′))∧p , BX(q, r1,m+ n+ s))gΠ
' Map(BZ/p×BU(Π)∧p ×BU(Π′)∧p , BX(q, r1,m+ n+ s))gΠ×Π′◦Bmult

' Map(BU(Π)∧p ×BU(Π′)∧p ,Map(BZ/p,BX(q, r1, n+m+ s))gΠ|BZ/p
)ad,

where Z/pZ is a central subgroup of U(Π)×U(Π′) which is also central in U(n+s).
The first homotopy equivalence follows from Lemma [9, Lemma 7.5] and, by Lemma
2.4,

Map(BZ/p,BX(q, r1,m+ n+ s))gΠ×Π′ |BZ/p
' BU(n+ s)×BX(q, r1,m),

up to p-completion.
Therefore,

Map(BU(Π)∧p ×BU(Π′)∧p , BX(q, r, n+ 1))gΠ
' Map(BU(Π)×BU(Π′), BU(m+ n)×BX(r1, r1, 1))incl×∗
' BZ(U(Π)× U(Π′))∧p ×BX(r1, r1, 1),

where the last equivalence follows from [22, Proposition 4.6] and [12, Theorem 9.3].
Finally, [22, Proposition 2:3] implies that, if i > 0,

lim←−
i πj(Map(BU(Π), BX(q, r1,m+ n+ s))gΠ)

∼= lim←−
i πj(BT (n+ s))Σ(Π)×Σ(Π′) × πj(((BS1)∧p )m) = 0.

�

Proposition 2.6. Let ϕa be the automorphism of BX(q, r1,m) defined by
a = (1, . . . , 1, a′) ∈ µmq . Then ϕa ◦BΓ ' BΓ.

Proof. We notice that ϕa ◦BΓ and BΓ are homotopic when restricted to any sub-
group BU(Π) by construction. Hence, by uniqueness of extension, we obtain that
ϕa ◦BΓ ' BΓ. �

The monomorphisms of p-compact groups

in : X(q, r, n)→ X(q, r, n)×X(q, r, 1)→ X(q, r, n+ 1),

where the second map is a morphism described in Theorem A, allow us to define
the following homotopy colimit

BX(q, r) : = hocolim
n∈N

BX(q, r, n).

We can also consider the infinite disjoint union of p-compact groups,

W (q, r) :=
∐
n≥0

BX(q, r, n).
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The map
∐
BΦn,m provides an structure of homotopy associative and commutative

topological monoid with unit given by ∗ =: BX(q, r, 0) in W (q, r). Both spaces are
related by the group completion theorem [19]. The group completion theorem says
that if K is a homotopy commutative topological monoid and if Gr(K) : = ΩBK
is its topological group completion, then π0(Gr(K)) ∼= Gr(π0(K)) and there is a
homology equivalence

hocolim
x∈π0(K)

Kx → Gr(K)1

where Gr(K)1 is the component of the identity.

Corollary 2.7. There is a homology equivalence

hocolim
N

BX(q, r, n)→ (ΩBW (q, r))1

and π0(ΩBW (q, r)) ∼= Z.

Moreover, the homotopy type of BX(q, r) does not depend on r.

Proposition 2.8.
BX(q, r) 'p BX(q, q)

for any r|q|p− 1.

Proof. There is a map Bi : BX(q, r) → BX(q, q) induced by the morphisms of
p-compact groups BΦ : BX(q, r, n)→ BX(q, q, n) constructed in Theorem A. It is
easily seen that the cohomology of these spaces does not depend on r,

H∗(BX(q, r)) ∼= Fp[y1, y2, . . .]

where deg(yi) = 2qi. And Bi induces an isomorphism in mod p cohomology, hence,
they are homotopy equivalent, up to p-completion. �

3. Homogeneous spaces

This section is devoted to the study of several homogeneous spaces arising from
the existence of the morphisms Φ in Theorem A. These homogeneous spaces are
the homotopy fibres of several morphisms between p-compact groups defined in
Section 2. In particular, we show that they are Fp-finite. The main tool used is the
Eilenberg-Moore spectral sequence developed in [14] and studied for homogeneous
spaces in [3] and [18].

Definition 3.1. Let Gn,m(q1, r1, q, r), Vn,m(q1, r1, q, r) and Wn,m(q1, r1, q, r) be
the following homogeneous spaces:

(1) Gn,m(q1, r1, q, r), is the homotopy fibre of the map

BΦ: BX(q1, r1,m)×BX(q1, r1, n)→ BX(q, r,m+ n)

in Theorem A.
(2) Vn,m(q1, r1, q, r) is the homotopy fibre of the inclusion map

ι : BX(q1, r1, n)→ BX(q1, r1, n)× ((BS1)∧p )m → BX(q, r, n+m).

(3) Wn,m(q1, r1, q, r) is the homotopy fibre of the map

BΓ : BX(q1, r1, n)→ BX(q, r, n+m)

in Theorem B.
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Inspired by the situation with matrix groups, we obtain the following diagrams
of fibrations up to homotopy.

X(q, r,m) ============== X(q, r,m)

Vn,m(q1, r1, q, r)
?

- BX(q1, r1, n)
?

- BX(q, r,m+ n)

Gn,m(q1, r1, q, r)
?

- BX(q1, r1, n)×BX(q1, r1,m)
?

- BX(q, r, n+m)

wwwww
The next proposition describes the cohomology of several homogeneous spaces

introduced in Definition 3.1. In particular, it shows that they are Fp-finite and
therefore, the maps in Definition 3.1 are monomorphisms.

Proposition 3.2.

(1) If m > 0,

H∗(Vn,m(q, r1, q, r); Fp) ∼= Λ(an+1, . . . , am+n−1, b)⊗ Fp[h]/(hr1),

where deg(ai) = 2iq − 1, deg(b) = 2(m+ n)
q

r
− 1, deg(h) = 2n

q

r1
.

H∗(Vn,0(q, r1, q, r); Fp) ∼= Fp[h]/(hr/r1)

where deg(h) = 2n
q

r1
.

(2)

H∗(Wn,m(q, r1, q, r); Fp) ∼= Λ(an+1, . . . , am+n−1, f)⊗ Fp[e]/(er1),

where deg(ai) = 2iq − 1, deg(e) = 2n
q

r1
and deg(f) = 2(n+m)

q

r
− 1.

Proof. If (E, p,B) is a fibration over the simply connected space B, the Eilenberg-
Moore spectral sequence is a spectral sequence of commutative algebras {Er, dr}
converging to H∗(F ; k) where F is the fiber, and E2 = TorH∗(B;k)(H∗(E; k), k).

When the spaces E and B are finite loop spaces, the convergence of this spectral
sequence has been discussed in [18]. The results in [18] imply the convergence of
the spectral sequence and that H∗(F ) ∼= TorH∗(B)(H∗(E),Fp), where H∗(E) is a
H∗(B)-module via p∗.

When both algebras H∗(E) and H∗(B) are polynomial, TorH∗(B)(H∗(E),Fp) is
computed in [3, Lemma 4.11]. It is an exterior algebra on the desuspension of the
kernel of p∗ tensor the cokernel of p∗. The mod p cohomology of the p-compact
groups X(q, r, n) is polynomial. More precisely, it is given by

H∗(BX(q, r1, n)) ∼= Fp[y1, . . . , yn−1, e]

and

H∗(BX(q, r,m+ n)) ∼= Fp[z1, . . . , zm+n−1, f ]

where deg(yi) = deg(zi) = 2qi, deg(e) = 2n
q

r1
and deg(f) = 2(m + n)

q

r
(see [22,

Proposition 1.4]).
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(1) The induced morphism Bι∗ in mod p cohomology is

Bι∗(zi) =


yi i = 1, . . . , n− 1
er1 i = n

0 i = n+ 1, . . . ,m+ n− 1,

and Bι∗(f) = 0 if m > 0 or Bι∗(f) = er1/r if m = 0. Therefore, by [3, Lemma
4.11] we obtain the following description of the E2-term of the spectral sequence.

TorH∗(BX(q,r,m+n))(H∗(BX(q, r1, n)); Fp)
∼= Λ(an+1, . . . , am+n−1, bm)⊗ Fp[h]/(hr1).

where deg(ai) = 2qi− 1, deg(bm) = 2(m+ n)
q

r
− 1 and deg(f) = 2n

q

r1
.

If m = 0, then

TorH∗(BX(q,r,n))(H∗(BX(q, r1, n)),Fp) ∼= Fp[h]/(hr/r1)

where deg(h) = 2n
q

r1
.

(2) The morphism Γ induces the following algebra morphism in mod p cohomology,

BΓ∗(zi) =


yi i = 1, . . . , n− 1
er1 i = n

0 i = n+ 1, . . . ,m+ n− 1

and BΓ∗(f) = 0. Therefore, the E2-term of the spectral sequence is of the form

TorH∗(BX(q,r,m+n))(H∗(BX(q, r1, n)),Fp)
∼= Λ(an+1, . . . , am+n−1, b)⊗ Fp[h]/(hr1),

where deg(ai) = 2iq − 1, deg(h) = 2n
q

r1
and deg(b) = 2(n+m)

q

r
− 1. �

Corollary 3.3.

(1) H∗(Vn,0(q, r1, q, r)) ∼= Fp[h]/(hr1/r), deg(f) = 2n
q

r1
. In particular,

Vn,0(q, 2r, q, r) ' (S(nq)/r)∧p .

(2) H∗(Vn,1(q, r, q, r); Fp) ∼= Λ(b) ⊗ Fp[h]/(hr), deg(b) = 2(n + 1)
q

r
− 1 and

deg(h) = 2n
q

r1
. In particular, Vn,1(q, 1, q, 1) ' (S2(n+1)q−1)∧p .

(3) Wn,1(p− 1, 1, p− 1, p− 1) ' (S2n+1)∧p .

The proof of the following proposition follows by induction and it is analogous
to that of the classical case for compact Lie groups (see, for example, [27, Chapter
IV, 10.II]).

Proposition 3.4. The monomorphisms between p-compact groups in Theorem A
induce the morphisms between homotopy groups with the following properties:

(1)
πi(BX(q, q,m− 1))→ πi(BX(q, q,m))

is an isomorphism for i < 2mq − 1, and epimorphism for i = 2mq − 1.
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(2)

πi(BX(q, r,m))→ πi(BX(q, 2r,m))

is isomorphism for i < 2mr, and epimorphism for i = 2mr.
(3)

πi(Vn−1,m−1(q, q))→ πi(Vn,m(q, q))

is isomorphism for i < 2mq − 2, and epimorphism for i = 2mq − 2.s

πi(Vn,m(q, q)) = 0 for i < 2(m− n+ 1)q − 1.

Corollary 3.5.

πi(Vn,∞(q, q)) = 0 ∀i.

Corollay 3.5 is relevant when applied to the following fibration

X(q, q, n) - Vn,∞(q, q) - Gn,∞(q, q).

Since Vn,∞(q, q) is weakly contractible, it follows that ΩGn,∞(q, q) is weakly
equivalent to X(q, q, n).

Hopf fibrations arise as a particular cases of the fibrations described. When we
consider unitary groups, we obtain the Hopf fibration

S1 → S3 → S2

as a special case of a fibration of a Stiefel variety over a Grassmann manifold.
When we are dealing with p-compact groups X(q, r, n), we obtain mod p fibrations
of spheres by spheres.

Proposition 3.6. There exist fibrations of spheres by spheres mod p,

(S2q−1)∧p - (S2(n+1)q−1)∧p - Gn,1(q, 1, q, 1)

Proof. Consider the fibration

X(q, 1, 1)→ Vn,1(q, 1, q, 1)→ Gn,1(q, 1, q, 1).

The p-compact group X(q, 1, 1) ' (S2q−1)∧p is a Sullivan sphere and from Corollary
3.3, Vn,1(q, 1, q, 1) ' (S2(n+1)q−1)∧p . �

These fibrations correspond to fibrations of type I in the paper by Aguadé [1].
Gn,1(q, 1, q, 1) is called a S2q−1-projective (n+ 1)-space whose cohomology is

H∗(Gn,1(q, 1, q, 1); Fp) ∼= Fp[f ]/(fn+1)

where deg(f) = 2q.

Remark 3.7. When n = 1 we obtain a fibration of mod p spheres

(S2q−1)∧p - (S4q−1)∧p - (S2q)∧p

analog to the Hopf fibration.
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4. Mod p spherical fibrations

A mod p spherical fibration is an orientable Hurewicz fibration π : E → B whose
fibre has the homotopy type of a p-complete sphere. The associated Thom space is
the homotopy cofiber of π, and its reduced mod p cohomology is also an example
of an H∗(B)-Thom module.

In Corollary 3.3, we described several homogeneous spaces arising from p-compact
groups X(q, r, n) which are p-completed spheres.

In particular, we consider the fibration whose fibre is the homogeneous space
Wn,1(p− 1, 1, p− 1, p− 1) ' (S2n+1)∧p .

Proposition 4.1. The Euler class of the spherical fibration ηn+1,

(S2n+1)∧p → BX(p− 1, 1, n)→ BX(p− 1, p− 1, n+ 1)

is e ∈ H∗(BX(p − 1, p − 1, n + 1)) ∼= Fp[y1, . . . , yn, e], deg(yi) = 2i(p − 1) and
deg(e) = 2(n+ 1).

Proof. [5] Note that BΓ∗ is onto (proof of Proposition 3.2) and, by Corollary 3.3,
W (p−1, 1, p−1, p−1) ' (S2n+1)∧p . Then, the Gysin long exact sequence associated
to the fibration

(S2n+1)∧p → BX(p− 1, 1, n) BΓ→ BX(p− 1, p− 1, n+ 1)

gives rise to a short exact sequence

0→ Fp[y1, . . . , yn, e]
·χ→ Fp[y1, . . . , yn, e]→ Fp[y1, . . . , yn]→ 0

It is easy to check that the mod p Euler class is χ = e. �

Remark 4.2. Let R be an unstable algebra over the Steenrod algebra A. A Thom
module M over R is a free R ◦ A-module of rank 1 as an R-module where R ◦ A
denotes the semi-tensor product. A Thom module is unstable if it is unstable as
a A-module. The notion of a Thom module appears for the first time in Handel
[15]. The classification of Thom modules was addressed in [6] via the universal
Thom modules T (n) over Fp[q1, . . . , qn] = Fp[t1, . . . , tn]G(p−1,1,n) with Thom class
E = t1 · · · tn. The cohomology of the Thom space associated to ηn+1 is T (n). This
fact can be used to realize Thom modules as the cohomology of a Thom space.

Let F → E
p1→ B and F ′ → E′

p2→ B′ be two fibrations. Consider the following
commutative diagram

F � F × F ′ - F ′

E ×B′
?

�1× p2
E × E′

? p1 × 1- B × E′
?

B ×B′.
? �

p2
p
1

-

By Puppe’s theorem [24], taking homotopy colimits in the fibre and total spaces
produces another fibration whose fibre is F ? F ′,

F ? F ′ → Ē → B ×B′,

where Ē is the homotopy colimit of the diagram in the middle row. This construc-
tion is the fibrewise join fibration.
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Proposition 4.3. Let ηn be the mod p spherical fibration defined in Proposition 4.1.
Let BΦ∗(ηn+m) be the pullback of ηn along BΦ, where Φ is a morphism described
in Theorem A,

BΦ : BX(p− 1, p− 1, n)×BX(p− 1, p− 1,m)→ BX(p− 1, p− 1, n+m),

Then, the mod p spherical fibration BΦ∗(ηn+m) is the fibrewise p-completion of the
join fibration ηn ∗ ηm.

Proof. We construct a map of fibrations ηn ? ηm → BΦ∗(ηn+m). The total space
of ηn ? ηm is the homotopy colimit of

BX(p− 1, 1, n− 1)×BX(p− 1, 1, m− 1)
id×BΓ- BX(p− 1, 1, n− 1)×BX(p− 1, p− 1, m)

BX(p− 1, p− 1, n)×BX(p− 1, 1, m− 1)

BΓ× id

?

and the total space of BΦ∗(ηn+m) is the homotopy inverse limit of the diagram

BX(p− 1, 1, n+m− 1)

BX(p− 1, p− 1, n)×BX(p− 1, p− 1,m)
BΦ- BX(p− 1, p− 1, n+m).

BΓ
?

In order to construct the map between the total spaces, we use the maps BΦ
described in Theorem A. Because of the above description of both total spaces, we
only need to check the homotopy commutativity of the following two diagrams

BX(p− 1, 1, n− 1)×BX(p− 1, 1, m− 1)
id×BΓ- BX(p− 1, 1, n− 1)×BX(p− 1, p− 1, m)

BX(p− 1, p− 1, n)×BX(p− 1, 1, m− 1)

BΓ× id

?
BΦ - BX(p− 1, 1,n + m− 1)

BΦ

?

BX(p− 1, 1, n− 1)×BX(p− 1, 1, m− 1)
id×BΓ- BX(p− 1, 1, n− 1)×BX(p− 1, p− 1, m)

BX(p− 1, p− 1, n)×BX(p− 1, 1, m− 1)

BΓ× id

?
id×BΓ- BX(p− 1, p− 1, n)×BX(p− 1, p− 1, m)

BΓ× id

?

The commutativity of the first diagram is easy to check. The commutativity of
the second one follows from Proposition 2.5. Therefore, we obtain a map between
the total spaces. This map also commutes with the projections: the corresponding
diagrams commute up to homotopy because of the compatibility of Γ with the
morphisms in Theorem A described in Proposition 2.5.

Finally, we use the Serre spectral sequence in order to prove that the map between
the fibres induces an isomorphism in mod p cohomology. By the naturality of the
transgression morphism in the Serre spectral sequence, the mod p Euler class of
ηn+m, en+m ∈ H∗(BX(p− 1, p− 1, n+m)), maps to the mod p Euler class of the
pullback fibration BΦ∗(ηn+m), BΦ∗(en+m) = enem ∈ H∗(BX(p − 1, p − 1, n)) ⊗
H∗(BX(p − 1, p − 1,m)), which is non trivial. Hence, the induced morphism in
the fibres is an isomorphism in mod p cohomology and, therefore, is an homotopy
equivalence up to p-completion. �
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Corollary 4.4. Let Bin : BX(p−1, p−1, n)→ BX(p−1, p−1, n+1). The pullback
of the mod p spherical fibration ηn+1 along Bin satisfies Bi∗n(ηn+1) ∼= ηn ? S

1.

Proof. The monomorphism in factors through the morphism

BΦ : BX(p− 1, p− 1, n)×BX(p− 1, p− 1, 1)→ BX(p− 1, p− 1, n+ 1)

in Theorem A. By Proposition 4.3, the pullback is the join fibration of the restric-
tion to both factors, and we remark that the second is the trivial map on the second
factor. �

Let BSG be the classifying space of the orientable spherical fibrations. The mod
p cohomology (p odd) of BSG is

H∗(BSG; Fp) ∼= Fp[q1, q2, . . .]⊗ Λ(βq1, βq2, . . .)⊗ C,
where qi are the Wu classes in dimensions 2i(p− 1) and C is the tensor product of
an exterior algebra and a divided power algebra (see [26]).

To show the relation between BX(p− 1) and BSG we will use the techniques of
Nil-localization (see [7] for more details).

Proof of Theorem D. Each spherical fibration ηn is classified by a map

Jn : BX(p− 1, p− 1, n)→ BSG∧p .

Since the restriction ηn|BX(p−1,1,n−1)
∼= ηn−1 ∗ S1 (Corollary 4.4), these maps

are compatible with respect to the monomorphisms BX(p − 1, p − 1, n − 1) →
BX(p − 1, p − 1, n). Therefore, they induce a map in the homotopy colimit J :
BX(p− 1)→ BSG∧p .

The mod p Euler class of ηn+1 is e (Proposition 4.1) and the spherical character-
istic classes are given by applying Steenrod operations to the Thom class. Recall
that

e = x1 · · ·xn+1 ∈ Fp[x1, . . . , xn+1]G(p−1,p−1,n+1),

therefore,

P(e) = (
n+1∏
i=1

(1 + xp−1
i ))e = (1 + q1 + · · ·+ qn + ep−1)e.

The morphism J∗ is an isomorphism onto the polynomial part Fp[q1, q2, . . .].
From [26], we know that H∗(BSG) ∼= Fp[q1, q2, . . .] ⊗ C where C is the tensor

product of an exterior algebra and a divided power algebra mod p. Hence C is
nilpotent. Since S∗ is an epimorphism and the kernel is nilpotent, J∗ is an F -
isomorphism. �

Corollary 4.5. Let V be an elementary abelian p-group, then the orientable spher-
ical fibrations mod p over BV are classified by BX(p − 1). That is, there is a
bijection

[BV,BX(p− 1)] ∼= [BV,BSG∧p ].

Proof. One consequence of Theorem D, and is that J∗ induces an isomorphism

HomK(H∗(BSG),H∗(BV )) ∼= HomK(H∗(BX(p− 1)),H∗(BV )).

It follows from the fact that H∗(BV ) is an injective object in the category of
unstable modules over the Steenrod algebra, and that it is also a reduced module
(see [17]).
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Since BX(p − 1) and BSG are spaces of finite type, by Lannes theory [16] we
obtain the following bijections

[BV,BX(p− 1)] ∼= HomK(H∗(BX(p− 1)),H∗(BZ/pZ)),

[BV,BSG] ∼= HomK(H∗(BSG),H∗(BZ/pZ)),

which complete the proof. �

5. A complexification map

This section contains the proof of Theorem E. First, we describe the injective
morphism between the corresponding Weyl groups (G(q, r, n), Ln) → (Σqn, Lqn)
which will be topologically realized by a morphism between p-compact groups
X(q, r, n)→ U(nq)∧p .

There is a natural action of G(q, r, n) on Cn by linear transformations. We
consider the basis {e1, . . . , en} of the C-vector space where ei = (0, . . . , 1(i, · · · 0).
It is easy to check that the orbit of e1 by the action of G(q, r, n) is

{e1, . . . , en, ξe1, . . . , ξen, ξ2e1, . . . , ξ2en, . . . , ξq−1e1, . . . , ξ
q−1en}

where ξ is a primitive complex qth root of the unity. G(q, r, n) acts transitively
on the orbit as a group of permutations, and this correspondence gives a group
morphism φ : G→ Σnq.

Notice that φ is injective: if g ∈ G(q, r, n) satisfies that φ(g) = id, in particular,
gei = ei, and that means that g = id.

Proof of Theorem E. We consider the group of qth roots of the unity µq ⊂ µp−1,
and we use them to define a map

Bc := ψ0 × ψ1 × · · · × ψq−1 : BU(n)∧p → BU(n)∧p × · · · ×BU(n)∧p ≤ BU(nq)∧p ,

where ψα are unstable Adams’ operations on BU(n)∧p of order ξα.
The restriction of Bc to each BU(Π)

Bc|BU(Π)∧p
: BU(Π)∧p → BU(Π)∧p × · · · ×BU(Π)∧p ≤ BU(nq)∧p

defines a family of morphisms. In fact we check that they all fit to produce an
element in the inverse limit

{[Bc|BU(Π)∧p
]} lim←−

0

OH(G(q,r,n))

[BU(Π), BU(nq)∧p ].

We have to prove that the following diagrams are homotopy commutative where f
is a morphism in OH(G(q, r, n)),

BU(Π)∧p - BU(Π)∧p × · · · ×BU(Π)∧p - BU(nq)∧p

BU(Π)∧p

f
?

- BU(Π)∧p × · · · ×BU(Π)∧p

g
?

-

Recall that there are three kind of maps induced by morphisms in the orbit
category. From the one hand, there are inclusions and permutations of the factors
f ; in this case just take g = f × · · · × f . On the other hand, there are unstable
Adams’ operations ψα; recall that ψr ◦ψs ' ψrs, thus we have to take on the right
hand side the permutation of the factors that corresponds to g = φ(f) ∈ Σnq.
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The triangle on the right is homotopy commutative because Whitney sum mor-
phisms are homotopy commutative and associative (g is always given by a permu-
tation of the factors).

The obstructions to extend {[Bc|BU(Π)∧p
]} (see [28]) lie in

lim←−
i+1

OH(G(q,r,n))

πi(Map(BU(Π), BU(nq)∧p )Bc|BU(Π)
).

In order to compute the above higher limits, we first deal with the homotopy
type of the mapping spaces. Consider the following fibration

BZ/p - BU(Π)×BZ/p - BU(Π).

induced by the exact sequence Z/pZ → U(Π) × Z/pZ → U(Π) where the last
morphism is given by group multiplication by a central element Z/pZ.

We have the following homotopy equivalences, up to p-completion

Map(BU(Π), BU(nq))Bc ' Map(BU(Π)×BZ/p,BU(nq))Ψ◦Bmult
' Map(BU(Π),Map(BZ/p,BU(nq))Bc|BZ/p

)ad(Bc)
' Map(BU(Π), BU(n)q)Bc

'
q∏
i=1

Map(BU(Π), BU(n))ψi ' (BZ(U(Π))∧p )q.

The first homotopy equivalence follows from [9, Lemma 7.5], and the third one by
[13]. Therefore,

πi(Map(BU(Π), BU(nq)∧p )Bc|BU(Π)
) ∼= (πj(BTn)Σ(Π))q

By [22, Proposition 2.3],

lim←−
i

OH(G(q,r,n))

πj(Map(BU(Π), BU(nq)∧p )Bc) = 0,

if i > 0 and j 6= 2,

lim←−
i

OH(G(q,r,n))

πj(Map(BU(Π), BU(nq)∧p )Bc) = (πj((BTn)∧p )G(q,r,n))q,

if i = 0 and j = 2.
It remains to show that the morphismBc : BX(q, r, n)→ BU(nq)∧p is a monomor-

phism. We shall compute the mod p cohomology of the homotopy fibre of Bc. The
method is exactly the same as the one used in the proof of Proposition 3.2.

Bc∗(1 + c1 + · · ·+ cnq) = Bc∗(
qn∏
i=1

(1 + xi)) =
n∏
i=1

q∏
j=1

(1 + ajti) =

=
n∏
i=1

(1 + (−1)q+1tqi ) = 1 + (−1)q+1y1 + (−1)2(q+1)y2 + · · ·+ (−1)n(q+1)yn

Bc∗(cj) =


(−1)

j
q (q+1)q j

q
j ≡ 0 (q), j 6= qn

(−1)n(q+1)er j = qn

0 otherwise

where yi are the elementary symmetric polynomials in tq1, . . . , t
q
n, e = tr1 · · · trn,

yn = eq/r. Therefore, the cohomology of the homotopy fibre of Bc is an exterior
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algebra on a finite number of generators tensor a truncated polynomial on one
generator Λ(aj : j = 1, . . . , nq, j 6≡ 0(q)) ⊗ Fp[b]/br where deg(ai) = 2iq − 1 and
deg(b) = 2n

q

r
. Hence Fp-finite.

Note that Ψ is a regular map (also called p-toric [21]),

Map(BTn, BU(nq)∧p )Ψ ' (BTn)q,

therefore, the induced morphism in the Weyl groups φ is unique ([21, Proposition
2.4]). �

Remark 5.1. Since Bc∗(c1) = 0, Ψ factors through SU(nq)∧p .

We finish this section by studying the compatibility of the complexification map
with unstable Adams’ operations on BU(nq)∧p .

Proposition 5.2. The complexification map is equivariant up to homotopy with
respect to the action of unstable Adams’ operations of order q on BU(nq)∧p .

Proof. Let ξ be a primitive qth root of unity and ψξ an unstable Adams’ operation
of order q on BU(nq)∧p . The restriction to BU(Π)∧p of the composite ψξ ◦ BΨ fits
in the following homotopy commutative diagram

BU(Π)∧p
ψ0 × · · · × ψq−1

- BU(Π)∧p × · · · ×BU(Π)∧p
⊕- BU(nq)∧p

BU(Π)∧p

ψξ
? ψ0 × · · · × ψq−1

- BU(Π)∧p × · · · ×BU(Π)∧p
⊕- BU(nq)∧p

ψξ
?

In particular, that means that the complexification map fits in the following homo-
topy commutative diagram

BX(q, r, n)
Bc- BU(nq)∧p

BX(q, r, n)

' id
? Bc- BU(nq)∧p

ψξ
?

�
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