TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000-000 S 0002-9947(XX)0000-0

POSTNIKOV PIECES AND $B\mathbb{Z}/p$ -HOMOTOPY THEORY

NATÀLIA CASTELLANA, JUAN A. CRESPO, AND JÉRÔME SCHERER

ABSTRACT. We present a constructive method to compute the cellularization with respect to $B^m \mathbb{Z}/p$ for any integer $m \geq 1$ of a large class of *H*-spaces, namely all those which have a finite number of non-trivial $B^m \mathbb{Z}/p$ -homotopy groups (the pointed mapping space map_{*} $(B^m \mathbb{Z}/p, X)$ is a Postnikov piece). We prove in particular that the $B^m \mathbb{Z}/p$ -cellularization of an *H*-space having a finite number of $B^m \mathbb{Z}/p$ -homotopy groups is a *p*-torsion Postnikov piece. Along the way, we characterize the $B\mathbb{Z}/p^r$ -cellular classifying spaces of nilpotent groups.

INTRODUCTION

The notion of A-homotopy theory was introduced by Dror Farjoun [9] for an arbitrary connected space A. Here A and its suspensions play the role of the spheres in classical homotopy theory and so the A-homotopy groups of a space X are defined to be the homotopy classes of pointed maps $[\Sigma^i A, X]$. The analogue to weakly contractible spaces are those spaces for which all A-homotopy groups are trivial. This means that the pointed mapping space map_{*}(A, X) is contractible, i.e. X is an A-null space. On the other hand, the classical notion of CW-complex is replaced by the one of A-cellular space. Such spaces can be constructed from A by means of pointed homotopy colimits.

Thanks to work of Bousfield [2] and Dror Farjoun [9] there is a functorial way to study X through the eyes of A. The nullification $P_A X$ is the biggest quotient of X which is A-null and $CW_A X$ is the best A-cellular approximation of the space X. Roughly speaking, $CW_A X$ contains all the transcendent information of the mapping space map_{*}(A, X), since the latter is equivalent to map_{*}(A, $CW_A X$). Hence, explicit computation of the cellularization would give access to information about map_{*}(A, X). The importance of mapping spaces (in the case $A = B\mathbb{Z}/p$) is well established thank to Miller's solution to the Sullivan conjecture [17] and later work.

While many computations of $P_A X$ are present in the literature, very few computations of $CW_A X$ are avalable. For instance, Chachólski describes a strategy to compute the cellularization $CW_A X$ in [7]. His method has been successfully applied in some cases (cellularization with respect to Moore spaces [21], $B\mathbb{Z}/p$ cellularization of classifying spaces of finite groups [10]), but it is in general difficult to apply.

O1997 American Mathematical Society

Received by the editors November 26, 2004 and, in revised form, January 30, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55R35; Secondary 55P60, 55P20, 20F18.

Key words and phrases. Cellularization, H-spaces, Postnikov pieces, nilpotent groups.

All three authors are partially supported by MEC grant MTM2004-06686.

The third author is supported by the program Ramón y Cajal, MEC, Spain.

An alternative way to compute $CW_A X$ is the following. The nullification map $l: X \to P_A X$ provides an equivalence $CW_A X \simeq CW_A \overline{P}_A X$, where, as usual, $\overline{P}_A X$ denotes the homotopy fiber of l. This equivalence gives a strategy when $\overline{P}_A X$ is known. Assume for example that X is A-null. Then $\overline{P}_A X$ is contractible and thus, so is $CW_A X$. From the A-homotopy point of view, the next case in which the A-cellularization should be accessible is when X has only a finite number of A-homotopy groups, that is, some iterated loop space $\Omega^n X$ is A-null. Natural examples of spaces satisfying this condition are the n-connected covers of A-null spaces.

Let us specialize to *H*-spaces and $A = B^m \mathbb{Z}/p$. Bousfield has determined in [2] the fiber of the nullification map $X \to P_{B^m \mathbb{Z}/p} X$ when $\Omega^n X$ is $B^m \mathbb{Z}/p$ -null. He shows that, for such an *H*-space, $\overline{P}_{B^m \mathbb{Z}/p} X$ is a *p*-torsion Postnikov piece *F*, whose homotopy groups are concentrated in dimensions from *m* to m + n - 1. As *F* is also an *H*-space (because *l* is an *H*-map), we call it an *H*-Postnikov piece. The cellularization of *X* (which is again an *H*-space because CW_A preserves *H*-structures) therefore coincides with that of a Postnikov piece. In Section 3, we explain how to compute the cellularization of Postnikov pieces and this enables us to obtain our main result.

Theorem 5.3. Let X be a connected H-space such that $\Omega^n X$ is $B^m \mathbb{Z}/p$ -null. Then

$$CW_{B^m\mathbb{Z}/p}X \simeq F \times K(W,m),$$

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions from m + 1 to m + n - 1 and W is an elementary abelian p-group.

Thus, when X is an H-space with only a finite number of $B^m\mathbb{Z}/p$ -homotopy groups, the cellularization $CW_{B^m\mathbb{Z}/p}X$ is a p-torsion H-Postnikov piece. This is not true in general if we do not assume X to be an H-space. For instance, the $B\mathbb{Z}/p$ -cellularization of $B\Sigma_3$ is a space with infinitely many non-trivial homotopy groups [11]. Also, it is not true for an arbitrary space A that the A-cellularization of an H-space having a finite number of A-homotopy group is always a Postnikov piece. This fails, for example, when A is the product of the $K(\mathbb{Z}/p, p)$'s, where p runs over the set of all primes, but it could be true for any n-supported p-torsion space A (in the terminology of [2]).

In our previous work [6], we analyzed a large class of *H*-spaces which fits into the present framework. Namely, if the mod p cohomology of an *H*-space X is finitely generated as an algebra over the Steenrod algebra, then there must exist an integer n such that $\Omega^n X$ is $B\mathbb{Z}/p$ -null. Hence, we obtain the following.

Proposition 4.2. Let X be a connected H-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra. Then

$$CW_{B\mathbb{Z}/p}X \simeq F \times K(W,1),$$

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary abelian p-group. Moreover, there exists an integer k such that $CW_{B^m\mathbb{Z}/p}X \simeq *$ for any $m \geq k$.

Our results allow explicit computations which we exemplify by computing in Proposition 4.3 the $B\mathbb{Z}/p$ -cellularization of the *n*-connected cover of any finite *H*-space, as well as the $B^m\mathbb{Z}/p$ -cellularizations of the classifying spaces for real and complex

 $\mathbf{2}$

vector bundles BU, BO, and their connected covers BSU, BSO, BSpin, and BString-see Proposition 5.6.

Acknowledgements. We would like to thank Daniel Davis for carefully revising our English.

1. A DOUBLE FILTRATION OF THE CATEGORY OF SPACES

As mentioned in the Introduction, the condition that $\Omega^n X$ be $B^m \mathbb{Z}/p$ -null will enable us to compute the $B^m \mathbb{Z}/p$ -cellularization of *H*-spaces. This section is devoted to giving a picture of how such spaces are related for different choices of *m* and *n*.

First of all, we present a lemma which collects various facts that are needed in the rest of the paper.

Lemma 1.1. Let X be a connected space and m > 0. Then,

- (1) If X is $B^m \mathbb{Z}/p$ -null, then $\Omega^n X$ is $B^m \mathbb{Z}/p$ -null for all $n \geq 1$.
- (2) If X is $B^m \mathbb{Z}/p$ -null, then it is $B^{m+s} \mathbb{Z}/p$ -null for all $s \ge 0$.
- (3) If ΩX is $B^m \mathbb{Z}/p$ -null, then X is $B^{m+s} \mathbb{Z}/p$ -null for all $s \geq 1$.

Proof. For (1), simply apply map_{*} $(B\mathbb{Z}/p, -)$ to the path fibration $\Omega X \to * \to X$. Statement (2) is given by Dwyer's version of Zabrodsky's lemma [8, Prop. 3.4] applied to the universal fibration $B^m \mathbb{Z}/p \to * \to B^{m+1} \mathbb{Z}/p$.

Finally, (3) is proven like (2), using Zabrodsky's lemma in its connected version [8, Prop. 3.5] (see also Lemma 2.3). Recall that if ΩX is $B^m \mathbb{Z}/p$ -null, then the component map $(B^m \mathbb{Z}/p, X)_c$ of the constant map is weakly equivalent to X. \Box

Of course, the converses of the previous results are not true. For the first statement, take the classifying space of a discrete group at m = 1. For the second and third, consider X = BU. It is a $B^2\mathbb{Z}/p$ -null space (see Example 1.4), but neither BU nor ΩBU are $B\mathbb{Z}/p$ -null. Observe that in fact $\Omega^n BU$ is never $B\mathbb{Z}/p$ -null. The next result shows that this is the general situation. That is, if a connected space Xis $B^{m+1}\mathbb{Z}/p$ -null, then either ΩX is $B^m\mathbb{Z}/p$ -null or none of the iterated loop spaces $\Omega^n X$ is $B^m\mathbb{Z}/p$ -null for $n \geq 1$.

Theorem 1.2. Let X be a $B^{m+1}\mathbb{Z}/p$ -null space such that $\Omega^k X$ is $B^m\mathbb{Z}/p$ -null for some k > 0. Then ΩX is $B^m\mathbb{Z}/p$ -null.

Proof. It is enough to prove the result for k = 2. Consider the fibration

$$K(Q, m+1) \longrightarrow P_{\Sigma^2 B^m \mathbb{Z}/p} X \simeq X \longrightarrow P_{\Sigma B^m \mathbb{Z}/p} X,$$

where the fiber is a *p*-torsion Eilenberg-Mac Lane space by Bousfield's description of the fiber of the $\Sigma B^m \mathbb{Z}/p$ -nullification [2, Theorem 7.2]. The base space is $B^{m+1}\mathbb{Z}/p$ -null by Lemma 1.1.(3) and so is the total space, by assumption. Thus, the pointed mapping space map_{*} $(B^{m+1}\mathbb{Z}/p, K(Q, m + 1))$ must be contractible as well, i.e. Q = 0.

The previous analysis leads to a double filtration of the category of spaces. Let $n \ge 0$ and $m \ge 1$. We introduce the notation

$$\mathcal{S}_m^n = \{ X \mid \Omega^n X \text{ is } B^m \mathbb{Z}/p\text{-null} \}.$$

then Lemma 1.1 yields a diagram of inclusions:

Example 1.3. We give examples of spaces in every stage of the filtration.

- (1) S_1^0 are the spaces that are $B\mathbb{Z}/p$ -null. This contains in particular any finite space (by Miller's theorem [17, Thm. A]), and, for a nilpotent space X (of finite type with finite fundamental group), to be $B\mathbb{Z}/p$ -null is equivalent to its cohomology $H^*(X; \mathbb{F}_p)$ being locally finite by [22, Corollary 8.6.2].
- (2) If $X\langle n \rangle$ denotes the *n*-connected cover of a space X, then the homotopy fiber of $\Omega^{n-1}X\langle n \rangle \to \Omega^{n-1}X$ is a discrete space. Hence, if $X \in \mathcal{S}_m^0$, then $X\langle n \rangle \in \mathcal{S}_m^{n-1}$.
- (3) Observe that $\mathcal{S}_m^n \subset \mathcal{S}_{m+k}^{n-k}$ for all $0 \le k \le n$.
- (4) The previous examples provide spaces in every stage of the double filtration. Consider a finite space. It is automatically $B\mathbb{Z}/p$ -null. Its *n*-connected cover $X\langle n \rangle$ lies in S_1^{n-1} , hence also in S_{k+1}^{n-k-1} for all $0 \le k \le n$.

The next example provides a number of spaces living in S_m^0 which do not come from the first row of the filtration. Of course their connected covers will be *new* examples of spaces living in S_m^n .

Example 1.4. Let E_* be a homology theory. If $\tilde{E}^i(K(\mathbb{Z}/p,m)) = 0$ for all i, then the spaces E^i representing the corresponding homology theory are $B^m\mathbb{Z}/p$ -null. If $\tilde{E}^j(K(\mathbb{Z}/p,m-1)) \neq 0$ for some j, then E^j is not $B^{m-1}\mathbb{Z}/p$ -null. In particular, if E_* is periodic, it follows that the spaces E^i are $B^m\mathbb{Z}/p$ -null for all i, but none of their iterated loops are $B^{m-1}\mathbb{Z}/p$ -null.

A first example of such behavior is obtained from complex K-theory: BU is $B^2\mathbb{Z}/p$ -null, but BU and U are not $B\mathbb{Z}/p$ -null (see [18]). Note that real and quaternionic K-theory enjoy the same properties.

For every m, examples of homology theories following this pattern are given by p-torsion homology theories of type III-m as described in [1]. The mth Morava K-theory $K(m)_*$ for p odd is an example of such behavior with respect to Eilenberg-Mac Lane spaces. The spaces representing $K(m)_*$ are $B^{m+1}\mathbb{Z}/p$ -null, but none of their iterated loops are $B^m\mathbb{Z}/p$ -null.

Our aim is to provide tools to compute the $B^m\mathbb{Z}/p$ -cellularization of any *H*-space lying in the *m*th row of the above diagram. The key point is the following result of Bousfield [2], which determines the fiber of the nullification map.

Proposition 1.5. Let $n \ge 0$ and let X be a connected H-space such that $\Omega^n X$ is $B^m \mathbb{Z}/p$ -null. Then there is an H-fibration

$$F \longrightarrow X \longrightarrow P_{B^m \mathbb{Z}/p} X,$$

where F is a p-torsion H-Postnikov piece whose homotopy groups are concentrated in dimensions from m to m + n - 1.

Therefore, since $F \to X$ is a $B^m \mathbb{Z}/p$ -cellular equivalence, we only need to compute the cellularization of a Postnikov piece (which will end up being a Postnikov piece again; see Theorem 3.6). Actually, even more is true.

Proposition 1.6. Let X be a connected space such that $CW_{B^m\mathbb{Z}/p}X$ is a Postnikov piece. Then there exists an integer n such that $\Omega^n X$ is $B^m\mathbb{Z}/p$ -null.

Proof. Let us loop once the Chachólski fibration $CW_{B^m\mathbb{Z}/p}X \to X \to P_{\Sigma B^m\mathbb{Z}/p}C$ (see [7, Theorem 20.5]). Since $\Omega P_{\Sigma B^m\mathbb{Z}/p}C$ is equivalent to $P_{B^m\mathbb{Z}/p}\Omega C$ by [9, Theorem 3.A.1], we get a fibration over a $B^m\mathbb{Z}/p$ -null base space

 $\Omega CW_{B^m\mathbb{Z}/p}X \longrightarrow \Omega X \longrightarrow P_{B^m\mathbb{Z}/p}\Omega C.$

Now there exists an integer n such that $\Omega^n CW_{B^m\mathbb{Z}/p}X$ is discrete, thus $B^m\mathbb{Z}/p$ -null. Therefore, so is $\Omega^n X$.

2. Cellularization of fibrations over BG

In general, it is very difficult to compute the cellularization of the total space of a fibration. In this section, we explain how to deal with this problem when the base space is the classifying space of a discrete group. The first step applies to any group. In the second step - see Proposition 2.4 below, we specialize to nilpotent groups.

Proposition 2.1. Let $r \ge 1$ and let $F \longrightarrow E \xrightarrow{\pi} BG$ be a fibration, where G is a discrete group. Let S be the (normal) subgroup generated by all elements $g \in G$ of order p^i for some $i \le r$ such that the inclusion $B\langle g \rangle \to BG$ lifts to E. Then the pullback of the fibration along $BS \to BG$

induces a $B\mathbb{Z}/p^r$ -cellular equivalence $f: E' \to E$ on the total space level.

Proof. We have to show that f induces a homotopy equivalence on pointed mapping spaces map_{*} $(B\mathbb{Z}/p^r, -)$. The top fibration in the diagram yields a fibration

 $\operatorname{map}_*(B\mathbb{Z}/p^r, E') \xrightarrow{f_*} \operatorname{map}_*(B\mathbb{Z}/p^r, E) \xrightarrow{p_*} \operatorname{map}_*(B\mathbb{Z}/p^r, B(G/S)).$

Since the base is homotopically discrete, we only need to check that all components of the total space are sent by p_* to the component of the constant. Thus consider a map $h : B\mathbb{Z}/p^r \to E$. The composite $p \circ h$ is homotopy equivalent to a map induced by a group homomorphism $\alpha : \mathbb{Z}/p^r \to G$ whose image $\alpha(1) = g$ is in S by construction. Therefore $p \circ h = p' \circ \pi \circ h$ is null-homotopic.

Remark 2.2. If the fibration in the above proposition is an *H*-fibration (in particular if *G* is abelian), the set of elements *g* for which there is a lift to the total space forms a subgroup of *G*. The central extension $Z(D_8) \hookrightarrow D_8 \to \mathbb{Z}/2 \times \mathbb{Z}/2$ of the dihedral group D_8 provides an example where the subgroup *S* is $\mathbb{Z}/2 \times \mathbb{Z}/2$, but the element in *S* represented by an element of order 4 in D_8 does not admit a lift.

The next lemma is a variation of Dwyer's version of Zabrodsky's Lemma in [8].

Lemma 2.3. Let $F \longrightarrow E \stackrel{f}{\longrightarrow} B$ be a fibration over a connected base, and let A be a connected space such that ΩA is F-null. Then any map $g : E \rightarrow A$ which is homotopic to the constant map when restricted to F factors through a map $h : B \rightarrow A$ up to unpointed homotopy and, moreover, g is pointed null-homotopic if and only if h is so.

Proof. Since ΩA is *F*-null, we see that the component map_{*}(*F*, *A*)_c of the constant map is contractible and therefore, the evaluation at the base point map(*F*, *A*)_c \rightarrow *A* is an equivalence. By [8, Proposition 3.5], *f* induces a homotopy equivalence

$$\operatorname{map}(B, A) \simeq \operatorname{map}(E, A)_{[F]}$$

where $\operatorname{map}(E, A)_{[F]}$ denotes the space of maps $E \to A$ which are homotopic to the constant map when restricted to F.

Looking at the component of the constant map, we see that $\operatorname{map}(B, A)_c \simeq \operatorname{map}(E, A)_c$. Since any map homotopic to the constant map is also homotopic by a pointed homotopy, the result follows.

Proposition 2.4. Let $r \ge 1$ and let $F \xrightarrow{i} E \xrightarrow{\pi} BG$ be a fibration, where G is a nilpotent group generated by elements of order p^i with $i \le r$. Assume that for each of these generators $x \in G$, the inclusion $B\langle x \rangle \to BG$ lifts to E. If F is $B\mathbb{Z}/p^r$ -cellular, then so is E.

Proof. In [7], Chachólski describes the cellularization $CW_{B\mathbb{Z}/p^r}E$ as the homotopy fiber of the composite

$$f: E \longrightarrow C \longrightarrow P_{\Sigma B\mathbb{Z}/p^r}C,$$

where C is the homotopy cofiber of the evaluation map $\bigvee_{[B\mathbb{Z}/p^r,E]} B\mathbb{Z}/p^r \to E$. This tells us that E is cellular if the map f is null-homotopic. Observe that if f is null-homotopic, then the fiber inclusion $CW_{B\mathbb{Z}/p^r}E \to E$ has a section and therefore, E is cellular, since it is a retract of a cellular space ([9, 2.D.1.5]).

As the existence of an unpointed homotopy to the constant map implies the existence of a pointed one, we work now in the category of unpointed spaces. We remark that for any map $g: Z \to E$ from a $B\mathbb{Z}/p^r$ -cellular space Z, the composite $f \circ g$ is null-homotopic, since g factors through the cellularization of E. In particular, the composite $f \circ i$ is null-homotopic. By Lemma 2.3, there exists a map $\overline{f}: BG \to P_{\Sigma B\mathbb{Z}/p^r}C$ such that $\overline{f} \circ \pi \simeq f$ and, moreover, f is null-homotopic if and only if \overline{f} is so.

We first assume that G is a finite group and show by induction on the order of G that \bar{f} is null-homotopic. If |G| = p, the existence of a section $s : BG \to E$ implies that $f \circ s = \bar{f}$ is null-homotopic since $BG = B\mathbb{Z}/p$ is cellular.

Let $\{x_1, \ldots, x_k\}$ be a minimal set of generators which admit a lift. Let $H \leq G$ be the normal subgroup generated by x_1, \ldots, x_{k-1} and their conjugates by powers

of x_k . There is a short exact sequence

$$H \longrightarrow G \longrightarrow \mathbb{Z}/p^a,$$

where the quotient group is generated by the image of the generator x_k . Consider the fibration $F \to E' \to BH$ obtained by pulling back along $BH \to BG$, and denote by $h: E' \to E$ the induced map between the total spaces. Since H satisfies the assumptions of the proposition, the induction hypothesis tells us that E' is cellular and therefore, $f \circ h$ is null-homotopic. This implies that the restriction of \overline{f} to BH is null-homotopic. Consider the following diagram:

By Lemma 2.3, it is enough to show that f' is null-homotopic. Again, applying Lemma 2.3 to the fibration on the left shows that f' is null-homotopic since \bar{f} restricted to $\langle x_k \rangle$ is so. Therefore, \bar{f} is null-homotopic.

Assume now that G is not finite. Any subgroup of G generated by a finite number of elements of order a power of p has a finite abelianization, and must therefore be itself finite by [20, Theorem 2.26]. Thus, G is locally finite, i.e. G is a filtered colimit of finite nilpotent groups generated by elements of order p^i for $i \leq r$. Likewise, BG is a filtered homotopy colimit of classifying spaces of finite groups (generated by finite subsets of the set of generators) which satisfy the hypotheses of the proposition. The total space E can be obtained as a pointed filtered colimit of the total spaces obtained by pulling back the fibration. By the case when G is finite, these total spaces are all cellular and therefore, so is E.

Sometimes the existence of the "local" sections defined for every generator permits the construction of a global section of the fibration. By a result of Chachólski [7, Theorem 4.7], the total space of such a split fibration is cellular since F and BGare so. This is the case for an H-fibration and E is then weakly equivalent to the product $F \times BG$.

A straightforward consequence of the above proposition (in the case when the fibration is the identity on BG) is the following characterization of the $B\mathbb{Z}/p^r$ -cellular classifying spaces. For r = 1, we obtain R. Flores' result [10, Theorem 4.14].

Corollary 2.5. Let $r \ge 1$ and let G be a nilpotent group generated by elements of order p^i with $i \le r$. Then BG is $B\mathbb{Z}/p^r$ -cellular.

Example 2.6. The quaternion group Q_8 of order 8 is generated by elements of order 4. Therefore, BQ_8 is $B\mathbb{Z}/4$ -cellular. We do not know an explicit way to construct BQ_8 as a pointed homotopy colimit of a diagram whose values are copies of $B\mathbb{Z}/4$.

We can now state the main result of this section. It provides a constructive description of the cellularization of the total space of certain fibrations over classifying spaces of nilpotent groups. **Theorem 2.7.** Let G be a nilpotent group and let $F \longrightarrow E \longrightarrow BG$ be a fibration with $B\mathbb{Z}/p^r$ -cellular fiber F. Then the cellularization of E is the total space of a fibration $F \longrightarrow CW_{B\mathbb{Z}/p^r}E \longrightarrow BS$ where $S \triangleleft G$ is the (normal) subgroup generated by the p-torsion elements g of order p^i with $i \leq r$, such that the inclusion $B\langle g \rangle \rightarrow BG$ lifts to E.

Proof. By Proposition 2.1, pulling back along $BS \to BG$ yields a cellular equivalence f in the following square:

$$\begin{array}{c} E_S \xrightarrow{f} E \\ \downarrow & \downarrow \\ BS \xrightarrow{} BG \end{array}$$

By Proposition 2.4, the total space E_S is cellular and therefore $E_S \simeq CW_{B\mathbb{Z}/p^r}E$.

Corollary 2.8. Let G be a nilpotent group and let $S \triangleleft G$ be the (normal) subgroup generated by the p-torsion elements g of order p^i with $i \leq r$. Then $CW_{B\mathbb{Z}/p^r}BG \simeq BS$. Moreover, when G is finitely generated, S is a finite p-group.

Proof. We only need to show that S is a finite p-group. Notice that the abelianization of S is p-torsion. Thus, S is also a torsion group (see [23, Cor. 3.13]). Moreover, since G is finitely generated, S is finite, by [23, 3.10]. \Box

In fact, Theorem 2.7 also holds when the base space is an Eilenberg-Mac Lane space K(G, n).

Proposition 2.9. Let n be an integer ≥ 2 and let G be a finitely generated abelian group of exponent dividing p^r . Consider a fibration $F \xrightarrow{i} E \xrightarrow{\pi} K(G, n)$ such that, for each generator $x \in G$, the inclusion $K(\langle x \rangle, n) \to K(G, n)$ lifts to E. If F is $B\mathbb{Z}/p^r$ -cellular, then so is E.

3. Cellularization of Nilpotent Postnikov pieces

In this section, we compute the cellularization with respect to $B\mathbb{Z}/p^r$ of nilpotent Postnikov pieces. The main difficulty lies in the fundamental group, so it will be no surprise that these results hold as well for cellularization with respect to $B^m\mathbb{Z}/p^r$ with $m \geq 2$. We will often use the following closure property [9, Theorem 2.D.11].

Proposition 3.1. Let $F \to E \to B$ be a fibration where F and E are A-cellular. Then so is B.

Example 3.2. [9, Corollary 3.C.10] The Eilenberg-Mac Lane space $K(\mathbb{Z}/p^k, n)$ is $B\mathbb{Z}/p^r$ -cellular for any integer k and any $n \geq 2$.

The construction of the cellularization is performed by looking first at the universal cover of the Postnikov piece. We start with the basic building blocks, the Eilenberg-Mac Lane spaces. For the structure results on infinite abelian groups, we refer the reader to Fuchs' book [12].

Lemma 3.3. An Eilenberg-Mac Lane space K(A, m), with $m \ge 2$, is $B\mathbb{Z}/p^r$ -cellular if and only if A is a p-torsion abelian group.

Proof. It is clear that A must be p-torsion. Thus, assume that A is a p-torsion group. If A is bounded, it is isomorphic to a direct sum of cyclic groups. Since cellularization commutes with finite products, K(A,m) is $B\mathbb{Z}/p^r$ -cellular when A is a finite direct sum of cyclic groups. By taking a (possibly transfinite) telescope of $B\mathbb{Z}/p^r$ -cellular spaces, we obtain that K(A,m) is $B\mathbb{Z}/p^r$ -cellular for any bounded group.

In general, A splits as a direct sum of a divisible group D and a reduced one T. A p-torsion divisible group is a direct sum of copies of \mathbb{Z}/p^{∞} , which is a union of bounded groups. Thus, K(D, m) is cellular. Now T has a basic subgroup P < T, which is a direct sum of cyclic groups, and the quotient T/P is divisible. So K(T, m)is the total space of a fibration

$$K(P,m) \longrightarrow K(T,m) \longrightarrow K(D,m).$$

When $m \geq 3$, we are done because of the closure property Proposition 3.1. If m = 2, we have to refine the analysis of the fibration because K(D, m - 1) is not cellular. However, since D is a union of bounded groups $D[p^k]$, the space K(T, 2) is the telescope of total spaces X_k of fibrations with cellular fiber K(P, 2) and base $K(D[p^k], 2)$. We claim that these total spaces are cellular (and thus, so is K(T, 2)) and proceed by induction on the bound. Consider the subgroup $D[p^k] < D[p^{k+1}]$ whose quotient is a direct sum of cyclic groups \mathbb{Z}/p . Therefore, X_{k+1} is the base space in a fibration

$$K(\oplus \mathbb{Z}/p, 1) \longrightarrow X_k \longrightarrow X_{k+1},$$

where the fiber and total space are cellular. We are done.

We are now ready to prove that any simply connected *p*-torsion Postnikov piece is a $B\mathbb{Z}/p^r$ -cellular space.

Proposition 3.4. A simply connected Postnikov piece is $B\mathbb{Z}/p^r$ -cellular if and only if it is p-torsion.

Proof. Let X be a simply connected p-torsion Postnikov piece. For some integer m, the m-connected cover $X\langle m \rangle$ is an Eilenberg-Mac Lane space, which is cellular by Lemma 3.3. Consider the principal fibration

$$K(\pi_m X, m-1) \longrightarrow X\langle m \rangle \longrightarrow X\langle m-1 \rangle.$$

If $m \geq 3$, both $X\langle m \rangle$ and $K(\pi_m X, m-1)$ are cellular. It follows that $X\langle m-1 \rangle$ is cellular by the closure property Proposition 3.1. An iteration of the same argument shows that $X\langle 2 \rangle$ is cellular.

Thus, let us look at the fibration $X\langle 2 \rangle \to X \to K(\pi_2 X, 2)$. The discussion in the proof of Lemma 3.3 also applies to the *p*-torsion group $\pi_2 X$. If this is a bounded group, say of exponent p^k , an induction on the bound shows that X is actually the base space of a fibration where the total space is cellular, because its second homotopy group is of exponent p^{k-1} , and the fiber is cellular because it is of the form K(V, 1), with V a *p*-torsion abelian group of exponent $\leq p^r$. Then the closure property Proposition 3.1 ensures that X is cellular.

If $\pi_2 X$ is divisible, X is a telescope of cellular spaces, hence cellular. If it is reduced, taking a basic subgroup $B < \pi_2 X$ yields a diagram of fibrations

which exhibits X as the total space of a fibration over K(D, 2) with D divisible and a $B\mathbb{Z}/p^r$ -cellular fiber. Therefore, by writing D as a union of bounded groups as in the proof of Lemma 3.3, one obtains X as a telescope of cellular spaces. Thus, X is $B\mathbb{Z}/p^r$ -cellular as well.

Remark 3.5. The proof of the proposition holds in the more general setting where X is a p-torsion space such that $X\langle m \rangle$ is $B\mathbb{Z}/p^r$ -cellular for some $m \geq 2$. The proposition corresponds to the case when some m-connected cover $X\langle m \rangle$ is contractible.

Recall from [13, Corollary 2.12] that a connected space is nilpotent if and only if its Postnikov system admits a principal refinement

$$\cdots \longrightarrow X_s \longrightarrow X_{s-1} \longrightarrow \cdots \longrightarrow X_1 \longrightarrow X_0.$$

This means that each map $X_{s+1} \to X_s$ in the tower is a principal fibration with fiber $K(A_s, i_s - 1)$ for some increasing sequence of integers $i_s \ge 2$. We are only interested in finite Postnikov pieces, i.e. nilpotent spaces that can be constructed in a finite number of steps by taking homotopy fibers of k-invariants $X_s \to K(A_s, i_s)$.

The key step in the study of the cellularization of a nilpotent finite Postnikov piece is the analysis of principal fibrations (given in our case by the k-invariants).

Theorem 3.6. Let X be a p-torsion nilpotent Postnikov piece. Then there exists a fibration

$$X\langle 1 \rangle \longrightarrow CW_{B\mathbb{Z}/p^r}X \longrightarrow BS,$$

where S is the (normal) subgroup of $\pi_1 X$ generated by the elements g of order p^i with $i \leq r$, such that the inclusion $B\langle g \rangle \to B\pi_1 X$ admits a lift to X.

Proof. By Proposition 3.4, the universal cover $X\langle 1 \rangle$ is cellular and there is a fibration $X\langle 1 \rangle \to X \to BG$, where $G = \pi_1 X$ is nilpotent. The result follows then from Theorem 2.7.

4. Cellularization of H-spaces

In this section, we will use the computations of the cellularization of *p*-torsion nilpotent Postnikov systems to determine $CW_{B\mathbb{Z}/p}X$ when X is an *H*-space. We prove:

Theorem 4.1. Let X be a connected H-space such that $\Omega^n X$ is \mathbb{BZ}/p -null. Then

$$CW_{B\mathbb{Z}/p}X \simeq Y \times K(W,1),$$

where Y is a simply connected p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions $\leq n$ and W is an elementary abelian p-group.

Proof. The fibration in Bousfield's result Proposition 1.5 yields a cellular equivalence between a connected *p*-torsion *H*-Postnikov piece *F* and *X*. Theorem 3.6 thus applies. Moreover, since *F* is an *H*-space as well, the subgroup *S* is abelian and generated by elements of order *p*. Therefore, the *H*-fibration $F\langle 1 \rangle \rightarrow CW_{B\mathbb{Z}/p}F \rightarrow$ K(W, 1) admits a section (summing up the local sections) and the cellularization splits as a product.

This result applies for H-spaces satisfying certain finiteness conditions.

Proposition 4.2. Let X be a connected H-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra. Then

$$CW_{B\mathbb{Z}/p}X \simeq F \times K(W,1),$$

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary abelian p-group. Moreover, there exists an integer k such that $CW_{B^m\mathbb{Z}/p}X \simeq *$ for any $m \geq k$.

Proof. In [6], we prove that if $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra, then $\Omega^n X$ is $B\mathbb{Z}/p$ -null for some $n \geq 0$. Hence, Theorem 4.1 applies and we obtain the desired result. In addition, Lemma 1.1 shows that X is $B^{n+s+1}\mathbb{Z}/p$ -null for any $s \geq 0$, which implies the second part of the result. \Box

The technique we propose in this paper is not only a nice theoretical tool which provides a general statement about what the $B\mathbb{Z}/p$ -cellularization of H-spaces looks like. Our next result shows that one can actually identify precisely this new space when dealing with connected covers of finite H-spaces. Recall that by Miller's theorem [17, Thm. A], any finite H-space X is $B\mathbb{Z}/p$ -null and hence, $CW_{B\mathbb{Z}/p}X \simeq *$. The universal cover of X is still finite and thus, $CW_{B\mathbb{Z}/p}(X\langle 1 \rangle)$ is contractible as well. We can therefore assume that X is 1-connected. The computation of the cellularization of the 3-connected cover is already implicit in [4].

Proposition 4.3. Let X be a simply connected finite H-space and let k denote the rank of the free abelian group $\pi_3 X$. Then $CW_{B\mathbb{Z}/p}(X\langle 3\rangle) \simeq K(\bigoplus_k \mathbb{Z}/p, 1)$. For $n \geq 4$, up to p-completion, the universal cover of $CW_{B\mathbb{Z}/p}(X\langle n\rangle)$ is weakly equivalent to the 2-connected cover of $\Omega(X[n])$.

Proof. By Browder's famous result [5, Theorem 6.11], X is even 2-connected and its third homotopy group $\pi_3 X$ is free abelian (of rank k) by Hubbuck and Kane's theorem [14]. This means we have a fibration

$$K(\oplus_k \mathbb{Z}_{p^{\infty}}, 1) \longrightarrow X\langle 3 \rangle \longrightarrow P_{B\mathbb{Z}/p} X\langle 3 \rangle$$

which shows that $CW_{B\mathbb{Z}/p}X\langle 3\rangle \simeq K(\oplus_k \mathbb{Z}/p, 1).$

We deal now with the higher connected covers. Consider the following commutative diagram of fibrations

where F is a *p*-torsion Postnikov piece by [2, Thm 7.2] and the fiber inclusions are all $B\mathbb{Z}/p$ -cellular equivalences, because the base spaces are $B\mathbb{Z}/p$ -null. Therefore,

$$CW_{B\mathbb{Z}/p}(X\langle n\rangle) \simeq CW_{B\mathbb{Z}/p}F \simeq F\langle 1\rangle \times K(W,1).$$

We wish to identify $F\langle 1 \rangle$. Since the fibrations in the diagram are nilpotent, by [3, II.4.8] they remain fibrations after *p*-completion. By Neisendorfer's theorem [19], the map $P_{B\mathbb{Z}/p}(X\langle n \rangle) \to X$ is an equivalence up to *p*-completion, which means that $P_{B\mathbb{Z}/p}(\Omega(X[n]))_p^{\wedge} \simeq *$. Thus $F_p^{\wedge} \simeq (\Omega(X[n]))_p^{\wedge}$. Notice that $\Omega(X[n])$ is simply connected and its second homotopy group is free by the above mentioned theorem of Hubbuck and Kane (which corresponds up to *p*-completion to the direct sum of *k* copies of the Prüfer group \mathbb{Z}/p^{∞} in $\pi_1 F$). Hence, $F\langle 1 \rangle$ coincides with $(\Omega(X[n]))\langle 2 \rangle$ up to *p*-completion.

To illustrate this result, we compute the $B\mathbb{Z}/2$ -cellularization of the successive connected covers of S^3 . The only delicate point is the identification of the fundamental group.

Example 4.4. Recall that S^3 is $B\mathbb{Z}/2$ -null since it is a finite space. Thus, the cellularization $CW_{B\mathbb{Z}/2}S^3$ is contractible. Next, the fibration

$$K(\mathbb{Z}_{2^{\infty}}, 1) \to S^3\langle 3 \rangle \to P_{B\mathbb{Z}/2}(S^3\langle 3 \rangle)$$

shows that $CW_{B\mathbb{Z}/2}(S^3\langle 3\rangle) \simeq K(\mathbb{Z}/2, 1)$. Finally, since $S^3[4]$ does not split as a product (the *k*-invariant is not trivial), we see that $CW_{B\mathbb{Z}/2}(S^3\langle 4\rangle) \simeq K(\mathbb{Z}/2, 3)$. Likewise, for any integer $n \geq 4$, we have that $CW_{B\mathbb{Z}/2}(S^3\langle n\rangle)$ is weakly equivalent to the 2-completion of the 2-connected cover of $\Omega(S^3[n])$. The same phenomenon occurs at odd primes.

5. Cellularization with respect to $B^m \mathbb{Z}/p$

All the techniques developed for fibrations over BG apply to fibrations over K(G, n) when n > 1 and we get the following results.

Lemma 5.1. Let $m \geq 2$ and let X be a connected space. Then $CW_{B^m\mathbb{Z}/p^r}X$ is weakly equivalent to $CW_{B^m\mathbb{Z}/p^r}(X\langle n-1\rangle)$.

Proof. Consider the fibrations $X\langle i \rangle \longrightarrow X\langle i-1 \rangle \longrightarrow K(\pi_i X, i)$. For i < m, the base space is $B^m \mathbb{Z}/p^r$ -null and so $CW_{B^m \mathbb{Z}/p^r}(X\langle i \rangle) \simeq CW_{B^m \mathbb{Z}/p^r}(X\langle i-1 \rangle)$. \Box

Proposition 5.2. Let $m \ge 2$ and let X be a p-torsion nilpotent Postnikov piece. Then there exists a fibration

$$X\langle m \rangle \longrightarrow CW_{B^m \mathbb{Z}/p^r} X \longrightarrow K(W,m)$$

where W is a p-torsion subgroup of $\pi_m X$ of exponent dividing p^r .

Theorem 5.3. Let X be a connected H-space such that $\Omega^n X$ is $B^m \mathbb{Z}/p$ -null. Then

$$CW_{B^m\mathbb{Z}/p}X\simeq F\times K(W,m)$$

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions from m+1 to m+n-1, and W is an elementary abelian p-group. \Box

Example 5.4. Let X denote "Milgram's space" (see [16]) the homotopy fiber of $Sq^2: K(\mathbb{Z}/2, 2) \to K(\mathbb{Z}/2, 4)$. This is an infinite loop space. By Proposition 3.4, we know it is already $B\mathbb{Z}/2$ -cellular. Since the k-invariant is not trivial, we see that $CW_{B^2\mathbb{Z}/2}X \simeq CW_{B^3\mathbb{Z}/2}X \simeq K(\mathbb{Z}/2, 3)$.

Finally, we compute the cellularization of the (infinite loop) space BU and its 2-connected cover BSU with respect to Eilenberg-Mac Lane spaces $B^m\mathbb{Z}/p$. By Bott periodicity, this actually tells us the answer for all connected covers of BU.

Example 5.5. First of all, recall from Example 1.4 that BU is $B^2\mathbb{Z}/p$ -null since $\widetilde{K}^*(B^2\mathbb{Z}/p) = 0$ and its iterated loops are never $B\mathbb{Z}/p$ -null. Therefore, the cellularization $CW_{B^m\mathbb{Z}/p}BU$ is contractible if $m \geq 2$. Since $BU \simeq BSU \times BS^1$, the same holds for BSU.

We now compute the $B^m \mathbb{Z}/p$ -cellularization of BO and its connected covers BSO, BSpin, and BString.

Proposition 5.6. Let $m \ge 2$. Then

- (1) $CW_{B^m\mathbb{Z}/p}BO \simeq CW_{B^m\mathbb{Z}/p}BSO \simeq CW_{B^m\mathbb{Z}/p}BSpin \simeq *,$
- (2) $CW_{B^m\mathbb{Z}/p}BString \simeq * if m > 2,$
- (3) $CW_{B^2\mathbb{Z}/p}BString \simeq K(\mathbb{Z}/p, 2)$ and $\operatorname{map}_*(B^2\mathbb{Z}/p, BString) \simeq \mathbb{Z}/p$.

Proof. In [15], W. Meier proves that real and complex K-theory have the same acyclic spaces, hence BO is also $B^2\mathbb{Z}/p$ -null. Therefore, $CW_{B^m\mathbb{Z}/p}BO$ is contractible for any $m \geq 2$. The 2-connected cover of BO is BSO and there is a splitting $BO \simeq BSO \times B\mathbb{Z}/2$, so that $CW_{B^m\mathbb{Z}/p}BSO \simeq *$.

The 4-connected cover of BO is BSpin. From the fibration

$$BSpin \longrightarrow BSO \xrightarrow{w_2} K(\mathbb{Z}/2,2),$$

we infer that the homotopy fiber of $BSpin \to BSO$ is $B\mathbb{Z}/2$. Since BSO and $B\mathbb{Z}/2$ are $B^2\mathbb{Z}/p$ -null, so is BSpin. Therefore, $CW_{B^m\mathbb{Z}/p}BSpin$ is contractible.

Finally, the 8-connected cover of BO is BString. It is the homotopy fiber of $BSpin \xrightarrow{p_1/4} K(\mathbb{Z}, 4)$, where p_1 denotes the first Pontrjagin class. Consider the fibration

$$K(\mathbb{Z},3) \longrightarrow BString \longrightarrow BSpin,$$

where the base space is $B^m \mathbb{Z}/p$ -null for $m \geq 2$. Together with the exact sequence $\mathbb{Z} \to \mathbb{Z}[\frac{1}{p}] \to \mathbb{Z}/p^{\infty}$, this implies that

$$CW_{B^m\mathbb{Z}/p}BString \simeq CW_{B^m\mathbb{Z}/p}K(\mathbb{Z},3) \simeq CW_{B^m\mathbb{Z}/p}K(\mathbb{Z}/p^\infty,2)$$

This is a contractible space unless m = 2, when we obtain $K(\mathbb{Z}/p, 2)$. The explicit description of the pointed mapping space map_{*} $(B^2\mathbb{Z}/p, BString)$ follows.

Observe that the iterated loops of the *m*-connected covers of *BO* and *BU* are never $B\mathbb{Z}/p$ -null. Hence, their cellularizations with respect to $B\mathbb{Z}/p$ must have infinitely many non-vanishing homotopy groups by Proposition 1.6.

References

 A. K. Bousfield, Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (1976/77), no. 2, 207–220.

^[2] _____, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873.

^[3] A. K. Bousfield and D. M. Kan, *Homotopy limits, completions and localizations*, Springer-Verlag, Berlin, 1972, Lecture Notes in Mathematics, Vol. 304.

 ^[4] C. Broto and J. A. Crespo, H-spaces with Noetherian mod two cohomology algebra, Topology 38 (1999), no. 2, 353–386.

^[5] W. Browder, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 24-51.

14

- [6] N. Castellana, J. A. Crespo, and J. Scherer, *Deconstructing Hopf spaces*, preprint available at http://front.math.ucdavis.edu/math.AT/0404031, 2004.
- [7] W. Chachólski, On the functors CW_A and P_A , Duke Math. J. 84 (1996), no. 3, 599–631.
- [8] W. G. Dwyer, The centralizer decomposition of BG, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 167–184.
- [9] E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Springer-Verlag, Berlin, 1996.
- [10] R. Flores, Nullification and cellularization of classifying spaces of finite groups, to appear in Trans. Amer. Math. Soc.
- [11] R. Flores and J. Scherer, Cellularization of classifying spaces and fusion properties of finite groups, preprint available at http://front.math.ucdavis.edu/math.AT/0501442, 2005.
- [12] L. Fuchs, *Infinite abelian groups. Vol. I*, Pure and Applied Mathematics, Vol. 36, Academic Press, New York, 1970.
- [13] P. Hilton, G. Mislin, and J. Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Publishing Co., Amsterdam, 1975, North-Holland Mathematics Studies, No. 15, Notas de Matemática, No. 55. [Notes on Mathematics, No. 55].
- [14] J. R. Hubbuck and R. Kane, On π_3 of a finite H-space, Trans. Amer. Math. Soc. **213** (1975), 99–105.
- [15] W. Meier, Complex and real K-theory and localization, J. Pure Appl. Algebra 14 (1979), no. 1, 59–71.
- [16] R. J. Milgram, The structure over the Steenrod algebra of some 2-stage Postnikov systems, Quart. J. Math. Oxford Ser. (2) 20 (1969), 161–169.
- [17] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87.
- [18] G. Mislin, Localization with respect to K-theory, J. Pure Appl. Algebra 10 (1977/78), no. 2, 201–213.
- [19] J.A. Neisendorfer, Localization and connected covers of finite complexes, The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 385–390.
- [20] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62.
- [21] J. L. Rodríguez and J. Scherer, Cellular approximations using Moore spaces, Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 357–374.
- [22] L Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.
- [23] R. B. Warfield, Jr., Nilpotent groups, Springer-Verlag, Berlin, 1976, Lecture Notes in Mathematics, Vol. 513.

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail address: natalia@mat.uab.es

Departament de Economia i de Història Econòmica, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

 $E\text{-}mail\ address:$ JuanAlfonso.Crespo@uab.es

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail address: jscherer@mat.uab.es